CN106716748B - 紧凑、功率有效的堆叠宽带光学发射器 - Google Patents
紧凑、功率有效的堆叠宽带光学发射器 Download PDFInfo
- Publication number
- CN106716748B CN106716748B CN201580051492.XA CN201580051492A CN106716748B CN 106716748 B CN106716748 B CN 106716748B CN 201580051492 A CN201580051492 A CN 201580051492A CN 106716748 B CN106716748 B CN 106716748B
- Authority
- CN
- China
- Prior art keywords
- light
- semiconductor layers
- layers
- stack
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 53
- 239000004065 semiconductor Substances 0.000 claims abstract description 76
- 230000005284 excitation Effects 0.000 claims abstract description 11
- 238000005086 pumping Methods 0.000 claims abstract description 10
- 230000007704 transition Effects 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000002800 charge carrier Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/08—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/06—Scanning arrangements arrangements for order-selection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
- H01L33/504—Elements with two or more wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/507—Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0071—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/041—Optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1092—Multi-wavelength lasing
- H01S5/1096—Multi-wavelength lasing in a single cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34326—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094096—Multi-wavelength pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
- H01S5/0287—Facet reflectivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/3235—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
- H01S5/32358—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers containing very small amounts, usually less than 1%, of an additional III or V compound to decrease the bandgap strongly in a non-linear way by the bowing effect
- H01S5/32375—In(As)N with small amount of P, or In(As)P with small amount of N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34306—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34346—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
- H01S5/3438—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on In(Al)P
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4087—Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Lasers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本公开描述宽带光学发射源,包括:半导体层堆叠,其中所述半导体层中的每者可操作来发射具有不同相应波长的光;光源,可操作来提供光学泵浦,用于进行从所述堆叠的激发光子发射,其中所述半导体层顺序地安置在所述堆叠中,使得所述半导体层中的第一个最靠近所述光源,并且所述半导体层中的最后一个最远离所述光源,并且其中所述半导体层中的每个特定半导体层是可至少部分地由比所述特定半导体层更靠近所述光源的其他半导体层生成的光透过的。本公开还描述各种光谱仪,包括宽带光学发射装置,并任选地包括可调谐波长滤波器,所述可调谐波长滤波器可操作来允许所选择的波长或窄波长范围穿过。
Description
对相关申请的交叉引用
本申请要求2014年9月23日提交的美国临时专利申请号62/053,909和2014年12月8日提交的美国临时专利申请号62/088,932的优先权权益。先前申请的公开内容以引用方式整体并入本文。
公开领域
本公开涉及紧凑、功率有效的堆叠宽带光学发射器。
背景
光谱仪和其他光电装置可用于例如基于由对象反射、通过对象透射和/或由对象吸收的光的波长确定对象的各种特征。此类装置可采用宽带光学发射源。在一些情况下,期望宽带光源可操作来发射不仅在光谱的可见和中间红外(IR)部分而且还在光谱的近IR部分(例如,800nm-2500nm)中的光。用于提供此类宽带光学发射源的一些已知技术趋于体积庞大、消耗显著量的能源和/或相对昂贵。
总而言之,包括多层(各自具有不同带隙)的分层堆叠可以是可操作的以便通过经由电极向堆叠中注入载荷子来从每个层发射光。载荷子(例如,电子)必须达到每个层以便与互补载荷子(例如,空穴)组合,其中电子和空穴在组合时发射光。因此,需要载荷子注入的配置趋于强加一些限制。例如,为了实现载荷子注入,堆叠中的每个层必须不超过某一厚度。对厚度的此限制进而对由这种分层堆叠发射的光的容许组成强加限制。例如,层常常实现为量子阱,并且量子阱的厚度很大程度上决定由其发射的光的波长。因此,载荷子注入的优化导致对可由依赖于载荷子注入的分层堆叠发射的光的波长的限制。此外,在这种分层堆叠中,每个层必须由通常可进行载荷子运输的材料组成,通常可通过掺杂实现所述载荷子运输。然而,掺杂趋于降低辐射复合效率。此外,电触点(例如,电极)必须被制成这种分层堆叠。
概述
本公开描述基于光子注入/光泵浦而非载荷子注入的宽带光学发射源。宽带光学发射源包括具有不同组分和/或量子层厚度的发光材料堆叠以生成单个半导体装置内的多发射光谱。此类宽带发射器可在一些实现方式中相对紧凑并且可操作来跨包括近IR的宽发射光谱发射。
例如,在一方面,宽带光学发射装置包括半导体层堆叠,其中半导体层中的每者可操作来发射具有不同相应波长的光,光源可操作来提供泵浦,用于进行从堆叠的激发光子发射。半导体层顺序地安置在堆叠中,使得半导体层中的第一个最靠近光源并且半导体层中的最后一个最远离光源。半导体层中的每个特定半导体层是可至少部分地由比特定半导体层更靠近光源的其他半导体层生成的光透过的。
各种实现方式包括以下特征中的一或多个。例如,由除了最后半导体层外的半导体层中的每个特定半导体层生成的光中的至少一些可提供泵浦以用于进行从更远离光源的其他半导体层的激发光子发射。在一些情况下,半导体层中的每者具有相应带隙能量,并且半导体层在堆叠中,使得具有最高带隙能量的半导体层最靠近光源。在一些示例中,半导体层中的每者具有相应带隙能量,并且半导体层在堆叠中,使得具有最低带隙能量的半导体层最靠近光源。
在一些实现方式中,装置包括一或多个过渡层,所述一或多个过渡层中的每者提供在堆叠中的半导体层之间的呈晶格常数的平滑过渡。一或多个过渡层中的每个特定过渡层可以是可至少部分地由比特定过渡层更靠近光源的半导体层生成的光透过的。
在一些情况下,光源可操作来发射波长小于由半导体层发射的光的波长的光。部分反射层和/或分布反馈元件可提供并可操作来允许一些光传到宽带发射装置外部,并且将一些光反射回堆叠中,以便生成从半导体层中的一或多个的另外激发光学发射。在一些示例中,提供反射器将杂散光反射离半导体层堆叠。光源可包括例如可操作来发射能量高于由半导体层中的任一个的带隙能量的光的发光二极管、激光二极管或垂直腔面发射激光器(VCSEL)中的至少一个。
本公开还描述各种光谱仪,这些光谱仪可包括宽带光学发射源。下文更详细地描述各种布置。
采用光子注入/光泵浦而非载荷子注入可提供大量的自由度,以便实现高度定制的发射(即,期望的任何波长组分和/或强度组分)。例如,可定制层厚度。原则上,层不需要依赖于掺杂来实现各种带隙;层材料可以在一些情况下是纯/固溶体半导体,其中辐射复合效率可高于重掺杂半导体。本技术可在一些情况下提供就中间层(例如,阻挡层)而言更大的灵活性。例如,阻挡层可以是光尤其可透过的(即,具有相当大的带隙),而其他实现方式中,阻挡层可以是部分吸收的。
在一些实现方式中可提供其他优点。例如,不需要电触点,因为通过依赖于光学耦合的光泵浦引入电子-空穴对。此外,在一些实现方式中可更期望到分层堆叠的光学耦合,因为其不需要另外电极兼容表面。也可实现堆叠相对于光源的取向中的其他变化。
在一些实现方式中,可包括多个光源,例如,一个在垂直于发光层的一侧上。例如,可包括多个光源,各自具有不同波长。因此,其中每者被配置来发射高能量波长和低能量波长的两个光源可在一些实现方式中提高效率。
其他方面、特征和优点将从以下详述、附图和权利要求书而显而易见。
附图简述
图1示出宽带发射装置的示例。
图1A示出宽带发射装置的外延生长层的示例。
图1B示出宽带发射装置的层的细节的示例。
图1C示出显示各种半导体材料的带隙能量对晶格系数的曲线图。
图1D示出宽带发射装置的特定示例。
图2示出用于图1的宽带发射装置中的光源的示例。
图3、4、5、6和7示出宽带发射装置的另外示例。
图8A和8B示出包括宽带光学发射装置的光谱仪的示例。
图9、10、11和12示出包括宽带光学发射装置的光谱仪的另外示例。
详述
如图1所示,宽带发射装置20包括具有不同组分和/或量子层厚度的发光半导体层24、26、28的堆叠22以生成多发射光谱。在一些实现方式中,一或多个过渡或阻挡层30帮助提供从一个层到下一个层的晶格常数的平滑过渡。过渡层30因此可有助于减小否则可能发生的应力并且可有助于提供机械过渡。在一些实现方式中,过渡层30中的一些或全部可省略。
宽带发射装置20还包括由外部电源34驱动的光源32。如以下讨论的,光源32可以各种方式实现,但通常,提供用于生成电子-空穴对的泵浦机构,所述电子-空穴对可导致辐射复合以便从层24-30激发光子发射。发光层的堆叠22可例如通过独立半导体沉积和生长技术在基板38(见图1A)上沉积或外延生长,所述技术诸如分子束外延(MBE)、金属有机化学汽相沉积(MOCVD)、有机金属汽相外延(OMVPE)或其他技术。
光源32生成对应于能级E1的波长λE1的光。同样,层24-30中的每者具有相应带隙能量,其对应于特定波长。具体地,发光层24、26、28中的每者具有分别对应于波长λE3、λE4、λE5的相应带隙能量E3、E4、E5,并且过渡层30具有对应于波长λE2的带隙能量E2。在图1的示例中,选择层24-30的组分,使得带隙能级具有以下关系:E1>E2>E3>E4>E5。因此,由光源32和各种层24-30发射的光子的波长具有以下关系:λE1<λE2<λE3<λE4<λE5。图1A示意性地示出这种情境。
在操作中,当光源32由外部电源34驱动时,光源32发射第一波长λE1的光。由光源32发射的波长λE1的光部分地透射通过层24-30中的每者并且部分地由其吸收。由其他层24-30吸收的波长λE1的光从随后层24-30中的每者激发光的发射。此外,从每个层24-30随后发射的激发光部分地透射通过堆叠22中的随后层并且部分地由其吸收。可通过调整包括所有层的厚度的材料参数实现波长λE1、λE2、λE3、λE4、λE5的部分透射和吸收。因此,在图1中,箭头40指示由光源32发射的波长λE1下的光并且完全穿过堆叠22。箭头42指示由光源32发射的由过渡层30中的一个吸收的光λE1。箭头44指示完全穿过堆叠22的光λE2的激发发射。箭头46指示由层24吸收的光λE2的激发发射。箭头指示完全穿过堆叠22的光λE3的激发发射。为了清楚起见,图1省略了其他层之间的光的激发发射。
在特定实现方式中,堆叠22是包括磷化铟(InP)过渡或阻挡层的应变镓铟砷(GaInAs)系统。这种实现方式的堆叠中的层的序列的示例在图1B中示出并且可提供约1000nm宽的范围内(例如,从约1000nm至约2100nm)室温下的发射光谱。也可使用其他III-V化合物半导体(例如,AlGaInAsP、与InP晶格匹配)或有机半导体材料。在一些情况下,层24-30具有约30nm数量级的厚度。层24-30的组分和厚度在其他实现方式中可不同。同样,在一些实现方式中,发光层的数量可不同。量子层和过渡层的组分和厚度在其他实现方式中可不同。同样,在一些实现方式中,发光层的数量可不同。
在一些情况下,层24、26、28中的每者是半导体量子层。每层的带隙可通过调整其量子层厚度来调谐。在一些情况下,量子层中的每者具有例如在4nm-6nm范围内的厚度。在一些情况下,堆叠22可通过GaxIn1-xAsyIn1-y量子层实现,与InP过渡层晶格匹配。
图1C是示出针对某些化合物半导体系统带隙(eV)如何随晶格常数(A)变化的曲线图。如本领域普通技术人员将容易理解的,这种曲线图可促进发光层(例如,24、26、28)以过渡层30(如果有的话)的适当半导体材料的选择。首先,可选择与带隙范围关联的期望发射波长的范围。参见图1C中的402。接着,针对所选择带隙范围识别适当半导体系统(例如,GaAs-InAs)。对于GaAs-InAs系统,In和Ga中的变化控制带隙。参见图1C中的线404。接着,针对过渡层识别合适材料。例如,对于GaAs-InAs系统,通过取代In和Ga的晶格参数的变化大致以InP为中心。因此,InP可为过渡层提供合适材料。因此,在一些实现方式中,可使用其他半导体系统(例如,III-V化合物半导体材料)。
图1D示出包括反射涂层、发光层以及阻挡层的宽带发射器的特定示例。在示出的示例中,多层基于InP的结构仅包含未掺杂层。所有层安装(例如,生长、沉积)在InP基板上。低成本、有效且高功率850/940-nm可商购获得的LED可用作光泵浦源。
如上所述,光源32可以各种方式实现。例如,如图2所示,光源32可包括沉积在p型半导体层102与n型半导体层104之间的大带隙半导体层106。正向偏置地驱动p-n结以引起λE1下的光发射。在一些实现方式中,光源32可操作来生成具有约850nm的波长λE1的光。对于一些实现方式,λE1的其他波长可以是适当的。在一些情况下,电子阻挡层108也可安置在光源32与上过渡层30之间。通常,可用于激发光发射的泵浦技术可包括通过外部光源的泵浦、使用横向p-n结、或提供内置高带隙p-n发射二极管以向堆叠22中注入光子。
在一些实现方式中,可包括多个光源,例如,一个在垂直于发光层的一侧上。例如,可包括多个光源,各自具有不同波长。因此,其中每者被配置来发射高能量波长和低能量波长的两个光源可在一些实现方式中提高效率。例如,参考图1,由层32产生的低能量波长可被层28大量吸收,但是其他层(即层24、26、30)可以是低能量波长相当可透过的。相比之下,由层32产生的高能量波长可被层24大量吸收,因此,几乎没有高能量波长的光可以到达层28,这种实施方案可以是特别有效的。
图3至6示出可在一些实现方式中存在的其他特征。例如,如图3所示,宽带发射装置可包括部分反射层和/或分布反馈元件202。虽然部分反射层和/或分布反馈元件202允许一些激发发射穿过以到达宽带发射装置的外部,但一些光被反射回到堆叠22中以便激发较低波长下的另外光学发射。
如图4所示,在一些实现方式中,宽带发射装置还可包括反射器204以帮助将杂散光反射走。这种反射器可用于例如如图5所示的光源32实现为发光元件32的示例中。发光元件32可以作为例如可操作来发射能量高于半导体发光层24-28和过渡层30中的任一个的带隙能量的光的高功率发光二极管(LED)、激光二极管或垂直腔面发射激光器(VCSEL)。在一些实现方式中,可有利地提供光学组件208来将光λE1分布、引导和/或聚焦到第一过渡层30。光学组件208可包括例如一或多个衍射和/或折射元件。
在一些情况下,反射表面安置在发光层24-28周围。反射层可平行和/或垂直于层24-28。效率可提高,并且在一些示例中,发射方向可调谐到特定应用。例如,包括平行于层的反射表面的实现方式可作为边缘发射装置操作。
在一些示例中,如上所述,过渡层30是可仅部分地由光源32发射的光透过的。因此,过渡层30还吸收一些光并且参与生成光的激发发射。例如,在一些实现方式中,由光源32发射的光可生成过渡层30中的载荷子(例如,空穴和电子)。载荷子可迁移到发光层24-28中的任一个并且复合、在复合时发射光。例如,如果发光层24-28相对薄,则此特征可特别有利。然而,在一些情况下,过渡层30可具有足够大的带隙,使得过渡层30是可完全地由光源32发射的波长λE1(例如,950nm)的光透过的,这允许来自光源32的更多的光到达堆叠22A中的随后层24、26、28(参见图7中的箭头302、304、306)。来自光源32的波长λE1的一些光可被层24、26、28中的每者吸收,这激发那些层中的光发射。此外,在一些情况下,可有利地将在层24、26、28中具有最低带隙能量(即,E5)的层28放置成最靠近光源32。以这种方式,随后层24、26是可由层28生成的波长λE5(参见箭头308)的光透过的。同样,在层24、26、28中具有最大带隙的层24也是可由层26生成的波长λE4(参见箭头310)的光透过的。因此,在此示例中,堆叠22A中的每者层是可由堆叠22A中的先前层中的每者生成的光透过的。在一些情况下,这种布置可导致更有效的发射。
在一些实现方式中,为各种发光层24、26、28提供不同的厚度也是有益的。例如,远离光源32的层可被制造得比靠近光源的层更厚,以便与否则将被吸收的光相比增加由更多距离层吸收的来自光源32的光量。因此,在图1和3-6的布置的一些实现方式中,层28可比层26厚,层26进而可比层24厚。类似地,在图7的布置的一些实现方式中,层24可比层26厚,层26进而可比层28厚。
前述宽带光学发射源可集成到例如具有宽范围的不同布置的光谱仪中。通常,这种宽光谱发射源可产生宽谱光束,其至少一部分入射在待分析其特性的样本上。样本的示例是有机分子,但也可分析其他类型的样本。通常,样本吸收某些波长的光,然而其可允许其他波长穿过或可反射一些波长。通过分析被吸收、反射和/或透射的波长,可识别样本的各种特性(例如,有机分子中的原子之间的化学键的特征)。
使用如上所述的宽带发射源的光谱仪的第一示例在图8A和8B中示出。在此示例中,光谱仪包括发射宽带光束501的宽带发射源500。宽带发射源500可由上述宽带源中的任一个实现。光束501可穿过光学组件502以及待分析其性质的样本504。穿过样本504的光505穿过第一狭缝506并入射在第一聚焦镜508上。反射镜508朝向可旋转衍射光栅510反射光,所述可旋转衍射光栅510将光束分成其光谱分量512,所述光谱分量512中的每者具有不同的波长(或窄的波长范围)。光束512入射在反射光束516的第二聚焦反射镜514上。取决于衍射光栅510的位置,光束中的特定一个穿过第二狭缝518并且照射在光检测器502(例如,光电二极管)上。例如,当衍射光栅510处于第一位置时,表示特定光谱分量(即波长)的光束516A穿过狭缝518,并且由检测器520(图8A)检测。当衍射光栅510处于第二位置时,表示不同光谱分量(即波长)的光束516B穿过狭缝518,并且由检测器520(图8B)检测。通过改变光栅510的位置,可检测光谱分量中的其他光谱分量。可处理并分析检测到的光谱分量以识别样本504的特性。
在一些情况下,可旋转衍射光栅510可由固定衍射光栅替代。此外,第二狭缝518和点检测器520可由阵列光检测器替代。这种布置可允许阵列检测器同时检测各种光谱分量516。
为了提高光谱仪的紧凑性和/或增加入射到检测器上的光强度的总量,可替代光谱仪布置是可能的。例如,一些情况可避免空间分离不同波长(或窄波长范围),所述波长随后沿不同路径行进。此外,在一些示例中,可避免由于仅从初始宽光谱的小波长范围的时间或空间选择导致的光强度的减小。
例如,如图9所示,在一些实现方式中,光谱仪包括可调谐波长滤波器606,所述可调谐波长滤波器606仅允许选择的波长(或波长范围)的光607通过样本608。其他波长的光613、615被反射回到宽带源600。源600可包括抛物线或其他反射器602以帮助保持远离杂散光和/或引导来自外部供电光源的光朝向宽带源的半导体层堆叠。
图9所示的光谱仪还包括安置在宽带源600与滤波器606之间的第一光学组件604。光学组件604可有助于聚焦或准直由源600发射的光,并且在一些情况下可具有仅10-20度的发散度。穿过样本608的所选择波长(或波长范围)的光617随后可在例如由样本光检测器(例如,光电二极管)612检测之前穿过第二光学组件610。在一些情况下,穿过滤波器606的一些光619可例如由棱镜或反射镜引导到基准光检测器614,所述基准光检测器614可用于确认所述波长的光通过滤波器606。可调谐滤波器606以在不同时间示例使不同波长(或窄波长范围,例如中心波长±10nm)的光通过,以便允许不同波长的光入射在样本608上。通过检测入射在检测器612上的光,可获得样本608的吸光度(或透射率/反射率)光谱。
对于图9的实现方式,尽管可使用任何宽带源,但在图1-7中描述的特定宽带源可以是特别有利的。然而,在一些情况下,宽带源600不包括反射器602。
图8A-8B和9的前述示例以透射模式操作,其中检测穿过待分析样本的光。其他示例可以反射模式操作,其中检测由待分析样本反射的光。图10中示出示例,其示出发射穿过光学组件702朝向可调谐波长滤波器704的光的宽带发射源700。穿过滤波器704的光705入射在样本706上,所述样本706反射或重新发射一些光707,例如,朝向样本光检测器708(例如,光电二极管)。在一些情况下,穿过滤波器704的一些光可例如由棱镜或反射镜引导到基准光检测器710,所述基准光检测器614可用于确认所述波长的光通过滤波器704。滤波器704可被调谐以在不同时间示例使不同波长(或窄波长范围,例如中心波长+10nm)的光通过,以便允许不同波长的光入射在样本706上。再一次,通过检测入射在检测器708上的光,可获得样本706的吸光度(或透射率/反射率)光谱。
在前述示例中,由宽带源发射的光在照射在样本上之前穿过波长滤波器。在一些实现方式中,波长滤波器可安置在光穿过样本或由样本反射之后的光路的部分中。例如,图11示出以透射模式操作的光谱仪。由宽带发射源800发射的光穿过光学组件804并且入射在样本806上。因此,宽范围的波长可在同时入射在样本806上。穿过样本806的光811入射在可调谐波长滤波器806上,所述可调谐波长滤波器仅允许选择的波长(或窄波长范围)通过光检测器(例如,光电二极管)810。滤波器806可被调谐以在不同时间示例使不同波长(或窄波长范围,例如中心波长+10nm)的光通过,以便允许不同波长的光由检测器810感测。通过检测入射在检测器810上的光,可获得样本804的吸光度(或透射率/反射率)光谱。
在一些情况下,由滤波器808反射的光813的波长可入射在与宽带源800相关联的反射器802上。反射的光813因此可有助于激发宽带源800中的另外光学发射。另外,基准光可以是沿着光路的一或多个位置处的样本。例如,可提供一或多个基准光检测器812、814来分别感测在穿过滤波器808之前穿过光学组件804和/或穿过样本806的一些光。诸如反射镜和/或棱镜的光学部件可用于引导一些光朝向检测器812、814。
然而,图11示出可以透射模式操作的光谱仪,图12示出可以反射模式操作的光谱仪的示例。图12的光谱仪包括安置在光被样本906反射之后的光路的部分中的可调谐波长滤波器908。图12中示出的布置还包括可有助于将光聚焦或准直到样本906上的光学组件904。由样本906反射的光915被引导朝向波长滤波器908。由滤波器908选择的波长(或波长范围)的光随后由样本光检测器(例如,光电二极管)910检测。如在上述其他实施方案中,图12的光谱仪可包括一或多个基准光检测器912、914以便分别感测在穿过滤波器908之前穿过光学组件904和/或由样本906反射的一些光。诸如反射镜和/或棱镜的光学部件可用于引导一些光朝向检测器912、914。
在上述各种光谱仪实现方式中,波长滤波器可例如实现为法布里珀罗滤波器(例如,扫描MEMS或线性可变法布里珀罗滤波器)。还可使用其他类型的光学波长滤波器。然而,法布里珀罗滤波器可有助于实现更紧凑的光谱仪。
此外,通过引导光返回到宽带发射源而来恢复未通过波长滤波器的一些或全部光可有助于增加发生的光学激发的总量。此类布置可有助于提高光谱仪的能量效率。
上述各种光谱仪可包括处理电路(例如,微处理器或其他逻辑电路)来分析来自光检测器的信号。可分析信号来基于透射通过样本、由样本吸收和/或由样本反射的光的波长确定样本的各种特性。
可在本公开的精神内进行各种修改。因此,其他实现方式在权利要求书的范围内。
Claims (11)
1.一种宽带光学发射装置,包括:
半导体层堆叠,其中所述半导体层中的每者被配置来发射具有不同相应波长的光;
光源,被配置来提供泵浦,用于进行从所述堆叠的激发光子发射,
其中所述半导体层顺序地安置在所述堆叠中,使得所述半导体层中的第一个最靠近所述光源,并且所述半导体层中的最后一个最远离所述光源,并且
其中所述半导体层中的每个特定半导体层是至少部分地由比所述特定半导体层更靠近所述光源的其他半导体层生成的光透过的,
所述宽带光学发射装置还包括部分反射层,所述部分反射层被配置来允许多个波长的光中的一些传到所述宽带光学发射装置外部,并且将所述光中的一些反射回所述堆叠中,以便生成从所述半导体层中的一或多个的另外激发光学发射,
其中所述半导体层中的每者具有相应带隙,并且其中由除了具有最低带隙的半导体层之外的所述半导体层中的每个特定半导体层生成的所述光中的至少一些提供泵浦,用于进行从具有最低带隙的其他半导体层的激发光子发射。
2.如权利要求1所述的装置,其中所述半导体层在所述堆叠中,使得具有最高带隙能量的所述半导体层最靠近所述光源。
3.如权利要求1所述的装置,其中所述半导体层在所述堆叠中,使得具有最低带隙能量的所述半导体层最靠近所述光源。
4.如前述权利要求1-3中任一项所述的装置,其中所述半导体层中的每者包含包括Ga、In、As、P中的一或多种的III-V化合物半导体。
5.如权利要求4所述的装置,其还包括在所述堆叠中的所述半导体层之间的一或多个InP过渡层。
6.如前述权利要求1-4中任一项所述的装置,其还包括一或多个过渡层,所述一或多个过渡层中的每者提供在所述堆叠中的所述半导体层之间的呈晶格常数的平滑过渡。
7.如权利要求6所述的装置,其中所述一或多个过渡层中的每个特定过渡层是至少部分地由比所述特定过渡层更靠近所述光源的所述半导体层生成的所述光透过的。
8.如前述权利要求中任一项所述的装置,其中所述光源被配置来发射波长小于由所述半导体层发射的光的波长的光。
9.如前述权利要求中任一项所述的装置,其还包括将杂散光反射离所述半导体层堆叠的反射器。
10.如权利要求9所述的装置,其中所述光源包括被配置来发射能量高于所述半导体层中的任一个的带隙能量的光的发光二极管、激光二极管或垂直腔面发射激光器(VCSEL)中的至少一个。
11.一种光谱仪,包括:
如前述权利要求1-10中任一项所述的宽带光学发射装置,被配置来朝向样本发射由所述半导体层堆叠生成的所述光;以及
光检测器,被配置来基于穿过所述样本或由所述样本反射的所述光的一部分感测光学信号。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010796919.1A CN112067123A (zh) | 2014-09-23 | 2015-09-23 | 紧凑、功率有效的堆叠宽带光学发射器 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462053909P | 2014-09-23 | 2014-09-23 | |
US62/053,909 | 2014-09-23 | ||
US201462088932P | 2014-12-08 | 2014-12-08 | |
US62/088,932 | 2014-12-08 | ||
PCT/SG2015/050335 WO2016048241A1 (en) | 2014-09-23 | 2015-09-23 | Compact, power-efficient stacked broadband optical emitters |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010796919.1A Division CN112067123A (zh) | 2014-09-23 | 2015-09-23 | 紧凑、功率有效的堆叠宽带光学发射器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106716748A CN106716748A (zh) | 2017-05-24 |
CN106716748B true CN106716748B (zh) | 2020-09-04 |
Family
ID=55581581
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010796919.1A Pending CN112067123A (zh) | 2014-09-23 | 2015-09-23 | 紧凑、功率有效的堆叠宽带光学发射器 |
CN201580051492.XA Active CN106716748B (zh) | 2014-09-23 | 2015-09-23 | 紧凑、功率有效的堆叠宽带光学发射器 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010796919.1A Pending CN112067123A (zh) | 2014-09-23 | 2015-09-23 | 紧凑、功率有效的堆叠宽带光学发射器 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10656014B2 (zh) |
EP (1) | EP3198689B1 (zh) |
CN (2) | CN112067123A (zh) |
TW (1) | TWI695557B (zh) |
WO (1) | WO2016048241A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
EP3346229B1 (en) * | 2017-01-09 | 2022-03-30 | Unity Semiconductor GmbH | Method and assembly for determining the thickness of layers in a sample stack |
JP2019174151A (ja) * | 2018-03-27 | 2019-10-10 | 株式会社島津製作所 | 分光器 |
TWI685660B (zh) * | 2018-09-20 | 2020-02-21 | 大陸商信泰光學(深圳)有限公司 | 光學檢測裝置 |
GB202009952D0 (en) * | 2020-06-30 | 2020-08-12 | Ams Int Ag | Light source |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1710764A (zh) * | 2004-06-19 | 2005-12-21 | 三星电子株式会社 | 外腔多波长激光系统 |
CN102473817A (zh) * | 2009-06-30 | 2012-05-23 | 3M创新有限公司 | 无镉再发光半导体构造 |
CN103048293A (zh) * | 2012-12-17 | 2013-04-17 | 天津大学 | 涂覆介质层的增强型光微流体传感装置和方法 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8200414A (nl) | 1982-02-04 | 1983-09-01 | Philips Nv | Halfgeleiderinrichting voor het opwekken van ten minste twee stralingsbundels, en werkwijze ter vervaardiging daarvan. |
US5343487A (en) * | 1992-10-01 | 1994-08-30 | Optical Concepts, Inc. | Electrical pumping scheme for vertical-cavity surface-emitting lasers |
US5780867A (en) | 1996-03-07 | 1998-07-14 | Sandia Corporation | Broadband light-emitting diode |
US5684309A (en) | 1996-07-11 | 1997-11-04 | North Carolina State University | Stacked quantum well aluminum indium gallium nitride light emitting diodes |
AU2001286610A1 (en) * | 2000-08-22 | 2002-03-04 | Regent Of The University Of California, The | Double intracavity contacted long-wavelength vcsels and method of fabricating same |
US6658172B1 (en) * | 2001-03-15 | 2003-12-02 | Cierra Photonics, Inc. | Optical system with 1×N interleaver and methods of making and using same |
US7126682B2 (en) * | 2001-04-11 | 2006-10-24 | Rio Grande Medical Technologies, Inc. | Encoded variable filter spectrometer |
US7479731B2 (en) | 2001-08-20 | 2009-01-20 | Showa Denko K.K. | Multicolor light-emitting lamp and light source |
US6553045B2 (en) | 2001-09-04 | 2003-04-22 | The United States Of America As Represented By The Secretary Of The Air Force | Multiple wavelength broad bandwidth optically pumped semiconductor laser |
US7038248B2 (en) | 2002-02-15 | 2006-05-02 | Sandisk Corporation | Diverse band gap energy level semiconductor device |
US20060162768A1 (en) | 2002-05-21 | 2006-07-27 | Wanlass Mark W | Low bandgap, monolithic, multi-bandgap, optoelectronic devices |
CN1275337C (zh) | 2003-09-17 | 2006-09-13 | 北京工大智源科技发展有限公司 | 高效高亮度多有源区隧道再生白光发光二极管 |
US7224041B1 (en) * | 2003-09-30 | 2007-05-29 | The Regents Of The University Of California | Design and fabrication of 6.1-Å family semiconductor devices using semi-insulating A1Sb substrate |
US7374807B2 (en) | 2004-01-15 | 2008-05-20 | Nanosys, Inc. | Nanocrystal doped matrixes |
EP1608049B1 (en) * | 2004-06-19 | 2007-08-01 | Samsung Electronics Co., Ltd. | External cavity plural wavelength laser system |
US20060098194A1 (en) * | 2004-11-08 | 2006-05-11 | David Tuschel | Method and apparatus for determining change in an attribute of a sample during nucleation, aggregation, or chemical interaction |
US7466409B2 (en) * | 2005-06-08 | 2008-12-16 | California Institute Of Technology | Method and apparatus for CMOS imagers and spectroscopy |
CN104316987A (zh) * | 2006-08-09 | 2015-01-28 | 光学解决方案纳米光子学有限责任公司 | 光学滤波器及其生产方法以及用于检查电磁辐射的装置 |
JP2008235802A (ja) * | 2007-03-23 | 2008-10-02 | Rohm Co Ltd | 発光装置 |
JP5155611B2 (ja) | 2007-07-06 | 2013-03-06 | スタンレー電気株式会社 | ZnO系半導体発光素子 |
FR2940447B1 (fr) * | 2008-12-23 | 2011-10-21 | Continental Automotive France | Spectrometre miniature embarque dans un vehicule automobile a detecteur de mesure et detecteur de reference unique |
US8575471B2 (en) | 2009-08-31 | 2013-11-05 | Alliance For Sustainable Energy, Llc | Lattice matched semiconductor growth on crystalline metallic substrates |
US8526472B2 (en) * | 2009-09-03 | 2013-09-03 | Axsun Technologies, Inc. | ASE swept source with self-tracking filter for OCT medical imaging |
US9069130B2 (en) * | 2010-05-03 | 2015-06-30 | The General Hospital Corporation | Apparatus, method and system for generating optical radiation from biological gain media |
JP2012222296A (ja) * | 2011-04-13 | 2012-11-12 | Sumitomo Electric Ind Ltd | 量子カスケード半導体レーザ |
US20120286701A1 (en) | 2011-05-09 | 2012-11-15 | Fang Sheng | Light Emitting Diode Light Source With Layered Phosphor Conversion Coating |
DE102011050450A1 (de) * | 2011-05-18 | 2012-11-22 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip, optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements |
US9698567B2 (en) * | 2011-07-14 | 2017-07-04 | Applied Optoelectronics, Inc. | Wavelength-selectable laser device providing spatially-selectable wavelength(S) |
US8492746B2 (en) | 2011-09-12 | 2013-07-23 | SemiLEDs Optoelectronics Co., Ltd. | Light emitting diode (LED) dice having wavelength conversion layers |
JP5421442B1 (ja) * | 2012-09-26 | 2014-02-19 | 株式会社東芝 | 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法 |
US10161738B2 (en) * | 2012-12-31 | 2018-12-25 | Axsun Technologies, Inc. | OCT swept laser with cavity length compensation |
US10359551B2 (en) * | 2013-08-12 | 2019-07-23 | Axsun Technologies, Inc. | Dielectric-enhanced metal coatings for MEMS tunable filters |
-
2015
- 2015-09-23 WO PCT/SG2015/050335 patent/WO2016048241A1/en active Application Filing
- 2015-09-23 CN CN202010796919.1A patent/CN112067123A/zh active Pending
- 2015-09-23 US US15/512,977 patent/US10656014B2/en active Active
- 2015-09-23 EP EP15845489.2A patent/EP3198689B1/en active Active
- 2015-09-23 CN CN201580051492.XA patent/CN106716748B/zh active Active
- 2015-09-23 TW TW104131491A patent/TWI695557B/zh active
-
2020
- 2020-04-14 US US16/848,126 patent/US11022491B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1710764A (zh) * | 2004-06-19 | 2005-12-21 | 三星电子株式会社 | 外腔多波长激光系统 |
CN102473817A (zh) * | 2009-06-30 | 2012-05-23 | 3M创新有限公司 | 无镉再发光半导体构造 |
CN103048293A (zh) * | 2012-12-17 | 2013-04-17 | 天津大学 | 涂覆介质层的增强型光微流体传感装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3198689A1 (en) | 2017-08-02 |
WO2016048241A1 (en) | 2016-03-31 |
US11022491B2 (en) | 2021-06-01 |
EP3198689A4 (en) | 2018-05-23 |
US10656014B2 (en) | 2020-05-19 |
US20170299433A1 (en) | 2017-10-19 |
US20200249087A1 (en) | 2020-08-06 |
TWI695557B (zh) | 2020-06-01 |
EP3198689B1 (en) | 2023-11-01 |
CN106716748A (zh) | 2017-05-24 |
TW201618404A (zh) | 2016-05-16 |
CN112067123A (zh) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11022491B2 (en) | Compact, power-efficient stacked broadband optical emitters | |
CN102484184B (zh) | 发光半导体装置及其制造方法和发光半导体材料 | |
JP5322444B2 (ja) | 測定装置および測定システム | |
EP2302678B1 (en) | Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus | |
US20170093128A1 (en) | Vertical-cavity surface-emitting lasers | |
WO2013039503A1 (en) | Vertical-cavity surface-emitting lasers | |
US20170033536A1 (en) | Quantum cascade laser | |
US20070091953A1 (en) | Light-emitting diode with a narrow beam divergence based on the effect of photonic band crystal-mediated filtration of high-order optical modes | |
US6191431B1 (en) | Device for emitting electromagnetic radiation at a predetermined wavelength | |
KR101918602B1 (ko) | 적외선 발광 다이오드 및 적외선 가스 센서 | |
JP6721431B2 (ja) | 量子カスケード検出器 | |
US10608413B2 (en) | Laser assembly and operating method | |
US10277005B2 (en) | Pumped edge emitters with metallic coatings | |
Razeghi | Recent progress of widely tunable, CW THz sources based QCLs at room temperature | |
JP2012160665A (ja) | 半導体発光装置 | |
US20220209505A1 (en) | Laser module | |
EP0877428A2 (en) | A device for emitting electromagnetic radiation at a predetermined wavelength and a method of producing said device | |
US20230327400A1 (en) | Photoconductive semiconductor laser diodes and leds | |
WO2022002785A1 (en) | Light source | |
Kim et al. | Interband Cascade LEDs for Infrared Scene Projection | |
JP2008159629A (ja) | 光通信用半導体素子 | |
JP2007036140A (ja) | 光素子およびその製造方法 | |
KR100238309B1 (ko) | 모니터용 광검출기 일체형 표면광 레이저장치 | |
CN117941083A (zh) | 光电子半导体层序列和光电子半导体器件 | |
Jung | Mid infrared III-V semiconductor emitters and detectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |