TWI695557B - 緊密、功率效率高之堆疊寬頻光學發射器 - Google Patents

緊密、功率效率高之堆疊寬頻光學發射器 Download PDF

Info

Publication number
TWI695557B
TWI695557B TW104131491A TW104131491A TWI695557B TW I695557 B TWI695557 B TW I695557B TW 104131491 A TW104131491 A TW 104131491A TW 104131491 A TW104131491 A TW 104131491A TW I695557 B TWI695557 B TW I695557B
Authority
TW
Taiwan
Prior art keywords
light
light source
semiconductor layers
emission
stack
Prior art date
Application number
TW104131491A
Other languages
English (en)
Other versions
TW201618404A (zh
Inventor
彼得 立歐
彼德 羅恩根
Original Assignee
新加坡商海特根微光學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商海特根微光學公司 filed Critical 新加坡商海特根微光學公司
Publication of TW201618404A publication Critical patent/TW201618404A/zh
Application granted granted Critical
Publication of TWI695557B publication Critical patent/TWI695557B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1092Multi-wavelength lasing
    • H01S5/1096Multi-wavelength lasing in a single cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32358Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers containing very small amounts, usually less than 1%, of an additional III or V compound to decrease the bandgap strongly in a non-linear way by the bowing effect
    • H01S5/32375In(As)N with small amount of P, or In(As)P with small amount of N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3438Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on In(Al)P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本發明描述寬頻光學發射光源,其包含具有不同組合物及/或量子層厚度之一發光材料堆疊,以在一單一半導體裝置內產生一多發射光譜。在一些實施方案中,此等寬頻發射器可為相對緊密的,且可操作以發射跨越一寬的發射光譜(包含近IR)。本發明亦描述各種光譜儀,其可包含一寬頻光學發射光源。

Description

緊密、功率效率高之堆疊寬頻光學發射器 相關申請案之交叉參考
本申請案主張2014年9月23日申請之美國臨時專利申請案第62/053,909號與2014年12月8日申請之美國臨時專利申請案第62/088,932號之優先權之權利。初期申請案之揭露內容全文以引用的方式併入本文中。
本發明係關於緊密、功率效率高之堆疊寬頻光學發射器。
光譜儀及其他光電裝置可用來(例如)基於藉由物件反射、通過物件透射及/或藉由物件吸收之光之波長判定各種特性或物件。此等裝置可採用一寬頻光發射光源。在一些情況中,希望寬頻光源可操作以不僅發射光譜之可見及中間紅外線(IR)部分中的光,而且發射光譜之近IR部分中的光(例如,800奈米至2500奈米)。用於提供此等寬頻光發射光源之一些已知技術趨於大型、消耗大量能量及/或為相對昂貴的。
一般而言,包含多個層(各自具有不同的帶隙)之一分層堆疊可操作以藉由經由電極將電荷載體注入至堆疊中以自層之各者發射光。電荷載體(例如,電子)必須進入每一層,以便與一互補電荷載體(例如,電洞)組合,其中電子與電洞一組合即發射光。因此,要求電荷載體 注入之一組態趨於強加許多限制。例如,為啟用電荷載體注入,堆疊中之每一層必須不超過一特定厚度。繼而,此對厚度之限制對藉由此一分層堆疊發射的可允許之光組成(composition)強加一限制。例如,層往往經實施作為量子井,且量子井之厚度很大程度上決定藉由其發射之光的波長。因此,電荷載體注入之最佳化導致對可藉由依靠電荷載體注入之一分層堆疊所發射的光之波長之限制。此外,在此一分層堆疊中,每一層必須由通常適合於電荷載體傳輸之一材料構成,其通常可經由摻雜達成。然而,摻雜趨於降低輻射復合效率。此外,對於此一分層堆疊必須製作電氣接觸件(例如,電極)。
本發明描述基於光子注入/光泵激而非電荷載體注入之寬頻光學發射光源。該寬頻光學發射光源包含具有不同組合物及/或量子層厚度之一光發射材料堆疊,以在一單一半導體裝置內產生一多發射光譜。在一些實施方案中,此等寬頻發射器可為相對緊密且可操作以跨越一寬發射光譜(包含近IR)發射。
例如,在一態樣中,一種寬頻光學發射裝置包含一半導體層堆疊,其中該等半導體層之各者可操作以發射不同各者波長之光。一光源可操作以為來自堆疊之受激光子發射提供泵激。半導體層循序安置在堆疊中,使得該等半導體層之一第一者最靠近光源且該等半導體層之一最後者最遠離光源。該等半導體層之每一特定者係對藉由其他半導體層所產生之光至少部分透明,該等其他半導體層比特定半導體層更靠近光源。
各種實施方案包含下列特徵之一或多者。例如,除最後半導體層外,藉由半導體層之每一特定者所產生的至少一些光可為來自距光源更遠之其他半導體層的受激光子發射提供泵激。在一些情況中,半導體層之各者具有一各自帶隙能量,且該等半導體層係在堆疊中使得 具有最高帶隙能量之半導體層最靠近光源。在一些實例中,半導體層之各者具有一各自帶隙能量,且該等半導體層係在堆疊中使得具有最低帶隙能量之半導體層最靠近光源。
在一些實施方案中,裝置包含一或多個過渡層,該等過渡層之各者提供堆疊中之半導體層之間之晶格常數的一平滑過渡。一或多個過渡層之每一特定者可對藉由半導體層所產生之光至少部分透明,該等半導體層比特定過渡層更靠近光源。
在一些情況中,光源可操作以發射小於藉由半導體層所發射光之波長的一波長之光。一部分反射式層及/或一分佈式回饋元件可被提供且可操作以允許一些光傳遞至寬頻發射裝置外並將一些光反射回至堆疊中,以便自半導體層之一或多者產生進一步受激光學發射。在一些實例中,提供一反射器以將雜散光反射遠離半導體層之堆疊。光源可包括(例如)一發光電二極體、一雷射二極體或一垂直空腔表面發射雷射(VCSEL)之至少一者,VCSEL可操作以發射處於高於半導體層之任意者之一帶隙能量的一能量之光。
本發明亦描述可包含一寬頻光學發射光源之各種光譜儀。下文更詳細地描述各種配置。
採用光子注入/光泵激而非電荷載體注入可提供許多自由度,以實現高度客製化發射(即,任何所要之波長組成(wavelength composition)及/或強度組成(intensity composition))。例如,層厚度可被客製化。原則上,層無需依靠摻雜以達成各種帶隙;在一些情況中,層材料可為一純/固溶體半導體,其中輻射復合效率可比在重摻雜半導體中更高。在一些情況中,目前技術可在中間層(例如,障壁層)方面提供較好的可撓性。例如,障壁層可對光特別透明(即,具有一相當大的帶隙),而在其他實施方案中該等障壁層可為部分吸收。
在一些實施方案中可提供其他優點。例如,無需電氣接觸件, 此係因為經由依靠光學耦合之光泵激而引入電子-電洞對。此外,在一些實施方案中,至分層堆疊之光學耦合可為更為所要的,此係因為其並不要求額外的電極相容表面。同樣可實施堆疊相對於光源之定向的其他變動。
在一些實施方案中,可包含多個光源,例如,垂直於發光層之每一側有一個光源。例如,可包含許多光源,各光源之波長具有。因此,在一些實施方案中,兩個光源(其之各者經組態以發射一高能量波長及一低能量波長)可提高效率。
將從下列詳細說明、隨附圖式及申請專利範圍容易地明白其他態樣、特徵及優點。
20‧‧‧寬頻發射裝置
22‧‧‧堆疊
22A‧‧‧堆疊
24‧‧‧發光半導體層
26‧‧‧發光半導體層
28‧‧‧發光半導體層
30‧‧‧過渡或障壁層
32‧‧‧光源
34‧‧‧外部電源
38‧‧‧基板
40‧‧‧箭頭
42‧‧‧箭頭
44‧‧‧箭頭
46‧‧‧箭頭
48‧‧‧箭頭
102‧‧‧p型半導體層
104‧‧‧n型半導體層
106‧‧‧大帶隙半導體層
108‧‧‧電氣障壁層
202‧‧‧分佈式回饋元件
204‧‧‧反射器
208‧‧‧光學總成
302‧‧‧箭頭
304‧‧‧箭頭
306‧‧‧箭頭
308‧‧‧箭頭
310‧‧‧箭頭
402‧‧‧帶隙範圍
404‧‧‧線
500‧‧‧寬頻發射光源
501‧‧‧寬頻光束
502‧‧‧光學總成
504‧‧‧樣本
505‧‧‧光
506‧‧‧第一狹縫
508‧‧‧第一聚焦鏡
510‧‧‧可旋轉繞射光柵
512‧‧‧光譜分量
514‧‧‧第二聚焦鏡
516‧‧‧光束
516A‧‧‧光束
516B‧‧‧光束
518‧‧‧第二狹縫
520‧‧‧光偵測器
600‧‧‧寬頻光源
602‧‧‧反射器
604‧‧‧第一光學總成
606‧‧‧可調諧波長濾光器
607‧‧‧光
608‧‧‧樣本
610‧‧‧第二光學總成
612‧‧‧樣本光偵測器
613‧‧‧光
614‧‧‧參考光偵測器
615‧‧‧光
617‧‧‧光
619‧‧‧光
700‧‧‧寬頻發射光源
702‧‧‧光學總成
704‧‧‧可調諧波長濾光器
705‧‧‧光
706‧‧‧樣本
707‧‧‧光
708‧‧‧樣本光偵測器
710‧‧‧參考光偵測器
800‧‧‧寬頻發射光源
802‧‧‧反射器
804‧‧‧光學總成
806‧‧‧樣本
808‧‧‧濾光器
810‧‧‧光偵測器
811‧‧‧光
812‧‧‧參考光偵測器
813‧‧‧光
814‧‧‧參考光偵測器
904‧‧‧光學總成
906‧‧‧樣本
908‧‧‧可調諧波長濾光器
910‧‧‧樣本光偵測器
912‧‧‧參考光偵測器
914‧‧‧參考光偵測器
915‧‧‧光
圖1繪示一寬頻發射裝置之一實例。
圖1A繪示用於一寬頻發射裝置之磊晶生長層之一實例。
圖1B繪示用於一寬頻發射裝置之層之細節的一實例。
圖1C繪示展示相對於針對各種半導體材料之晶格常數之帶隙能量的一圖表。
圖1D繪示一寬頻發射裝置之一特定實例。
圖2繪示供圖1之寬頻發射裝置中使用之一光源的一實例。
圖3、圖4、圖5、圖6與圖7繪示寬頻發射裝置之進一步實例。
圖8A與圖8B繪示包含一寬頻光學發射裝置之一光譜儀的一實例。
圖9、圖10、圖11與圖12繪示包含一寬頻光學發射裝置之光譜儀之額外實例。
如圖1中所展示,一寬頻發射裝置20包含具有不同組合物及/或量子層厚度之發光半導體層24、26、28之一堆疊22,以產生一多發射光 譜。在一些實施方案中,一或多個過渡或障壁層30幫助提供從一層至下一層之晶格常數的一平滑過渡。因此,該等過渡層30可幫助減少另外可能出現之應變且可幫助提供機械過渡。在一些實施方案中,一些或所有過渡層30可被省略。
寬頻發射裝置20亦包含由一外部電源34驅動之一光源32。如下文所論述,光源32可以各種方式實施,但一般言之,提供用於產生可導致輻射復合之電子-電洞對之一泵激機構,以便激發來自層24至30之光子發射。發光層之堆疊22可藉由標準半導體沈積與生長技術(諸如分子束磊晶(MBE)、金屬有機化學氣相沈積(MOCVD)、有機金屬氣相磊晶(OMVPE)或其他技術)來磊晶沈積或生長(例如)於一基板38上(見圖1A)。
光源32產生波長λE1之光,其對應於一能階E1。同樣地,層24至30之各者具有一各自帶隙能量,其對應於一特定波長。特定言之,發光層24、26、28之各者具有各自對應於波長λE3、λE4、λE5之一各自帶隙能量E3、E4、E5,且過渡層30具有對應於一波長λE2之一帶隙能量E2。在圖1之實例中,層24至30之組合物經選擇使得帶隙能階具有下列關係:E1>E2>E3>E4>E5。因此,由光源32與各種層24至30發射之光子的波長具有下列關係:λE1E2E3E4E5。圖1A示意性地繪示此一案例。
在操作中,當光源32係由外部電源34驅動時,該光源32發射第一波長λE1之光。由光源32發射之波長λE1的光係由層24至30之各者部分透射通過,且由層24至30之各者部分吸收。由其他層24至30吸收之波長λE1的光激發來自後續層24至30之各者之光的發射。此外,從每一層24至30隨後發射的受激光部分透射通過堆疊22中之後續層,並由堆疊22中之後續層部分吸收。可藉由調整材料參數(包含所有層之厚度)來達成波長λE1、λE2、λE3、λE4、λE5之部分透射與吸收。因此,在 圖1中,箭頭40指示處於波長λE1之光,其係由光源32發射且完全行進通過堆疊22。箭頭42指示由光源32發射之光λE1,其係由過渡層30之一者吸收。箭頭44指示完全行進通過堆疊22之光λE2的受激發射。箭頭46指示由層24吸收之光λE2的受激發射。箭頭指示完全行進通過堆疊22之光λE3的受激發射。為清晰起見,從圖1省略其他層之間之光的受激發射。
在一特定實施方案中,堆疊22係包含磷化銦(InP)過渡或障壁層之一應變砷化銦鉀(GaInAs)系統。用於此一實施方案之堆疊中之層之序列之一實例係繪示於圖1B中,且其可提供處於室溫、在約1000奈米寬之一範圍內(例如,從約1000奈米至約2100奈米)之一發射光譜。同樣可使用其他III-V化合物半導體(例如,AlGaInAsP,晶格匹配InP)或有機半導體材料。在一些情況中,層24至30具有約30奈米量級之一厚度。層24至30之組合物與厚度在其他實施方案中可能不同。同樣地,發光層之數目在一些實施方案中可能不同。量子與過渡層之組合物與厚度在其他實施方案中可能不同。同樣地,發光層之數目在一些實施方案中可能不同。
在一些實例中,層24、26、28之各者係一半導體量子層。每一層之帶隙可藉由調整其量子層厚度來進行調諧。在一些實例中,量子層之各者具有(例如)4奈米至6奈米之範圍之一厚度。在一些情況中,堆疊22可係由GaxIn1-xAsyP1-y量子層實施,藉由1nP過渡層來匹配晶格。
圖1C係繪示帶隙(eV)如何針對特定化合物半導體系統而隨晶格常數(Å)變化之一圖表。如此項技術之一般技術者將容易地理解,此一圖表可有利於為發光層(例如,24、26、28)及過渡層30(若有)選擇適當的半導體材料。首先,可選擇一系列所要發射波長(與帶隙範圍關聯)。見圖1C中之402。接著,識別用於所選擇帶隙範圍之一適當半 導體系統(例如,GaAs-InAs)。對於GaAs-InAs系統,In及Ga之變動控制帶隙。見圖1C中之線404。接著,識別用於過渡層之一適當材料。例如,對於GaAs-InAs系統,經In與Ga之取代之晶格參數的變動近似集中在InP周圍。因此,InP可為過渡層提供一適當材料。相應地,在一些實施方案中,可使用其他半導體系統(例如,III-V化合物半導體材料)。
圖1D繪示一寬頻發射器之一特定實例,其包含反射式塗層、發光層及障壁層。在所繪示實例中,多層基於InP之結構僅含有未摻雜層。所有層被安裝(例如,生長、沈積)在一InP基板上。低成本、效率高且高功率850/940奈米市售LED可被用作光學泵源。
如上文所記錄,光源32可以各種方式實施。例如,如圖2中所展示,光源32可包含安置在p型半導體層102與n型半導體層104之間的一大帶隙半導體層106。以正向偏壓驅動p-n接面以引起處於λE1之光發射。在一些實施方案中,光源32可操作以產生具有約850奈米之一波長λE1的光。用於λE1之其他波長可適於一些實施方案。在一些實例中,亦可在光源32與上部過渡層30之間提供一電氣障壁層108。一般言之,可用來激發光發射之泵激技術可包含藉由一外部光源泵激、使用一橫向p-n接面或提供一內建高帶隙p-n發射器二極體以將光子注入至堆疊22中。
在一些實施方案中,可包含多個光源,例如,垂直於發光層之每一側有一個光源。例如,可包含許多光源,各自具有一不同波長。因此,在一些實施方案中,兩個光源(其之各者經組態以發射一高能量波長與一低能量波長)可提高效率。例如,參考圖1,從層32產生之一低能量波長可由層28大量吸收,但其他層(即,層24、26、30)可對低能量波長相當透明。相比而言,從層32產生之一高能量波長可由層24大量吸收,因此,少許高能量波長光可到達層28-此一實施例可為 特別效率高的。
圖3至圖6繪示可存在於一些實施方案中之其他特徵。例如,如圖3中所展示,寬頻發射裝置可包含一部分反射式層及/或一分佈式回饋元件202。雖然部分反射式層及/或一分佈式回饋元件202允許一些受激發射行進通過至寬頻發射裝置外,但一些光被反射回至堆疊22中以便激發處於較低波長之進一步光學發射。
如圖4中所繪示,在一些實施方案中,寬頻發射裝置亦可包含一反射器204以幫助將雜散光反射遠離。例如,在其中光源32經實施作為如圖5中所展示之一發光元件32的實例中,此一反射器可為實用的。發光元件32可為(例如)如一高功率發光電二極體(LED)、一雷射二極體或一垂直空腔表面發射雷射(VCSEL),VCSEL可操作以發射處於高於半導體發光層24至28及過渡層30之任意者之帶隙能量的一能量之光。在一些實施方案中,提供一光學總成208以將光λE1分配、引導及/或聚焦至第一過渡層30可為有利的。該光學總成208可包含(例如)一或多個繞射及/或折射元件。
在一些情況中,反射式表面被提供在發光層24至28周圍。反射式層可平行及/或垂直於層24至28。效率可被提高,且在一些實例中,對於一特定應用調諧發射方向。例如,包含平行於層之反射式表面的一實施方案可操作作為一邊緣發射裝置。
在一些實例中,如上文所描述,過渡層30對藉由光源32發射之光僅部分透明。因此,過渡層30亦吸收一些光並參與產生光之受激發射。例如,在一些實施方案中,藉由光源32發射之光可在過渡層30中產生電荷載體(例如,電洞及電子)。電荷載體可遷移至發光層24至28之任意者並復合,一復合即發射光。例如,若發光層24至28相對較薄,則此特徵可為特別有利的。然而,在一些情境中,過渡層30可具有一足夠大的帶隙,使得該等過渡層30對藉由光源32發射之波長λE1 (例如,950奈米)的光完全透明,其允許來自光源32之進一步光到達堆疊22A中之後續層24、26、28(見圖7中之箭頭302、304、306)。來自光源32之波長λE1的一些光可由層24、26、28之各者吸收,其激發其等層中之光發射。此外,在一些實例中,將層28(其具有層24、26、28之間之最低帶隙能量(即,E5))放置在最靠近光源32處可為有利的。以該方式,後續層24、26對藉由層28產生的處於波長λE5之光透明(見箭頭308)。同樣,層24(其具有層24、26、28之間之最大帶隙)亦對藉由層26產生的處於波長λE4之光透明(見箭頭310)。因此,在此實例中,堆疊22A中之每一層係對藉由該堆疊22A中之前面層之各者產生的光透明。此一配置可導致一些情況中之更加效率高的發射。
在一些實施方案中,為各種發光層24、26、28提供不同厚度亦可為有益的。例如,更遠離光源32之層可被製成比更靠近光源之層更厚,以便相比於另外將被吸收者而增加由更遠層吸收之來自光源32之光的數目。因此,在圖1與圖3至圖6之配置之一些實施方案中,層28可比層26更厚,層26繼而可比層24更厚。類似地,在圖7之配置之一些實施方案中,層24可比層26更厚,層26繼而可比層28更厚。
前述寬頻光學發射光源可被整合(例如)為具有許多各種不同的配置之光譜儀。一般言之,該寬光譜發射光源可產生一寬光譜束,其之至少一部分入射在一樣本上,該樣本之性質待被分析。樣本之一實例係一有機分子,儘管同樣可分析其他類型之樣本。通常,樣本吸收光之特定波長,而其可允許其他波長行進通過或可反射一些波長。藉由分析被吸收、反射及/或透射之波長,可識別樣本之各種性質(例如,有機分子中之原子之間之一化學鍵的特性)。
在圖8A與圖8B中繪示使用如上文所描述之一寬頻發射光源之一光譜儀的一第一實例。在此實例中,光譜儀包含一寬頻發射光源500,其發射一寬頻光束501。寬頻發射光源500可藉由上文所描述寬 頻光源之任意者實施。光束501可行進通過一光學總成502及一樣本504,該樣本504之性質待被分析。行進通過樣本504之光505行進通過一第一狹縫506且入射在一第一聚焦鏡508上。鏡508將光反射朝向一可旋轉繞射光柵510,其將光束分裂成其光譜分量512,該等光譜分量512之各者具有一不同波長(或窄的波長範圍)。光束512入射在一第二聚焦鏡514上,第二聚焦鏡514反射光束516。取決於繞射光柵510之位置,光束之一特定者行進通過一第二狹縫518並照射在一光偵測器520(例如,一光電二極體)上。例如,當繞射光柵510處於一第一位置時,表示一特定光譜分量(即,波長)之一光束516A行進通過狹縫518並由偵測器520進行偵測(圖8A)。當繞射光柵510處於一第二位置時,表示一不同光譜分量(即,波長)之一光束516B行進通過狹縫518並由偵測器520進行偵測(圖8B)。藉由改變光柵510之位置,可偵測光譜分量之其他者。偵測之光譜分量可經處理與分析以識別樣本504之性質。
在一些實例中,可由一固定繞射光柵取代可旋轉繞射光柵510。此外,可由一陣列光偵測器取代第二狹縫518與點偵測器520。此一配置可允許同時由陣列偵測器偵測各種光譜分量516。
為改良光譜儀之緊密度及/或為增加入射於偵測器上之光強度的總量,替代性光譜儀配置係可行的。例如,一些情況可避免空間地分離接著沿著不同路徑行進的不同波長(或窄的波長範圍)。此外,在一些實例中,可避免由僅來自原始寬光譜之一小波長範圍的時間或空間選擇所產生之光強度的縮減。
例如,如圖9中所展示,在一些實施方案中,光譜儀包含一可調諧波長濾光器606,其僅允許光607之經選擇波長(或波長之範圍)傳遞至樣本608。光613、615之其他波長被反射回至寬頻光源600。該光源600可包含一拋物線或其他反射器602,以幫助保持雜散光遠離及/或 將光從外部供電的光源引導至寬頻光源的半導體層堆疊。
圖9中所展示之光譜儀亦包含經安置於寬頻光源600與濾光器606之間之一第一光學總成604。該光學總成604可幫助聚焦或準直由光源600發射之光,且在一些情況中可具有僅10至20度之一發散。接著,行進通過樣本608之經選擇波長(或波長之範圍)的光617可在(例如)被一樣本光偵測器(例如,光電二極體)612偵測之前,行進通過一第二光學總成610。在一些實例中,行進通過濾光器606之一些光619可(例如)藉由一稜鏡或鏡引導至一參考光偵測器614,參考光偵測器614可用來確認正由濾光器606傳遞之光的波長。濾光器606可經調諧以在不同時刻傳遞不同波長(或窄的波長範圍,例如,圍繞一中心波長±10奈米)之光,從而允許光之不同波長入射於樣本608上。藉由偵測入射在偵測器612上之光,可獲得用於樣本608之一吸光率(或透射比/反射比)光譜。
對於圖9之實施方案,雖然可使用任何寬頻光源,但圖1至圖7中所描述之特定寬頻光源可為特別有利的。然而,在一些情況中,寬頻光源600不包含反射器602。
圖8A至圖8B與圖9之前述實例以一透射比模式操作,其中偵測行進通過待分析之樣本的光。其他實例可以一反射比模式操作,其中偵測由待分析之樣本反射的光。圖10中繪示一實例,其展示一寬頻發射光源700,該寬頻發射光源700發射通過一光學總成702、朝向一可調諧波長濾光器704之光。行進通過濾光器704之光705入射於樣本706上,該樣本706將一些光707反射或重新發射(例如)朝向一樣本光偵測器708(例如,光電二極體)。在一些實例中,行進通過濾光器704的一些光可(例如)由一稜鏡或鏡引導至一參考光偵測器710,參考光偵測器710可用來確認正由濾光器704傳遞之光的波長。濾光器704可經調諧以在不同時刻傳遞不同波長(或窄的波長範圍,例如,圍繞一中心 波長+10奈米)之光,從而允許光之不同波長入射於樣本706上。再次,藉由偵測入射在偵測器708上的光,可獲得用於樣本706之一吸光率(或透射比/反射比)光譜。
在前述實例中,藉由寬頻光源發射之光在照射在樣本上之前,行進通過一波長濾光器。在一些實施方案中,在光行進通過樣本或由該樣本反射之後,波長濾光器可被安置在光路徑之部分中。例如,圖11繪示操作於一透射模式之一光譜儀。藉由寬頻發射光源800發射之光行進通過一光學總成804並入射在一樣本806上。因此,寬範圍的波長可同時入射在樣本806上。行進通過樣本806之光811入射在一可調諧波長濾光器808上,該可調諧波長濾光器僅允許一經選擇波長(或窄的波長範圍)傳遞至光偵測器(例如,光電二極體)810。濾光器808可經調諧以在不同時刻傳遞不同波長(或窄範圍之波長,例如,圍繞一中心波長+10奈米)之光,從而允許由偵測器810感測光之不同波長。藉由偵測入射在偵測器810上之光,可獲得用於樣本806之一吸光率(或透射比/反射比)光譜。
在一些情況中,藉由濾光器808反射之光813的波長可入射在與寬頻光源800相關聯之一反射器802上。因此,反射光813可幫助激發寬頻光源800中之進一步光學發射。接著,參考光可為沿著光路徑之一或多個位置處之樣本。例如,可提供一或多個參考光偵測器812、814以在光行進通過濾光器808之前,各自感測行進通過光學總成804及/或行進通過樣本806之一些光。光學組件(諸如鏡及/或稜鏡)可用來將一些光引導朝向偵測器812、814。
鑑於圖11繪示可操作於一透射比模式之一光譜儀,圖12繪示可操作於一反射比模式之一光譜儀的一實例。圖12之光譜儀包含一可調諧波長濾光器908,可調諧波長濾光器908安置在光由樣本906反射之後的光路徑之部分中。圖12中所繪示之配置亦包含一光學總成904,光 學總成904可幫助將光聚焦或準直至樣本906上。由樣本906反射之光915經引導朝向波長濾光器908。接著,藉由濾光器908所選擇之波長(或波長之範圍)的光係由一樣本光偵測器(例如,光電二極體)910進行偵測。如在上文所描述之其他實施例中,圖12之光譜儀可包含一或多個參考光偵測器912、914以在光行進通過濾光器908之前,各自感測行進通過光學總成904及/或由樣本906反射之一些光。光學組件(諸如鏡及/或稜鏡)可用來將一些光引導朝向偵測器912、914。
在上文所描述之各種光譜儀實施方案中,波長濾光器可經實施(例如)作為一法布裡珀羅(Fabry Perrot)濾光器(例如,一掃描MEMS或線性可變法布裡珀羅濾光器)。亦可使用其他類型之光學波長濾光器。然而,一法布裡珀羅濾光器可幫助達成一更緊密的光譜儀。
此外,恢復未由波長濾光器傳遞之一些或所有光(藉由將光引導回至寬頻發射光源)可幫助增加發生之光學激發的總量。此等配置可幫助改良光譜儀之能量效率。
上文所描述之各種光譜儀可包含處理電路(例如,一微處理器或其他邏輯)以分析來自光偵測器之信號。該等信號可經分析以基於透射通過樣本、由樣本吸收及/或由樣本反射之光的波長而判定該樣本之各種性質。
可在本發明之精神內作出各種修改。相應地,其他實施方案係在申請專利範圍之範疇內。
20‧‧‧寬頻發射裝置
22‧‧‧堆疊
24‧‧‧發光半導體層
26‧‧‧發光半導體層
28‧‧‧發光半導體層
30‧‧‧過渡或障壁層
32‧‧‧光源
34‧‧‧外部電源
40‧‧‧箭頭
42‧‧‧箭頭
44‧‧‧箭頭
46‧‧‧箭頭
48‧‧‧箭頭

Claims (10)

  1. 一種寬頻光學發射裝置,其包括:一半導體層堆疊,其中該等半導體層之各者可操作以發射各自不同波長之光;一光源,其可操作以為來自該堆疊之受激光子發射提供泵激;其中該等半導體層係循序地安置於該堆疊中,使得該等半導體層之一第一者最靠近該光源,且該等半導體層之一最後者最遠離該光源,且其中該等半導體層之每一特定者係對由其他半導體層產生之光至少部分透明,該等半導體層比一特定半導體層更靠近該光源。
  2. 如請求項1之裝置,其中除最後半導體層外,由該等半導體層之每一特定者產生的至少一些光為來自距該光源更遠之其他半導體層的受激光子發射提供泵激。
  3. 如請求項1至2中任一項之裝置,其中該等半導體層之各者具有一各自帶隙能量,且其中該等半導體層係在該堆疊中,使得具有最高帶隙能量之該半導體層最靠近該光源。
  4. 如請求項1至2中任一項之裝置,其中該等半導體層之各者具有一各自帶隙能量,且其中該等半導體層係在該堆疊中,使得具有最低帶隙能量之該半導體層最靠近該光源。
  5. 如請求項1至2中任一項之裝置,其中該等半導體層之各者包括一III-V化合物半導體,其包含Ga、In、As、P中之一或多者。
  6. 如請求項1至2中任一項之裝置,進一步包含一或多個過渡層,該等過渡層之各者提供該堆疊中之該等半導體層之間之晶格常 數之一平滑過渡。
  7. 如請求項1至2中任一項之裝置,進一步包含一部分反射式層及/或一分佈式回饋元件,其可操作以允許一些光傳遞至該寬頻發射裝置外且將一些光反射回至該堆疊中,以便自該等半導體層之一或多者產生進一步受激光學發射。
  8. 一種光譜儀,其包括:一寬頻光學發射裝置,其包含一光源,該光源可操作以被驅動,以便自該寬頻光學發射裝置產生受激光學發射;一可調諧波長濾光器,其可操作以允許來自該寬頻光學發射裝置之光之一經選擇波長或波長範圍入射於一樣本上,其中光之其他非經選擇的波長或波長範圍係由該可調諧波長濾光器反射回至該寬頻光學發射裝置,以產生進一步受激光學發射;及一光偵測器,其可操作以感測基於行進通過該樣本或由該樣本反射之光之一部分的光學信號。
  9. 一種光譜儀,其包括:一寬頻光學發射裝置,其包含一光源,該光源可操作以被驅動,以便自該寬頻光學發射裝置產生受激光學發射;一光偵測器,其可操作以感測基於行進通過一樣本或由該樣本反射之該寬頻光學發射之一部分的光學信號;及一可調諧波長濾光器,其可操作以允許一經選擇波長或窄的波長範圍傳遞至該光偵測器。
  10. 如請求項9之光譜儀,其中該寬頻光學發射中之光之其他非經選擇波長或波長範圍係由該可調諧波長濾光器反射回至該寬頻光學發射裝置,以產生進一步受激光學發射。
TW104131491A 2014-09-23 2015-09-23 緊密、功率效率高之堆疊寬頻光學發射器 TWI695557B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462053909P 2014-09-23 2014-09-23
US62/053,909 2014-09-23
US201462088932P 2014-12-08 2014-12-08
US62/088,932 2014-12-08

Publications (2)

Publication Number Publication Date
TW201618404A TW201618404A (zh) 2016-05-16
TWI695557B true TWI695557B (zh) 2020-06-01

Family

ID=55581581

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104131491A TWI695557B (zh) 2014-09-23 2015-09-23 緊密、功率效率高之堆疊寬頻光學發射器

Country Status (5)

Country Link
US (2) US10656014B2 (zh)
EP (1) EP3198689B1 (zh)
CN (2) CN112067123A (zh)
TW (1) TWI695557B (zh)
WO (1) WO2016048241A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
JP2019174151A (ja) * 2018-03-27 2019-10-10 株式会社島津製作所 分光器
TWI685660B (zh) * 2018-09-20 2020-02-21 大陸商信泰光學(深圳)有限公司 光學檢測裝置
GB202009952D0 (en) * 2020-06-30 2020-08-12 Ams Int Ag Light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070070347A1 (en) * 2005-06-08 2007-03-29 Axel Scherer Method and apparatus for CMOS imagers and spectroscopy
US20120263204A1 (en) * 2011-04-13 2012-10-18 Sumitomo Electric Industries, Ltd. Quantum cascade laser
US20140084296A1 (en) * 2012-09-26 2014-03-27 Hisashi Yoshida Nitride semiconductor wafer, nitride semiconductor device, and method for manufacturing nitride semiconductor wafer

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200414A (nl) 1982-02-04 1983-09-01 Philips Nv Halfgeleiderinrichting voor het opwekken van ten minste twee stralingsbundels, en werkwijze ter vervaardiging daarvan.
US5343487A (en) * 1992-10-01 1994-08-30 Optical Concepts, Inc. Electrical pumping scheme for vertical-cavity surface-emitting lasers
US5780867A (en) 1996-03-07 1998-07-14 Sandia Corporation Broadband light-emitting diode
US5684309A (en) 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
WO2002017445A1 (en) * 2000-08-22 2002-02-28 Regents Of The University Of California, The Heat spreading layers for vertical cavity surface emitting lasers
US6658172B1 (en) * 2001-03-15 2003-12-02 Cierra Photonics, Inc. Optical system with 1×N interleaver and methods of making and using same
US7126682B2 (en) * 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
EP1419535B1 (en) 2001-08-20 2008-01-16 Showa Denko Kabushiki Kaisha Multicolor light-emitting lamp and light source
US6553045B2 (en) * 2001-09-04 2003-04-22 The United States Of America As Represented By The Secretary Of The Air Force Multiple wavelength broad bandwidth optically pumped semiconductor laser
US7038248B2 (en) 2002-02-15 2006-05-02 Sandisk Corporation Diverse band gap energy level semiconductor device
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
CN1275337C (zh) 2003-09-17 2006-09-13 北京工大智源科技发展有限公司 高效高亮度多有源区隧道再生白光发光二极管
US7224041B1 (en) * 2003-09-30 2007-05-29 The Regents Of The University Of California Design and fabrication of 6.1-Å family semiconductor devices using semi-insulating A1Sb substrate
EP1733077B1 (en) 2004-01-15 2018-04-18 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
KR101015499B1 (ko) 2004-06-19 2011-02-16 삼성전자주식회사 복수의 파장을 발생시키는 반도체 레이저 소자 및 상기반도체 레이저 소자용 레이저 펌핑부
DE602005001810T2 (de) 2004-06-19 2008-04-17 Samsung Electronics Co., Ltd., Suwon Mehrwellenlängenlasersystem mit externem Resonator
US20060098194A1 (en) * 2004-11-08 2006-05-11 David Tuschel Method and apparatus for determining change in an attribute of a sample during nucleation, aggregation, or chemical interaction
US8629986B2 (en) * 2006-08-09 2014-01-14 Biozoom Technologies, Inc. Optical filter and method for the production of the same, and device for the examination of electromagnetic radiation
JP2008235802A (ja) 2007-03-23 2008-10-02 Rohm Co Ltd 発光装置
JP5155611B2 (ja) 2007-07-06 2013-03-06 スタンレー電気株式会社 ZnO系半導体発光素子
FR2940447B1 (fr) * 2008-12-23 2011-10-21 Continental Automotive France Spectrometre miniature embarque dans un vehicule automobile a detecteur de mesure et detecteur de reference unique
US8541803B2 (en) 2009-05-05 2013-09-24 3M Innovative Properties Company Cadmium-free re-emitting semiconductor construction
US8575471B2 (en) 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8526472B2 (en) * 2009-09-03 2013-09-03 Axsun Technologies, Inc. ASE swept source with self-tracking filter for OCT medical imaging
US9069130B2 (en) * 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US20120286701A1 (en) 2011-05-09 2012-11-15 Fang Sheng Light Emitting Diode Light Source With Layered Phosphor Conversion Coating
DE102011050450A1 (de) * 2011-05-18 2012-11-22 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip, optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
US9698567B2 (en) * 2011-07-14 2017-07-04 Applied Optoelectronics, Inc. Wavelength-selectable laser device providing spatially-selectable wavelength(S)
US8492746B2 (en) 2011-09-12 2013-07-23 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) dice having wavelength conversion layers
CN103048293B (zh) * 2012-12-17 2015-03-04 天津大学 涂覆介质层的增强型光微流体传感装置和方法
US10161738B2 (en) * 2012-12-31 2018-12-25 Axsun Technologies, Inc. OCT swept laser with cavity length compensation
US10359551B2 (en) * 2013-08-12 2019-07-23 Axsun Technologies, Inc. Dielectric-enhanced metal coatings for MEMS tunable filters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070070347A1 (en) * 2005-06-08 2007-03-29 Axel Scherer Method and apparatus for CMOS imagers and spectroscopy
US20120263204A1 (en) * 2011-04-13 2012-10-18 Sumitomo Electric Industries, Ltd. Quantum cascade laser
US20140084296A1 (en) * 2012-09-26 2014-03-27 Hisashi Yoshida Nitride semiconductor wafer, nitride semiconductor device, and method for manufacturing nitride semiconductor wafer

Also Published As

Publication number Publication date
CN106716748B (zh) 2020-09-04
EP3198689A1 (en) 2017-08-02
CN106716748A (zh) 2017-05-24
EP3198689B1 (en) 2023-11-01
TW201618404A (zh) 2016-05-16
CN112067123A (zh) 2020-12-11
US10656014B2 (en) 2020-05-19
US20170299433A1 (en) 2017-10-19
US20200249087A1 (en) 2020-08-06
US11022491B2 (en) 2021-06-01
WO2016048241A1 (en) 2016-03-31
EP3198689A4 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
US11022491B2 (en) Compact, power-efficient stacked broadband optical emitters
TWI475773B (zh) 垂直腔表面發射雷射
US20070064758A1 (en) Laser diode and laser diode device
US7680172B2 (en) Laser diode device
US20170093128A1 (en) Vertical-cavity surface-emitting lasers
US10014662B2 (en) Quantum cascade laser
US9190545B2 (en) Optical device including three-coupled quantum well structure having multi-energy level
US9912119B2 (en) Quantum cascade laser
US6813296B2 (en) GaSb-clad mid-infrared semiconductor laser
TWI830021B (zh) 光子晶體面射型雷射
TW201736887A (zh) 雷射加工裝置
US10608413B2 (en) Laser assembly and operating method
JP2017147428A (ja) 量子カスケード検出器
JP2012160665A (ja) 半導体発光装置
US20220209505A1 (en) Laser module
WO2020100608A1 (ja) 半導体レーザおよび電子機器
US10277005B2 (en) Pumped edge emitters with metallic coatings
US20230327400A1 (en) Photoconductive semiconductor laser diodes and leds
US20080149950A1 (en) Optical communication semiconductor device and method for manufacturing the same
Hecht Photonic Frontiers: Antimonide lasers fill hole in the mid-infrared spectrum
Hosoda GaSb-based type-I diode lasers operating at 3 μm and above
WO2022002785A1 (en) Light source
Hosoda Gallium antimonide-based Type-I Diode Lasers Operating at 3 μm and above
KR20170075049A (ko) 고효율 분산 브래그 반사층을 가지는 적외 발광 다이오드 및 그 제조 방법
JP2010040925A (ja) 発光素子