CN106745119A - 一种镁铝尖晶石粉末的合成方法 - Google Patents

一种镁铝尖晶石粉末的合成方法 Download PDF

Info

Publication number
CN106745119A
CN106745119A CN201611030941.5A CN201611030941A CN106745119A CN 106745119 A CN106745119 A CN 106745119A CN 201611030941 A CN201611030941 A CN 201611030941A CN 106745119 A CN106745119 A CN 106745119A
Authority
CN
China
Prior art keywords
magnesium
aluminate spinel
synthetic method
inorganic salt
magnesium aluminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611030941.5A
Other languages
English (en)
Other versions
CN106745119B (zh
Inventor
吕晓军
刘建华
张恒星
赖延清
李劼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201611030941.5A priority Critical patent/CN106745119B/zh
Publication of CN106745119A publication Critical patent/CN106745119A/zh
Application granted granted Critical
Publication of CN106745119B publication Critical patent/CN106745119B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/162Magnesium aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种镁铝尖晶石粉末的合成方法,以水溶性淀粉作为单体,以N‑N’‑亚甲基双丙烯酰胺为交联剂,过硫酸铵作为引发剂,加入到镁、铝无机盐生成镁铝尖晶石的反应体系中,搅拌条件下恒温水浴保温,得到前驱体,随后将前驱体干燥后煅烧,即得到高纯镁铝尖晶石微粉。采用本发明方法可制备纯度高、颗粒尺寸小、分散性好的MAS粉体,且该方法具有环保、成本低、周期短、操作方便、温度易控、粉体性能更加优良等优点。

Description

一种镁铝尖晶石粉末的合成方法
技术领域
本发明属于粉末冶金技术领域,具体涉及一种镁铝尖晶石粉末的合成方法。
背景技术
镁铝尖晶石(化学式为MgAl2O4,英文缩写MAS)之前主要用在耐火材料、耐磨材料和精细陶瓷等领域,近年来逐渐应用于电子、催化剂及其载体材料、透明陶瓷、尖晶石单晶等领域。这对MAS粉体的性能要求也就越来越高。MAS粉体的主要性能包括纯度、粒度和组成等。其中,纯度是衡量粉体性能优劣的关键指标,高纯MAS粉体的纯度一般大于99%。
目前,常见到的MAS粉体制备技术主要有:固相反应法、共沉淀法、溶剂蒸发法、溶胶-凝胶法等方法。这些制备技术都存在一定局限性:如固相反应法成本低廉、工艺简单,但存在转化率低、平均粒径大、颗粒形貌难以控制的问题;共沉淀法获得的粉体活性高、组分均匀,但粉体分散性差,易形成硬团聚;溶剂蒸发法基本解决了颗粒分散性问题,但是粉体多为中空结构,影响了粉体的应用;溶胶-凝胶法产品纯度较高,但是粉体分散困难。
为此,本发明提出一种制备高纯镁铝尖晶石微粉的高分子絮凝法。高分子絮凝法是以金属无机盐为主要原料,以无毒的淀粉为单体、以N-N’-亚甲基双丙烯酰胺为交联剂、以过氧化物为引发剂,制备得到絮凝状(非凝胶状)的前驱体,干燥煅烧后即得。与传统方法相比,本发明的高分子絮凝法具有环保、成本低、周期短、操作方便、温度易控、粉体性能更加优良等优点。更为重要的是由于在絮凝过程中所形成的聚合物网络使得MgAl2O4的接触机会减少,从而减少了团聚的产生,有希望获得纯度高、颗粒尺寸小和分散均匀的MAS粉体。
发明内容
本发明的目的旨在克服现有技术中的不足,提供一种镁铝尖晶石粉末的合成方法。采用本发明,可制备纯度高、颗粒尺寸小、分散性好的MAS粉体,且该方法具有环保、成本低、周期短、操作方便、温度易控、粉体性能更加优良等优点。采用高分子絮凝法制备得到的高纯MAS微粉,可以广泛应用于耐火材料、电子、催化剂及其载体材料、透明陶瓷、尖晶石单晶等领域。
本发明的目的是通过以下方式实现的。
一种镁铝尖晶石粉末的合成方法:以水溶性淀粉作为单体,以N-N’-亚甲基双丙烯酰胺为交联剂,过硫酸铵作为引发剂,加入到镁、铝无机盐生成镁铝尖晶石的反应体系中,搅拌条件下恒温水浴保温,得到前驱体,随后将前驱体干燥后煅烧,即得到高纯镁铝尖晶石微粉。
所述的镁铝尖晶石粉末的合成方法:
以2-16%质量浓度的水溶性淀粉作为单体,以2-16%质量浓度的N-N’-亚甲基双丙烯酰胺为交联剂;然后将N-N’-亚甲基双丙烯酰胺和水溶性淀粉溶液按2:1-12:1的体积比例配制成一定浓度的溶液,加入到镁、铝无机盐按化学计量比配制成的溶液中,水浴加热、搅拌,然后加入2-12%质量浓度的过硫酸铵作为引发剂,水浴搅拌保温,得到前驱体,随后将前驱体干燥后煅烧,即得到镁铝尖晶石微粉。
所述的镁铝尖晶石粉末的合成方法:采用镁、铝无机盐为原料,按摩尔比为Al2O3:MgO=1:1的比例配制成混合溶液。
所述的镁铝尖晶石粉末的合成方法,镁、铝无机盐混合溶液中镁、铝无机盐的浓度均为0.05g/ml-1g/ml。
所述的镁铝尖晶石粉末的合成方法:N-N’-亚甲基双丙烯酰胺和水溶性淀粉的混合溶液与镁、铝无机盐的混合溶液的体积比例为1:8-1:12。
所述的镁铝尖晶石粉末的合成方法:
将N-N’-亚甲基双丙烯酰胺和水溶性淀粉溶液加入到镁、铝无机盐配制成的溶液中,在75-85℃温度下水浴加热、搅拌至少10min,然后加入过硫酸铵,在搅拌条件下60-100℃下恒温水浴保温至少1h,得到前驱体。
所述的镁铝尖晶石粉末的合成方法:将前驱体在100-120℃下干燥至少24h后,在700-1000℃下煅烧至少2h,即得到高纯镁铝尖晶石微粉。
所述的镁铝尖晶石粉末的合成方法,镁无机盐原料包括碳酸镁、硝酸镁、硫酸镁中的一种或几种;铝无机盐原料包括碳酸铝、硝酸铝、硫酸铝中的一种或几种。
与现有技术相比,本发明具有下列优点:
(1)采用本发明得到的MAS粉体,杂质含量少、纯度高;
(2)采用本发明得到的MAS粉体,颗粒尺寸小和分散均匀;
(3)本发明制备工艺具有环保、成本低、周期短、操作方便、温度易控、实用性强的优点。
附图说明:
图1为本发明制备MAS粉体的步骤示意图;
图2为本发明制得的MAS粉体的XRD图;
图3为本发明制得的MAS粉体的SEM图。
具体实施方式
下面给出的实施例拟对本发明作进一步说明,但不能理解为是对本发明保护范围的限制,该领域的技术人员根据上述本发明的内容对本发明作出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
硝酸镁和硝酸铝,按MgO:Al2O3摩尔比为1:1配制成混合溶液。先配制浓度为3%的淀粉和浓度为3%的N-N’-亚甲基双丙烯酰胺,然后将N-N’-亚甲基双丙烯酰胺和水溶性淀粉按5:1的体积比例配制成一定浓度的溶液,并加入到镁、铝无机盐溶液(镁、铝无机盐的浓度均为0.05g/ml)中,两种混合溶液体积比为1:10。在80℃温度下水浴加热、搅拌10min,然后加入3%浓度的过硫酸铵作为引发剂,用恒温加热磁力搅拌器,在60℃下水浴保温1h,生成白色的絮状沉淀,得到前驱体。随后将前驱体在110℃下干燥24h后,在800℃下煅烧2h,得到纯度高于99.99%、颗粒尺寸小(0.1-10微米)和分散均匀的MAS微粉。
实施例2
硝酸镁和硝酸铝,按MgO:Al2O3摩尔比为1:1配制成混合溶液。先配制浓度为6%的淀粉和浓度为8%的N-N’-亚甲基双丙烯酰胺,然后将N-N’-亚甲基双丙烯酰胺和水溶性淀粉按8:1的体积比例配制成一定浓度的溶液,并加入到镁、铝无机盐溶液中(镁、铝无机盐的浓度均为0.5g/ml),两种混合溶液体积比为1:10。在80℃温度下水浴加热、搅拌10min,然后加入5%浓度的过硫酸铵作为引发剂,用恒温加热磁力搅拌器,在70℃下水浴保温1h,生成白色的絮状沉淀,得到前驱体。随后将前驱体在110℃下干燥24h后,在900℃下煅烧2h,得到纯度高于99.99%、颗粒尺寸小(0.1-10微米)和分散均匀的MAS微粉。
实施例3
硝酸镁和硝酸铝,按MgO:Al2O3摩尔比为1:1配制成混合溶液。先配制浓度为9%的淀粉和浓度为10%的N-N’-亚甲基双丙烯酰胺,然后将N-N’-亚甲基双丙烯酰胺和水溶性淀粉按10:1的体积比例配制成一定浓度的溶液,并加入到镁、铝无机盐溶液中(镁、铝无机盐的浓度均为0.8g/ml),两种混合溶液体积比为1:10。在80℃温度下水浴加热、搅拌10min,然后加入3%浓度的过硫酸铵作为引发剂,用恒温加热磁力搅拌器,在80℃下水浴保温1h,生成白色的絮状沉淀,得到前驱体。随后将前驱体在110℃下干燥24h后,在1000℃下煅烧2h,得到纯度高于99.99%、颗粒尺寸小(0.1-10微米)和分散均匀的MAS微粉。
实施例4
硝酸镁和硝酸铝,按MgO:Al2O3摩尔比为1:1配制成混合溶液。先配制浓度为15%的淀粉和浓度为15%的N-N’-亚甲基双丙烯酰胺,然后将N-N’-亚甲基双丙烯酰胺和水溶性淀粉按3:1的体积比例配制成一定浓度的溶液,并加入到镁、铝无机盐溶液(镁、铝无机盐的浓度均为1g/ml)中,两种混合溶液体积比为1:10。在80℃温度下水浴加热、搅拌10min,然后加入3%浓度的过硫酸铵作为引发剂,用恒温加热磁力搅拌器,在100℃下水浴保温1h,生成白色的絮状沉淀,得到前驱体。随后将前驱体在110℃下干燥24h后,在700℃下煅烧2h,得到纯度高于99.99%、颗粒尺寸小(0.1-10微米)和分散均匀的MAS微粉。
对比例:
操作步骤和原料添加比例同上述实施例,以丙烯酰胺为单体、以N-N’-亚甲基双丙烯酰胺为交联剂、以过氧化物为引发剂,制备出的凝胶作为前驱体,将凝胶干燥、煅烧即可得到亚微米级MAS粉体。制备得到的产品的性能进行对比发现纯度仅为95%,颗粒尺寸8-20微米的MAS微粉,而且分散不均匀。

Claims (8)

1.一种镁铝尖晶石粉末的合成方法,其特征在于:以水溶性淀粉作为单体,以N-N’-亚甲基双丙烯酰胺为交联剂,过硫酸铵作为引发剂,加入到镁、铝无机盐生成镁铝尖晶石的反应体系中,搅拌条件下恒温水浴保温,得到前驱体,随后将前驱体干燥后煅烧,即得到镁铝尖晶石微粉。
2.根据权利要求1所述的镁铝尖晶石粉末的合成方法,其特征在于:以2-16%质量浓度的水溶性淀粉作为单体,以2-16%质量浓度的N-N’-亚甲基双丙烯酰胺为交联剂;然后将N-N’-亚甲基双丙烯酰胺和水溶性淀粉溶液按2:1-12:1的体积比例配制成一定浓度的溶液,加入到镁、铝无机盐按化学计量比配制成的溶液中,水浴加热、搅拌,然后加入2-12%质量浓度的过硫酸铵作为引发剂,水浴搅拌保温,得到前驱体,随后将前驱体干燥后煅烧,即得到镁铝尖晶石微粉。
3.根据权利要求1或2所述的镁铝尖晶石粉末的合成方法,其特征在于:采用镁、铝无机盐为原料,按摩尔比为Al2O3:MgO=1:1的比例配制成混合溶液。
4.根据权利要求1或2所述的镁铝尖晶石粉末的合成方法,其特征在于,镁、铝无机盐混合溶液中镁、铝无机盐的浓度均为0.05g/ml-1g/ml。
5.根据权利要求1或2所述的镁铝尖晶石粉末的合成方法,其特征在于:N-N’-亚甲基双丙烯酰胺和水溶性淀粉的混合溶液与镁、铝无机盐的混合溶液的体积比例为1:8-1:12。
6.根据权利要求1或2所述的镁铝尖晶石粉末的合成方法,其特征在于:将N-N’-亚甲基双丙烯酰胺和水溶性淀粉溶液加入到镁、铝无机盐配制成的溶液中,在75-85℃温度下水浴加热、搅拌至少10min,然后加入过硫酸铵,在搅拌条件下60-100℃下恒温水浴保温至少1h,得到前驱体。
7.根据权利要求1或2所述的镁铝尖晶石粉末的合成方法,其特征在于:将前驱体在100-120℃下干燥至少24h后,在700-1000℃下煅烧至少2h,即得到高纯镁铝尖晶石微粉。
8.根据权利要求1或2所述的镁铝尖晶石粉末的合成方法,其特征在于,镁无机盐原料包括碳酸镁、硝酸镁、硫酸镁中的一种或几种;铝无机盐原料包括碳酸铝、硝酸铝、硫酸铝中的一种或几种。
CN201611030941.5A 2016-11-22 2016-11-22 一种镁铝尖晶石粉末的合成方法 Expired - Fee Related CN106745119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611030941.5A CN106745119B (zh) 2016-11-22 2016-11-22 一种镁铝尖晶石粉末的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611030941.5A CN106745119B (zh) 2016-11-22 2016-11-22 一种镁铝尖晶石粉末的合成方法

Publications (2)

Publication Number Publication Date
CN106745119A true CN106745119A (zh) 2017-05-31
CN106745119B CN106745119B (zh) 2018-10-30

Family

ID=58971759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611030941.5A Expired - Fee Related CN106745119B (zh) 2016-11-22 2016-11-22 一种镁铝尖晶石粉末的合成方法

Country Status (1)

Country Link
CN (1) CN106745119B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848184A (zh) * 2020-07-30 2020-10-30 武汉理工大学 一种高铝含量镁铝尖晶石透明陶瓷粉体及其制备方法
CN114804917A (zh) * 2022-05-10 2022-07-29 中钢集团洛阳耐火材料研究院有限公司 一种镁铝尖晶石海绵陶瓷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474745A (en) * 1982-07-12 1984-10-02 Owens-Corning Fiberglas Corporation Production of spinel powder
CN102515819A (zh) * 2011-11-29 2012-06-27 清华大学 一种多孔二氧化锆陶瓷的制备方法
CN103265278A (zh) * 2013-06-20 2013-08-28 商丘师范学院 一种无团聚MgAl2O4纳米颗粒粉体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474745A (en) * 1982-07-12 1984-10-02 Owens-Corning Fiberglas Corporation Production of spinel powder
CN102515819A (zh) * 2011-11-29 2012-06-27 清华大学 一种多孔二氧化锆陶瓷的制备方法
CN103265278A (zh) * 2013-06-20 2013-08-28 商丘师范学院 一种无团聚MgAl2O4纳米颗粒粉体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANHUA LIU ET AL.: "Pressureless sintered magnesium aluminate spinel with enhanced mechanical properties obtained by the two-step sintering method", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
仝建峰等: "水性聚合物网络凝胶法制备纳米镁铝尖晶石粉末", 《材料工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848184A (zh) * 2020-07-30 2020-10-30 武汉理工大学 一种高铝含量镁铝尖晶石透明陶瓷粉体及其制备方法
CN114804917A (zh) * 2022-05-10 2022-07-29 中钢集团洛阳耐火材料研究院有限公司 一种镁铝尖晶石海绵陶瓷的制备方法

Also Published As

Publication number Publication date
CN106745119B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN102756131B (zh) 一种微米级片状银粉的制备方法
CN112456528B (zh) 一种勃姆石及其制备方法、应用
CN109365830A (zh) 一种高振实类球形超细银粉的制备方法
CN102583476A (zh) 一种动态水热法制备介孔γ-Al2O3的方法
FI110093B (fi) Korkean tilavuuspainon ja suuren partikkelikoon omaava kobolttihydroksidi tai kobolttimetalliseoshydroksidi
CN106744739A (zh) 氮化铝粉体的制备方法
CN106216710A (zh) 一种高振实密度高结晶度金属银粉的制备方法
US9923199B2 (en) Method for preparing carbon-coated lithium titanate
CN106745119B (zh) 一种镁铝尖晶石粉末的合成方法
CN110407238A (zh) 一种晶种法制备片状氧化铝晶体的方法
CN108689422A (zh) 一种大比表面积纳米氧化钆粉体的制备方法
CN108987740A (zh) 镍钴铝酸锂正极材料、其制备方法及应用其的电池
CN106517259B (zh) 一种球形碳酸锂及其制备方法
CN104445321B (zh) 一种纳米颗粒堆积的多孔金属氧化物的制备方法
CN114249348A (zh) 一种超细纳米锂镧锆氧基固态电解质粉末的制备方法
CN108793266A (zh) 一种溶胶凝胶法制备蓝色钴铝尖晶石的方法
CN109616663B (zh) 镍钴铝三元正极材料、制备方法及锂离子电池
CN107915665A (zh) 一种热敏材料d‑8的制备方法
CN101973533B (zh) 一种共沉淀-碳热还原制备氮化铝粉末的方法
CN107815142B (zh) 一种纳米钒锆蓝陶瓷色料及其制备方法
CN113929120B (zh) 一种氢氧化镁材料的制备方法
CN111908441B (zh) 一种湿法制备钛掺杂磷酸铁的方法
CN108864762B (zh) 一种可使色料着色力强的利用碳酸锰制备色料的方法
CN105819509B (zh) 一种催化剂用纯三氧化钼的制备方法
CN112142108B (zh) 一种重铬酸铵和硫酸钠混合晶体及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181030

Termination date: 20191122