CN106745120A - 一种制备三维花状勃姆石的无模板混合溶剂热法 - Google Patents

一种制备三维花状勃姆石的无模板混合溶剂热法 Download PDF

Info

Publication number
CN106745120A
CN106745120A CN201611166686.7A CN201611166686A CN106745120A CN 106745120 A CN106745120 A CN 106745120A CN 201611166686 A CN201611166686 A CN 201611166686A CN 106745120 A CN106745120 A CN 106745120A
Authority
CN
China
Prior art keywords
dimensional flower
boehmite
shaped boehmite
prepare
mixed solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611166686.7A
Other languages
English (en)
Other versions
CN106745120B (zh
Inventor
姜涛
袁瑞瑞
薛向欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201611166686.7A priority Critical patent/CN106745120B/zh
Publication of CN106745120A publication Critical patent/CN106745120A/zh
Application granted granted Critical
Publication of CN106745120B publication Critical patent/CN106745120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:将氯化铝与去离子水混合均匀得到氯化铝溶液;将氯化铝溶液与氢氧化钠溶液混合均匀得到碱性悬浮液;将碱性悬浮液中滴加无水乙醇,并搅拌12~24h;将Al3+‑乙醇混合液于140~180℃密闭反应6~12h;将反应物冷却至室温,分离出沉淀物,依次洗涤、干燥,得到三维花状勃姆石。本发明在制备三维花状勃姆石的过程中未添加有毒有害的表面活性剂,并且制备过程也不会产生任何有毒有害物质,属于一种绿色环保工艺;并且本发明制备的三维花状勃姆石纯度高,晶型好,花状形貌完整。

Description

一种制备三维花状勃姆石的无模板混合溶剂热法
技术领域
本发明涉及三维纳米花状勃姆石的制备方法,具体涉及一种制备三维花状勃姆石的无模板混合溶剂热法。
背景技术
勃姆石又称软水铝石,分子式是γ-AlOOH,其在工业上应用广泛,可以被用作催化剂,阻燃剂,吸附剂等。勃姆石的宏观性质与其粒度和形貌有很大关系。纳米尺度的勃姆石因其特殊的性质而备受关注。除了控制勃姆石的粒度以外,制备不同形貌的勃姆石也是材料合成的一个热点。现有的勃姆石具有纤维状、针状、管状、棒状等一维结构,片状、带状等二维结构,还有一维、二维结构所组成的束状、花状、球状、纺锤状、哈密瓜状等三维结构。三维结构勃姆石由于具有纳米尺度的结构单元和微米及以上尺度的整体形貌,以及微、纳米尺度的偶合效应和协同效应,使其具有高表面能和特殊表面性质的同时,可防止液相团聚,且可改善其在生产和应用时的分离和回收。基于三维结构勃姆石的优良特性,很多研究人员将研究重点放在了三维结构的勃姆石上。
现有合成三维结构勃姆石的主要方法有水热法、溶剂热法和混合溶剂热法。合成三维结构勃姆石的主要原料组成有:以氯化铝、硝酸铝、硫酸铝、铝酸钠中的一种或几种为铝源,以尿素或氢氧化钠为沉淀剂,以聚苯乙烯-嵌段-聚丙烯酸羟基乙酯、十六烷基三甲基溴化铵、聚丙烯酸钠、一水合柠檬酸等为软模板或不加入模板剂,以水、有机溶剂或水与有机溶剂的混合物为溶剂。吴秀勇[1]采用水热法,以硝酸铝为铝源,尿素为沉淀剂,聚苯乙烯-嵌段-聚丙烯酸羟基乙酯为软模板,合成了三维片状聚集体形貌的勃姆石超细粉体;Liu Ye[2]采用水热法,以氯化铝为铝源,氢氧化钠为沉淀剂,十六烷基三甲基溴化铵(CTAB)为软模板,合成了三维花状勃姆石粉体。虽然软模板的加入可以获得形貌良好、比表面积大的产品,但是软模板的去除需要合适的溶剂或在高温下煅烧,并且软模板去除后会影响产品的形貌,除此之外,软模板大都采用有毒的表面活性剂,基于此采用无模板的绿色环保合成方法成为三维结构勃姆石制备的必然选择。
参考文献
[1] 吴秀勇.一种制备均分散层状结构勃姆石超细粉体的方法:中国,CN201310096073.0[P].2014.12.24
[2] Liu Y,et al.Hydrothermal synthesis of microscale boehmite and gammananoleaves alumina[J]. Materials Letters, 2008,62(8):1297-1301。
发明内容
针对现有技术存在的问题,本发明提供一种制备三维花状勃姆石的无模板混合溶剂热法。本发明的技术方案为:
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
将氯化铝与去离子水混合均匀得到氯化铝溶液;
将氢氧化钠与去离子水混合均匀得到氢氧化钠溶液;
将氯化铝溶液与氢氧化钠溶液混合均匀得到碱性悬浮液;
将碱性悬浮液中滴加无水乙醇,并搅拌12~24h;
将Al3+-乙醇混合液于140~180℃密闭反应6~12h;
将反应物冷却至室温,分离出沉淀物,依次洗涤、干燥,得到三维花状勃姆石。
上述方法中,所述氯化铝溶液中Al3+浓度为0.1~0.3mol/L。
上述方法中,所述氢氧化钠溶液的浓度为1.8~2.2mol/L,用量以氢氧化钠与氯化铝的摩尔比为(18~20):5计。
上述方法中,所述无水乙醇与碱性悬浮液的体积比为1:1。
上述方法中,所述干燥条件为:干燥温度为90~110℃,干燥时间为5~7h。
本发明的有益效果在于:首先,本发明在制备三维花状勃姆石的过程中未添加有毒有害的表面活性剂,并且制备过程也不会产生任何有毒有害物质,属于一种绿色环保工艺;其次,本发明制备的三维花状勃姆石纯度高,晶型好,花状形貌完整;最后,本发明的反应温度低、时间短、工艺简单、成本低廉。
附图说明
图1为本发明实施例1的三维花状勃姆石的扫描电镜照片,其中a图为产品放大20000倍的扫描电镜照片,b图为产品放大5000倍的扫描电镜照片。
图2是本发明实施例1的三维花状勃姆石的XRD谱图。
图3是本发明实施例2的三维花状勃姆石的扫描电镜照片. 其中a图为产品放大50000倍的扫描电镜照片,b图为产品放大5000倍的扫描电镜照片。
图4是本发明实施例3的三维花状勃姆石的扫描电镜照片,其中a图为产品放大20000倍的扫描电镜照片,b图为产品放大2000倍扫描电镜照片。
图5是本发明实施例4的三维花状勃姆石的扫描电镜照片,其中a图为产品放大20000倍的扫描电镜照片,b图为产品放大5000倍的扫描电镜照片。
图6是本发明实施例5的三维花状勃姆石的扫描电镜照片,其中a图为产品放大20000倍的扫描电镜照片,b图为产品放大5000倍的扫描电镜照片。
图7是本发明实施例6的三维花状勃姆石的扫描电镜照片,其中a图为产品放大30000倍的扫描电镜照片,b图为产品放大5000倍的扫描电镜照片。
图8是本发明实施例7的三维花状勃姆石的扫描电镜照片,其中a图为产品放大30000倍的扫描电镜照片,b图为产品放大5000倍的扫描电镜照片。
具体实施方式
下面结合附图和具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。
实施例1
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.2mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为2.0mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为19:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌24h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于160℃密闭反应12h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、100℃干燥6h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片和XRD图分别如图1和2所示,图1a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度3~4um,宽度1~1.5um,厚度40~60nm的纳米片交织而成。图1b显示三维花型勃姆石的尺寸分布在3~9um。图2显示本实施例的产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。
实施例2
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.2mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为1.9mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为18:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌20h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于170℃密闭反应12h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、90℃干燥7h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片如图3所示,图3a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度200~500nm,宽度0.15~0.3um,厚度15~20nm的纳米片交织而成。图3b显示三维花型勃姆石的尺寸分布在1~4um。本实施例制备的三维花状勃姆石的XRD图同实施例1的图2,显示,产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。
实施例3
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.2mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为2.1mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为20:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌24h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于160℃密闭反应12h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、110℃干燥5h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片如图4所示,图4a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度4~8um,宽度1.5~2um,厚度50~100nm的纳米片交织而成。图4b显示三维花型勃姆石的尺寸分布在5~20um。本实施例制备的三维花状勃姆石的XRD图同实施例1的图2,显示,产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。
实施例4
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.2mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为2.0mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为19:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌18h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于160℃密闭反应6h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、100℃干燥6h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片如图5所示,图5a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度3~4um,宽度1.5~2um,厚度45~75nm的纳米片交织而成。图5b显示三维花型勃姆石的尺寸分布在4~7um。本实施例制备的三维花状勃姆石的XRD图同实施例1的图2,显示,产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。
实施例5
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.2mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为2.0mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为19:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌16h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于160℃密闭反应9h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、100℃干燥6h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片如图6所示,图6a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度1~3um,宽度1~1.5um,厚度35~60nm的纳米片交织而成。图6b显示三维花型勃姆石的尺寸分布在2~7um。本实施例制备的三维花状勃姆石的XRD图同实施例1的图2,显示,产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。
实施例6
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.3mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为2.0mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为19:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌16h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于160℃密闭反应12h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、110℃干燥5h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片如图7所示,图7a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度1~2um,宽度0.5~1um,厚度15~25nm的纳米片交织而成。图7b显示三维花型勃姆石的尺寸分布在2~7um。本实施例制备的三维花状勃姆石的XRD图同实施例1的图2,显示,产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。
实施例7
一种制备三维花状勃姆石的无模板混合溶剂热法,包括以下步骤:
(1)将氯化铝与去离子水混合均匀得到Al3+浓度为0.15mol/L的氯化铝溶液;
(2)将氯化铝溶液与浓度为2.0mol/L的氢氧化钠溶液混合均匀,其中氢氧化钠与氯化铝的摩尔比为19:5,得到碱性悬浮液;
(3)将碱性悬浮液中滴加无水乙醇,并搅拌16h,其中无水乙醇与碱性悬浮液的体积比为1:1;
(4)将Al3+-乙醇混合液在聚四氟乙烯内胆的反应釜于160℃密闭反应12h;
(5)将反应物冷却至室温,分离出沉淀物,用去离子水和无水乙醇反复洗涤数次、110℃干燥5h,得到三维花状勃姆石。
本实施例制备的三维花状勃姆石的扫描电镜照片如图8所示,图8a显示勃姆石颗粒呈三维花型,并且三维花型结构由长度0.5~1um,宽度0.2~0.4um,厚度20~40nm的纳米片交织而成。图8b显示三维花型勃姆石的尺寸分布在2~5um。本实施例制备的三维花状勃姆石的XRD图同实施例1的图2,显示,产物为γ-AlOOH结构(JCPDS card no.83-2384),即勃姆石结构,并且纯度非常高。

Claims (5)

1.一种制备三维花状勃姆石的无模板混合溶剂热法,其特征在于包括以下步骤:
将氯化铝与去离子水混合均匀得到氯化铝溶液;
将氯化铝溶液与氢氧化钠溶液混合均匀得到碱性悬浮液;
将碱性悬浮液中滴加无水乙醇,并搅拌12~24h;
将Al3+-乙醇混合液于140~180℃密闭反应6~12h;
将反应物冷却至室温,分离出沉淀物,依次洗涤、干燥,得到三维花状勃姆石。
2.根据权利要求1所述的一种制备三维花状勃姆石的无模板混合溶剂热法,其特征在于所述氯化铝溶液中Al3+浓度为0.1~0.3mol/L。
3.根据权利要求1所述的一种制备三维花状勃姆石的无模板混合溶剂热法,其特征在于所述氢氧化钠溶液的浓度为1.8~2.2mol/L,用量以氢氧化钠与氯化铝的摩尔比为(18~20):5计。
4.根据权利要求1所述的一种制备三维花状勃姆石的无模板混合溶剂热法,其特征在于所述无水乙醇与碱性悬浮液的体积比为1:1。
5.根据权利要求1所述的一种制备三维花状勃姆石的无模板混合溶剂热法,其特征在于所述干燥条件为:干燥温度为90~110℃,干燥时间为5~7h。
CN201611166686.7A 2016-12-16 2016-12-16 一种制备三维花状勃姆石的无模板混合溶剂热法 Active CN106745120B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611166686.7A CN106745120B (zh) 2016-12-16 2016-12-16 一种制备三维花状勃姆石的无模板混合溶剂热法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611166686.7A CN106745120B (zh) 2016-12-16 2016-12-16 一种制备三维花状勃姆石的无模板混合溶剂热法

Publications (2)

Publication Number Publication Date
CN106745120A true CN106745120A (zh) 2017-05-31
CN106745120B CN106745120B (zh) 2018-02-16

Family

ID=58893109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611166686.7A Active CN106745120B (zh) 2016-12-16 2016-12-16 一种制备三维花状勃姆石的无模板混合溶剂热法

Country Status (1)

Country Link
CN (1) CN106745120B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109250739A (zh) * 2018-10-11 2019-01-22 东北大学 利用高铝粉煤灰制备三维花状结构勃姆石的溶剂热法
CN113666402A (zh) * 2021-08-13 2021-11-19 吉林大学 一种羟基氧化铝纳米材料及其制备方法
CN113955782A (zh) * 2021-09-06 2022-01-21 湖北金泉新材料有限公司 一种形貌可控的勃姆石制备方法
CN116835620A (zh) * 2023-05-30 2023-10-03 中国石油大学(华东) 一种插层-剥离勃姆石制备二维纳米片的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080156229A1 (en) * 2006-12-28 2008-07-03 E. I. Dupont De Nemours And Company Processes for the hydrothermal production of titanuim dioxide
CN101704538A (zh) * 2009-11-13 2010-05-12 武汉理工大学 一种制备系列异形分级拟薄水铝石的水热方法
CN102701244A (zh) * 2012-07-02 2012-10-03 泰山医学院 一种调控勃姆石形貌的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080156229A1 (en) * 2006-12-28 2008-07-03 E. I. Dupont De Nemours And Company Processes for the hydrothermal production of titanuim dioxide
CN101704538A (zh) * 2009-11-13 2010-05-12 武汉理工大学 一种制备系列异形分级拟薄水铝石的水热方法
CN102701244A (zh) * 2012-07-02 2012-10-03 泰山医学院 一种调控勃姆石形貌的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN ZHANG ET AL.: "Self-Assembly of Flowerlike AlOOH (Boehmite) 3D Nanoarchitectures", 《J. PHYS. CHEM. B》 *
YE LIU ET AL.: "Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina", 《MATERIALS LETTERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109250739A (zh) * 2018-10-11 2019-01-22 东北大学 利用高铝粉煤灰制备三维花状结构勃姆石的溶剂热法
CN113666402A (zh) * 2021-08-13 2021-11-19 吉林大学 一种羟基氧化铝纳米材料及其制备方法
CN113955782A (zh) * 2021-09-06 2022-01-21 湖北金泉新材料有限公司 一种形貌可控的勃姆石制备方法
CN116835620A (zh) * 2023-05-30 2023-10-03 中国石油大学(华东) 一种插层-剥离勃姆石制备二维纳米片的方法

Also Published As

Publication number Publication date
CN106745120B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN106745120B (zh) 一种制备三维花状勃姆石的无模板混合溶剂热法
CN1930107B (zh) 含有机酸阴离子的铝盐氢氧化物粒子、其制造方法及其应用
CN104710169B (zh) 一种镁铝尖晶石超细粉体及其制备方法
CN101717108B (zh) 一种稀土氢氧化物及氧化物纳米棒的工业化制备方法
CN104591301B (zh) 一种多孔纳米CoFe2O4的制备方法
CN110357135A (zh) 一种高纯锂电池隔膜用特种氧化铝的制备方法
CN107335452A (zh) 室温条件下合成溴氧化铋超薄纳米片光催化剂的方法
CN104370300A (zh) 一种高分散、球形氧化铈粉末及其制备方法
CN104528799B (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN101024514A (zh) 一种制备四方相(立方相)纳米二氧化锆的新方法
CN103449503B (zh) 一种纳米锌铝尖晶石的制备方法
CN104891542A (zh) 一种超细α-Al2O3粉体的制备方法
CN102718485A (zh) 一种铈掺杂锆酸镧纳米粉体及其制备方法
CN110407238A (zh) 一种晶种法制备片状氧化铝晶体的方法
CN108276805A (zh) 一种陶瓷喷墨打印或陶瓷干混用硅酸锆包裹硫硒化镉颜料及其制备方法
CN102910654A (zh) 一种大比表面积大孔体积纤维状薄水铝石的制备方法
CN108083316A (zh) 一种纳米稀土氧化物粉体的制备方法
CN105733445B (zh) 一种纳米CeO2抛光粉的制备方法
CN105536791A (zh) 合成甲基氯硅烷单体的八面体氧化亚铜催化剂的制备方法
CN107089676A (zh) 一种高纯度勃姆石的制备方法
CN105502480B (zh) 一种绣球花状钛酸锶纳米粉体的制备方法
CN103922347B (zh) 一种二氧化硅连续聚集体囊泡材料及其制备方法
CN106186013B (zh) 一种采用流变相反应法合成花球状介孔氧化铝的方法
CN105776253B (zh) 一种利用钾霞石粉体制备硝酸钾和纳米高岭石的方法
CN105347310B (zh) 一种制备高纯度钙基水滑石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant