CN106753326A - M:ZnSe/ZnSe/ZnS结构量子点制备方法 - Google Patents

M:ZnSe/ZnSe/ZnS结构量子点制备方法 Download PDF

Info

Publication number
CN106753326A
CN106753326A CN201611022828.2A CN201611022828A CN106753326A CN 106753326 A CN106753326 A CN 106753326A CN 201611022828 A CN201611022828 A CN 201611022828A CN 106753326 A CN106753326 A CN 106753326A
Authority
CN
China
Prior art keywords
znse
solution
quantum dot
zns
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611022828.2A
Other languages
English (en)
Inventor
田建军
王蓓
王世勋
沈婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201611022828.2A priority Critical patent/CN106753326A/zh
Publication of CN106753326A publication Critical patent/CN106753326A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Abstract

本发明属于量子点制备领域,涉及一种M:ZnSe/ZnSe/ZnS核壳结构量子点制备方法:在惰性气氛下,通过微波辅助加热装置,采用溶剂热合成出金属离子掺杂的M:ZnSe量子点,将反应温度降至室温,并在反应溶液中注入锌源和有机表面配体溶液,在M:ZnSe量子点外层形成ZnSe壳层,调整微波反应温度,注入硫化钠溶液,形成M:ZnSe/ZnSe/ZnS核壳结构的量子点。经过洗涤、离心获得的量子点粉体,同时量子点分散于异丙醇、乙醇、乙二醇和去离子水组成的溶剂中形成量子点墨水。本发明方法温度控制精确、量子点尺寸均一、量子点表面缺陷少及生产效率高,三层核壳结构量子点具有更高的荧光量子产率。

Description

M:ZnSe/ZnSe/ZnS结构量子点制备方法
技术领域
本发明主要属于量子点领域,具体涉及M:ZnSe/ZnSe/ZnS结构量子点制备方法。
背景技术
量子点(Quantum Dots)也被称为半导体纳米晶,是一种颗粒半径小于或接近于激子波尔半径、通常由Ⅱ-Ⅵ或Ⅲ-Ⅴ族元素组成的半导体纳米粒子。当量子点受到一定波长能量的光激发后,其价带中的电子吸收一定的能量,跃迁至导带,成为自由运动的电子,与价带上的自由空穴成为电子-空穴对,此时处于激发态的电子可以向低能级跃迁,并与光的形式辐射能量,发出荧光。不同量子点的发射光谱不同,所产生的颜色也不同。量子点由于其发光效率高、带隙连续可调和化学稳定性好等性质,在荧光探针、太阳能电池、发光二极管(Q-LED)等领域广泛应用。
利用量子点制备的Q-LED能效高、成本低、稳定性好且易加工,在全色显示和固态照明等应用方面具有极大的潜力。1994年Colvin等(Colvin V L,Schlamp M C,AlivisatosA P.Nature,1994,370:354-357.)利用CdSe胶体量子点第一次报道了Q-LED。随后,Sun等(SunQ J,Wang Y A.Nature.Photonics,2007,1:717)通过对量子点层厚度的优化,使红、橙、黄和绿色的Q-LED的最高发光分别可以达到9064、3200、4470和3700cd/m2,但是器件的稳定性较差。随后,越来越多的人开始了对Q-LED的所有组分进行研究并取得了进步。鉴于胶体量子点溶液可加工性,Q-LED将主要采用胶体量子点通过印刷或喷涂的工艺实现低成本、大面积的LED生产。
目前,广泛应用的是含Cd的量子点,例如CdTe、CdSe类发光量子点,这些量子点具有很高的发光效率,但也存在许多缺点,由于它们是重金属离子,具有生物毒性,其应用受到了限制。宽禁带的ZnSe量子点由于其良好的单色性,荧光在蓝紫色发光范围内连续可调,且无毒性在量子点蓝光二极管中有广阔的应用前景。但是ZnSe量子点由于其能级的问题使空穴的注入变得低效,导致荧光量子产率低,进而导致发光效率低。因此,合成高质量的蓝光量子点对于制备高性能的量子点蓝光发光二极管至关重要。
ZnSe量子点的制备技术主要包括金属有机溶剂法、化学共沉淀法、微波合成法、溶胶-凝胶法以及分子束外延法等。金属有机溶剂法是目前最常用的合成纳米粒子方法,但是金属有机化合物价格昂贵,毒性大,容易污染环境,危害人体健康,不能广泛应用。化学共沉淀法具有反应温度低,操作简单、原料成本低等优点,但是缺点是制备的量子点纯度偏低,需要对量子点进行进一步的修饰。传统加热方式是根据热传导、对流和辐射原理使热量从外部传至反应溶液,热量总是由表及里传递进行加热,反应溶液中不可避免地存在温度梯度,故加热不均匀,出现局部过热,致使量子点尺寸分布过宽。微波加热的方式穿透性强,加热速度快,加热均匀,更能精确控温,使得量子点尺寸分布变窄,准确地调整其带隙并且有利于产业化、自动化的发展。
发明内容
针对上述问题,本发明提供一种M:ZnSe/ZnSe/ZnS核壳结构量子点的制备方法。这种三层核壳结构量子点,宽带隙ZnS和ZnSe两层外壳不仅减少窄带隙M:ZnSe量子点的表面缺陷,还可以提高量子点的激子激发和激子产率,进而改善荧光量子产率。
本发明是通过以下技术方案实现的:
M:ZnSe/ZnSe/ZnS结构量子点制备方法,所述方法包括以下步骤:
(1)在惰性气氛下,硒粉Se和硼氢化钠NaBH4溶解于去离子水,获得Se源前驱体溶液;
(2)乙酸锌Zn(CH3COO)2和掺杂离子Cu2+、Mn2+、Al3+金属盐溶解到有机表面配体的去离子水溶液,再利用氢氧化钠NaOH调节溶液PH至6~7,获得金属离子M:Zn前驱体溶液;
(3)金属离子M:Zn前驱体溶液置于微波反应装置中,进行抽真空10~40min,之后通入惰性气体,然后将Se的前驱体溶液注入到金属离子M:Zn前驱体溶液中,利用微波加热,将反应溶液从室温加热到75~95℃,保温1~3h;
(4)将反应温度降至室温,然后注入Zn(CH3COO)2和有机表面配体的去离子水溶液,再升温到75~95℃,保温30~90min;
(5)将反应温度降至50~60℃,之后利用NaOH调节反应溶液的PH至11~13,再升温至70~85℃,此时在反应溶液中注入Na2S去离子水溶液,保温30~90min后,冷却至室温,获得M:ZnSe/ZnSe/ZnS三层核壳结构的量子点溶液;
(6)将所得的量子点溶液进行洗涤、离心和干燥,获得量子点粉体;
其中,所述M包括Cu、Mn、Al;
金属离子前驱体溶液中M:Zn的摩尔比为1:30~1:5;
Se源前驱体溶液:金属离子M:Zn前驱体溶液:锌源:硫化钠溶液的摩尔浓度比为1:0.5:1:0.5;
所述金属离子和所述有机表面配体溶液的摩尔浓度比为1:9~10。
进一步地,Se源前驱体溶液、金属离子M:Zn前驱体溶液、锌源、硫化钠溶液的摩尔浓度为0.02~0.1M;所述有机表面配体溶液的摩尔浓度为0.2~0.9M。
进一步地,所述有机表面配体包括3-巯基丙酸、巯基乙酸、谷胱甘肽或半胱氨酸。
一种量子点印刷墨水制备方法,利用权利要求1-8任一方法制备所得的M:ZnSe/ZnSe/ZnS结构量子点制备印刷墨水,将所述M:ZnSe/ZnSe/ZnS结构量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成摩尔浓度0.05~0.5M的M:ZnSe/ZnSe/ZnS量子点墨水。
本发明的有益技术效果:1)这种三层核壳结构量子点,宽带隙ZnS和ZnSe两层外壳不仅减少窄带隙M:ZnSe量子点的表面缺陷,还可以促进激子激发和激子产率,进而提高量子点的荧光量子产率;
2)微波反应具有升温、降温速度快,温度控制精确,有利于获得尺寸均一、表面缺陷少的高质量量子点,而且该方法生产效率高。
附图说明
图1是M:ZnSe/ZnSe/ZnS三层核壳结构量子点的结构示意图:
图2是本发明方法制备的Mn掺杂的Mn:ZnSe/ZnSe/ZnS量子点的荧光谱图;
图3是本发明方法制备的Cu掺杂的Cu:ZnSe/ZnSe/ZnS量子点的荧光谱图;
图中:1、M:ZnSe量子点;2、ZnSe量子点;3、ZnS量子点。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
实施例1
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Mn(CH3COO)2溶解到有机表面配体MPA的去离子水溶液中,通过滴加NaOH溶液调节PH至6,获得Mn:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空40min,再通入惰性气体,此后,将Se的前驱体溶液注入到Mn:Zn源前驱体溶液中,利用微波加热,加热到75℃,保温3h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和MPA水溶液,再升温至75℃,保温90min;
e)将反应温度降至50℃,将反应溶液的PH调节至11,升温至70℃然后加入Na2S水溶液,保温90min后,冷却至室温,获得Mn:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体。
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Mn:ZnSe/ZnSe/ZnS量子点墨水。
其中,不同浓度得到的Mn:ZnSe/ZnSe/ZnS量子点的光学性能列入表1。
表1 Mn:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例2
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Mn(CH3COO)2溶解到有机表面配体TGA的去离子水溶液中,通过滴加NaOH溶液调节PH至7,获得Mn:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空30min,再通入惰性气体,此后,将Se的前驱体溶液注入到Mn:Zn源前驱体溶液中,利用微波加热,加热到95℃,保温1h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和TGA水溶液,再升温至95℃,保温30min;
e)将反应温度降至60℃,将反应溶液的PH调节至13,升温至85℃然后加入Na2S水溶液,保温30min后,冷却至室温,获得Mn:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Mn:ZnSe/ZnSe/ZnS量子点墨水。
其中,不同浓度得到的Mn:ZnSe/ZnSe/ZnS量子点的光学性能列入表2。
表2 Mn:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例3
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Mn(CH3COO)2溶解到有机表面配体GSH的去离子水溶液中,通过滴加NaOH溶液调节PH至6.5,获得Mn:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空20min,再通入惰性气体,此后,将Se的前驱体溶液注入到Mn:Zn源前驱体溶液中,利用微波加热,加热到85℃,保温2h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和GSH水溶液,再升温至85℃,保温60min;
e)将反应温度降至55℃,将反应溶液的PH调节至12,升温至80℃然后加入Na2S水溶液,保温60min后,冷却至室温,获得Mn:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Mn:ZnSe/ZnSe/ZnS量子点墨水。
其中,不同浓度得到的Mn:ZnSe/ZnSe/ZnS量子点的光学性能列入表3。
表3 Mn:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例4
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Cu(CH3COO)2溶解到有机表面配体MPA的去离子水溶液中,通过滴加NaOH溶液调节PH至6,获得Cu:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空40min,再通入惰性气体,此后,将Se的前驱体溶液注入到Cu:Zn源前驱体溶液中,利用微波加热,加热到75℃,保温3h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和MPA水溶液,再升温至75℃,保温90min;
e)将反应温度降至50℃,将反应溶液的PH调节至11,升温至70℃然后加入Na2S水溶液,保温90min后,冷却至室温,获得Cu:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
其中,不同浓度得到的Cu:ZnSe/ZnSe/ZnS量子点的光学性能列入表4。
表4 Cu:ZnSe/ZnSe/ZnS量子点光学性能的影响
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Cu:ZnSe/ZnSe/ZnS量子点墨水。
实施例5
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Cu(CH3COO)2溶解到有机表面配体TGA的去离子水溶液中,通过滴加NaOH溶液调节PH至7,获得Cu:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空30min,再通入惰性气体,此后,将Se的前驱体溶液注入到Cu:Zn源前驱体溶液中,利用微波加热,加热到95℃,保温1h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和TGA水溶液,再升温至95℃,保温30min;
e)将反应温度降至60℃,将反应溶液的PH调节至13,升温至85℃然后加入Na2S水溶液,保温30min后,冷却至室温,获得Cu:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Cu:ZnSe/ZnSe/ZnS量子点墨水。其中,不同浓度得到的Cu:ZnSe/ZnSe/ZnS量子点的光学性能列入表5。
表5 Cu:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例6
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Cu(CH3COO)2溶解到有机表面配体GSH的去离子水溶液中,通过滴加NaOH溶液调节PH至6.5,获得Cu:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空20min,再通入惰性气体,此后,将Se的前驱体溶液注入到Cu:Zn源前驱体溶液中,利用微波加热,加热到85℃,保温2h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和GSH水溶液,再升温至85℃,保温60min;
e)将反应温度降至55℃,将反应溶液的PH调节至12,升温至80℃然后加入Na2S水溶液,保温60min后,冷却至室温,获得Cu:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Cu:ZnSe/ZnSe/ZnS量子点墨水。其中,不同浓度得到的Cu:ZnSe/ZnSe/ZnS量子点的光学性能列入表6。
表6 Cu:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例7
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Al(CH3COO)3溶解到有机表面配体MPA的去离子水溶液中,通过滴加NaOH溶液调节PH至6,获得Al:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空40min,再通入惰性气体,此后,将Se的前驱体溶液注入到Al:Zn源前驱体溶液中,利用微波加热,加热到75℃,保温3h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和MPA水溶液,再升温至75℃,保温90min;
e)将反应温度降至50℃,将反应溶液的PH调节至11,升温至70℃然后加入Na2S水溶液,保温90min后,冷却至室温,获得Al:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Al:ZnSe/ZnSe/ZnS量子点墨水。
其中,不同浓度得到的Al:ZnSe/ZnSe/ZnS量子点的光学性能列入表7。
表7 Al:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例8
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Al(CH3COO)3溶解到有机表面配体TGA的去离子水溶液中,通过滴加NaOH溶液调节PH至7,获得Al:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空30min,再通入惰性气体,此后,将Se的前驱体溶液注入到Al:Zn源前驱体溶液中,利用微波加热,加热到95℃,保温1h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和TGA水溶液,再升温至95℃,保温30min;
e)将反应温度降至60℃,将反应溶液的PH调节至13,升温至85℃然后加入Na2S水溶液,保温30min后,冷却至室温,获得Al:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Al:ZnSe/ZnSe/ZnS量子点墨水。
其中,不同浓度得到的Al:ZnSe/ZnSe/ZnS量子点的光学性能列入表8。
表8 Al:ZnSe/ZnSe/ZnS量子点光学性能的影响
实施例9
M:ZnSe/ZnSe/ZnS结构量子点制备方法,具体步骤如下:
a)在惰性气氛下,将Se粉和NaBH4溶解到去离子水中,得到Se源前驱体溶液;
b)Zn(CH3COO)2和Al(CH3COO)3溶解到有机表面配体GSH的去离子水溶液中,通过滴加NaOH溶液调节PH至6.5,获得Al:Zn源前驱体溶液;
c)将盛有b中得到的前驱体溶液的容器放置于微波反应装置中,然后抽真空20min,再通入惰性气体,此后,将Se的前驱体溶液注入到Al:Zn源前驱体溶液中,利用微波加热,加热到85℃,保温2h;
d)将反应温度降至室温,再注入Zn(CH3COO)2和GSH水溶液,再升温至85℃,保温60min;
e)将反应温度降至55℃,将反应溶液的PH调节至12,升温至80℃然后加入Na2S水溶液,保温60min后,冷却至室温,获得Al:ZnSe/ZnSe/ZnS核壳结构的量子点,取少量等组分的不同保温时间得到的量子点进行光学性能测试;
f)将所得的量子点溶液进行洗涤、离心,获得量子点粉体;
其中,不同浓度得到的Al:ZnSe/ZnSe/ZnS量子点的光学性能列入表9。
表9 Al:ZnSe/ZnSe/ZnS量子点光学性能的影响
进一步地,M:ZnSe/ZnSe/ZnS结构量子点墨水制备方法:
g)将所得的量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成Al:ZnSe/ZnSe/ZnS量子点墨水。

Claims (4)

1.M:ZnSe/ZnSe/ZnS结构量子点制备方法,其特征在于,所述方法包括以下步骤:
(1)在惰性气氛下,硒粉Se和硼氢化钠NaBH4溶解于去离子水,获得Se源前驱体溶液;
(2)乙酸锌Zn(CH3COO)2和掺杂离子Cu2+、Mn2+、Al3+金属盐溶解到有机表面配体的去离子水溶液,再利用氢氧化钠NaOH调节溶液PH至6~7,获得金属离子M:Zn前驱体溶液;
(3)金属离子M:Zn前驱体溶液置于微波反应装置中,进行抽真空10~40 min,之后通入惰性气体,然后将Se的前驱体溶液注入到金属离子M:Zn前驱体溶液中,利用微波加热,将反应溶液从室温加热到75~95ºC,保温1~3h;
(4)将反应温度降至室温,然后注入Zn(CH3COO)2和有机表面配体的去离子水溶液,再升温到75~95 ºC,保温30~90min;
(5)将反应温度降至50~60 ºC,之后利用NaOH调节反应溶液的PH至11~13,再升温至70~85 ºC,此时在反应溶液中注入Na2S去离子水溶液,保温30~90min后,冷却至室温,获得M:ZnSe/ZnSe/ZnS三层核壳结构的量子点溶液;
(6)将所得的量子点溶液进行洗涤、离心和干燥,获得量子点粉体;
其中,所述M包括Cu、Mn、Al;
金属离子前驱体溶液中M:Zn的摩尔比为1:30~1:5;
Se源前驱体溶液:金属离子M:Zn前驱体溶液:锌源:硫化钠溶液的摩尔浓度比为1:0.5:1:0.5;
所述金属离子和所述有机表面配体溶液的摩尔浓度比为1:9~10。
2.如权利要求1所述M:ZnSe/ZnSe/ZnS结构量子点制备方法,其特征在于,Se源前驱体溶液、金属离子M:Zn前驱体溶液、锌源、硫化钠溶液的摩尔浓度为0.02~0.1 M;所述有机表面配体溶液的摩尔浓度为0.2~0.9 M。
3.如权利要求1所述M:ZnSe/ZnSe/ZnS结构量子点制备方法,其特征在于,所述有机表面配体包括3-巯基丙酸、巯基乙酸、谷胱甘肽或半胱氨酸。
4.一种量子点印刷墨水制备方法,其特征在于,利用权利要求1-3任一方法制备所得的M:ZnSe/ZnSe/ZnS结构量子点制备印刷墨水,将所述M:ZnSe/ZnSe/ZnS结构量子点分散到由异丙醇、乙醇、乙二醇和去离子水按照体积比1:1:1:1组成的溶剂中,形成摩尔浓度0.05~0.5M的M:ZnSe/ZnSe/ZnS量子点墨水。
CN201611022828.2A 2016-11-21 2016-11-21 M:ZnSe/ZnSe/ZnS结构量子点制备方法 Pending CN106753326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611022828.2A CN106753326A (zh) 2016-11-21 2016-11-21 M:ZnSe/ZnSe/ZnS结构量子点制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611022828.2A CN106753326A (zh) 2016-11-21 2016-11-21 M:ZnSe/ZnSe/ZnS结构量子点制备方法

Publications (1)

Publication Number Publication Date
CN106753326A true CN106753326A (zh) 2017-05-31

Family

ID=58969933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611022828.2A Pending CN106753326A (zh) 2016-11-21 2016-11-21 M:ZnSe/ZnSe/ZnS结构量子点制备方法

Country Status (1)

Country Link
CN (1) CN106753326A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233823A (zh) * 2018-09-30 2019-01-18 华南理工大学 一种钙钛矿量子点粉末的自动化制备装置及其制备方法
CN110655922A (zh) * 2018-06-29 2020-01-07 纳米系统公司 使用In3+盐作为掺杂剂的ZnSe量子点的波长调谐
CN111562246A (zh) * 2020-06-29 2020-08-21 中南林业科技大学 一种光辐照Mn:ZnSe@ZnS量子点光电传感器及其制备方法和应用
US11566176B2 (en) 2019-04-19 2023-01-31 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles and devices including the same
US11566345B2 (en) 2018-02-21 2023-01-31 Samsung Electronics Co., Ltd. Cadmium-free semiconductor nanocrystal particles having high quantum efficiency, production methods thereof, and devices including the same
US11982018B2 (en) 2018-02-21 2024-05-14 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles of core-shell structure having specific bandgap relationship between the core and the shells, production methods thereof, and devices including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314991A1 (en) * 2008-01-14 2009-12-24 Samsung Electronics Co., Ltd. Quantum dot ink composition for inkjet printing and electronic device using the same
CN105273717A (zh) * 2014-06-19 2016-01-27 苏州晶能科技有限公司 一种核壳结构红光量子点的制备方法及具有它的led光源

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314991A1 (en) * 2008-01-14 2009-12-24 Samsung Electronics Co., Ltd. Quantum dot ink composition for inkjet printing and electronic device using the same
CN105273717A (zh) * 2014-06-19 2016-01-27 苏州晶能科技有限公司 一种核壳结构红光量子点的制备方法及具有它的led光源

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREW W. WILLS ET AL: "Synthesis and characterization of Al- and In-doped CdSe nanocrystals", 《J. MATER. CHEM.》 *
JIE ZHANG等: "Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission", 《APPLIED SURFACE SCIENCE》 *
JINZHONG NIU等: "Phosphine-free Synthesis and Photoluminescence Properties of ZnSe:Cu/ZnSe/ZnS Core/shell Nanocrystals", 《ADVANCED MATERIALS RESEARCH》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566345B2 (en) 2018-02-21 2023-01-31 Samsung Electronics Co., Ltd. Cadmium-free semiconductor nanocrystal particles having high quantum efficiency, production methods thereof, and devices including the same
US11982018B2 (en) 2018-02-21 2024-05-14 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles of core-shell structure having specific bandgap relationship between the core and the shells, production methods thereof, and devices including the same
CN110655922A (zh) * 2018-06-29 2020-01-07 纳米系统公司 使用In3+盐作为掺杂剂的ZnSe量子点的波长调谐
CN110655922B (zh) * 2018-06-29 2024-02-27 昭荣化学工业株式会社 使用In3+盐作为掺杂剂的ZnSe量子点的波长调谐
CN109233823A (zh) * 2018-09-30 2019-01-18 华南理工大学 一种钙钛矿量子点粉末的自动化制备装置及其制备方法
US11566176B2 (en) 2019-04-19 2023-01-31 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles and devices including the same
CN111562246A (zh) * 2020-06-29 2020-08-21 中南林业科技大学 一种光辐照Mn:ZnSe@ZnS量子点光电传感器及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106753326A (zh) M:ZnSe/ZnSe/ZnS结构量子点制备方法
Lu et al. Metal halide perovskite nanocrystals and their applications in optoelectronic devices
Dong et al. Recent advances toward practical use of halide perovskite nanocrystals
Wang et al. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications
Ramasamy et al. Upconversion nanophosphors for solar cell applications
Li et al. I-III-VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications
Zhao et al. Synthesis of colloidal halide perovskite quantum dots/nanocrystals: progresses and advances
CN110607176B (zh) 一种贵金属/半导体诱导上转换增强的复合薄膜
CN107201227B (zh) 一种微波辅助加热合成CsSnX3钙钛矿量子点的方法
Zhu et al. Recent Advances in Enhancing and Enriching the Optical Properties of Cl‐Based CsPbX3 Nanocrystals
Gao et al. The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications
Chen et al. Hydrothermal synthesis of highly fluorescent Ag–In–S/ZnS core/shell quantum dots for white light-emitting diodes
Yan et al. Enhancing the performance of blue quantum-dot light-emitting diodes based on Mg-doped ZnO as an electron transport layer
Chen et al. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs
CN108624322A (zh) 一种用于太阳光谱调制的纳米复合体系及其制备方法
Xie et al. Metal cation substitution of halide perovskite nanocrystals
Tseng et al. Tetraoctylammonium bromide-passivated CsPbI3− xBrx perovskite nanoparticles with improved stability for efficient red light-emitting diodes
Li et al. Hexamethyldisilazane-triggered room temperature synthesis of hydrophobic perovskite nanocrystals with enhanced stability for light-emitting diodes
CN104099088A (zh) 制作参杂金属离子的硫化锌纳米粒子的方法以及应用其进行光致发暖白光的方法
CN110643348A (zh) 一种准ii型能带结构量子点及其制备方法
Yang et al. All-inorganic lead halide perovskite nanocrystals applied in advanced display devices
Han et al. Recent Progress of Organic–Inorganic Hybrid Perovskite Quantum Dots: Preparation, Optical Regulation, and Application in Light‐Emitting Diodes
Wang et al. Perovskite nanogels: synthesis, properties, and applications
CN103992797A (zh) 一种ZnSe:Ag量子点表面修饰的方法
CN104513663A (zh) 近红外铜铟硒量子点及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication