CN106705770A - 一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法 - Google Patents

一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法 Download PDF

Info

Publication number
CN106705770A
CN106705770A CN201710100280.7A CN201710100280A CN106705770A CN 106705770 A CN106705770 A CN 106705770A CN 201710100280 A CN201710100280 A CN 201710100280A CN 106705770 A CN106705770 A CN 106705770A
Authority
CN
China
Prior art keywords
guided missile
angle
side window
rightarrow
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710100280.7A
Other languages
English (en)
Other versions
CN106705770B (zh
Inventor
余英
侯明善
刘柏均
李雅君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710100280.7A priority Critical patent/CN106705770B/zh
Publication of CN106705770A publication Critical patent/CN106705770A/zh
Application granted granted Critical
Publication of CN106705770B publication Critical patent/CN106705770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明公开了一种侧窗探测条件下的导弹轨迹与姿态协调控制系统,包括初始滚转角指令计算模块、初始指标角计算模块、带反馈项的滚转角指令差值计算模块、带反馈项情况下的指标角计算模块和最终滚转角指令计算模块。该发明提供了一种侧窗探测条件下的导弹轨迹与姿态协调控制方法,解决了滚转角控制器的控制指令问题,使得配置侧窗导引头的导弹可以同时满足侧窗探测的姿态控制要求和导弹制导精度要求。

Description

一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法
【技术领域】
本发明属于制导控制技术领域,具体涉及一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法。
【背景技术】
大气层内超音速导弹具有很强的机动突防能力,也是拦截各类再入弹头的重要武器。大气层内超音速飞行的导弹因气动加热问题会影响配置在弹体头部寻的导引头的探测精度。为解决这种问题,导引头通常配置在弹体侧面以避开导弹头部的热流密集区,这种目标探测方式即为侧窗探测。侧窗探测技术不仅能应用于防空导弹,而且针对掠海飞行的巡航导弹,导引头配置在弹体侧面更有利于其对目标的探测和跟踪。
侧窗探测要求:在导弹飞行过程中为保证导引头能够探测并跟踪到目标,必须使弹体方位与视线方向(探测方向)始终维持在一定的角度范围。侧窗探测对弹体与视线方向的关系从制导层面看,就是要求导弹在制导飞行中弹体姿态同时满足一定的角度约束;从系统控制特征看,它要求制导任务与姿态控制任务协调完成。由于轨迹制导目的与姿态控制目的之间存在冲突,制导控制与姿态控制的协调就成为侧窗探测体制拦截系统需要解决的关键技术问题。
目前,对轨迹控制与姿态控制耦合情况的侧窗探测拦截系统的制导控制问题研究的公开文献较少,且目前的研究多以类高空区域防御系统THAAD(Theater High-AltitudeArea Defense)的姿态控制问题为主,即根据导引头视场和侧窗条件,给出侧窗范围和拦截器姿态角之间的约束关系,或者将侧窗约束转化成视线终端约束,采用滑模变结构控制或自适应控制技术设计姿态角控制器;或者是以中段制导问题为主,运用最优控制原理设计针对虚拟目标的优化导引律。国内外尚未有公开文献研究导弹轨迹控制与姿态控制的协调控制问题,本项发明将针对这一技术难题展开研究,给出一种侧窗探测条件下的导弹轨迹与姿态协调控制方法来确定姿态角控制器的控制指令。切合实际的任务需求,实现同时满足侧窗探测的姿态控制要求和导弹制导精度的要求,这对于防空导弹和巡航导弹而言很有应用价值和发展前景。
【发明内容】
本发明的目的在于解决上述现有技术中的问题,提供一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法,以确定导弹滚转角控制器的控制指令,以使得配置侧窗导引头的导弹可以同时满足侧窗探测的姿态控制要求和导弹制导精度的要求。
为了实现上述目的,本发明采用以下技术方案予以实现
一种侧窗探测条件下的导弹轨迹姿态协调控制系统,包括依次数据连接的初始滚转角指令计算模块、初始指标角计算模块、带反馈项的滚转角指令差值计算模块、带反馈项情况下的指标角计算模块以及最终滚转角指令计算模块;其中:
初始滚转角指令计算模块,用于接受制导回路提供的参数θmm来求解初始滚转角指令γc,并将所述初始滚转角指令γc发送至所述初始指标角计算模块;
初始指标角计算模块,用于计算表征侧窗探测效果的指标角,并将指标角发送至带反馈项的滚转角指令差值计算模块;
带反馈项的滚转角指令差值计算模块,用于接受初始指标角计算模块提供的指标角:视线偏离角Δγ和探测夹角γRside,并将视线偏离角Δγ作为反馈项修正导弹每拍需要滚转的角度以使得Δγ更好地逼近零,并将反馈后导弹每拍需要滚转的角度发送至带反馈项情况下的指标角计算模块;
带反馈项情况下的指标角计算模块,用于求解导弹按照带反馈项的滚转角差值滚转后的指标角:带反馈项情况下的视线偏离角Δγ*和带反馈项情况下的探测夹角并将视线偏离角Δγ*符合侧窗探测要求时的带反馈项的滚转角差值发送至最终滚转角指令计算模块;
最终滚转角指令计算模块,用于计算最终的滚转角指令
本发明还公开了一种侧窗探测条件下的导弹轨迹姿态协调控制方法,包括以下步骤:
步骤1:根据初始拦截条件和制导仿真参数,得到制导回路提供的弹目视线矢量导弹速度矢量导弹速度倾角θm和偏角ψm,计算导弹的初始滚转角指令γc
步骤2:根据初始滚转角指令γc,计算视线偏离角Δγ和探测夹角γRside
步骤3:计算带反馈项情况下导弹每拍需要滚转的角度
步骤4:根据导弹每拍需要滚转的角度计算带反馈项情况下的视线偏离角Δγ*和探测夹角
步骤5:判断带反馈项情况下的视线偏离角Δγ*是否满足给定的指标要求,满足则直接进入下一步,不满足则继续调整反馈系数m重复步骤3和4直至满足给定的指标要求再进入下一步;
步骤6:计算最终的滚转角指令
本发明进一步的改进在于:
步骤1中的具体方法如下:
1-1)计算弹目视线矢量和导弹速度矢量所构成平面的法向量在地面坐标系的表示:
其中,为弹目视线矢量,Δx,Δy,Δz分别为导弹和目标在地面坐标系xg,yg,zg三轴的相对距离;为导弹速度矢量在地面坐标系的表示,θmm分别为导弹速度倾角和偏角;
1-2)计算初始时刻导弹侧窗垂直轴Nside和导弹初始速度矢量所构成平面的法向量在地面坐标系的表示为:
其中,为初始时刻导弹速度矢量在地面坐标系的表示,θm0m0分别为初始时刻的导弹速度倾角和偏角;Rgdm0m0)为初始时刻弹道坐标系到地面坐标系的坐标变换公式;Rgdm0m0)具体为:
为初始时刻导弹侧窗垂直轴Nside在地面坐标系的表示,要求起始时刻导弹侧窗垂直轴Nside与导弹弹道坐标系的OdZd轴重合,则起始时刻导弹侧窗垂直轴Nside在弹道坐标系的表示为那么Nside在地面坐标系的表示为:
为初始时刻的法向量在弹道坐标系的表示,由于要求起始时刻导弹侧窗垂直轴Nside与导弹弹道坐标系的OdZd轴重合,那么起始时刻导弹侧窗垂直轴Nside和导弹速度矢量构成平面的法向量在弹道坐标系表示为法向量在地面坐标系可表示为:
1-3)根据式(3)计算弹目视线矢量与导弹速度矢量所构成的平面和初始时刻侧窗垂直轴Nside与导弹初始速度矢量所构成的平面之间的二面角μRside0
1-4)计算初始滚转角指令γc
1-4-1)当导弹纵轴比视线方向高时,也即导弹速度矢量比视线矢量高时,为保证导弹能够探测到目标,导弹需要正向偏转侧窗垂直轴Nside才能探测到视线,此时γc=μRside0
1-4-2)当导弹纵轴比视线方向低时,也即导弹速度矢量比视线矢量低时,为保证导弹能够探测到目标,导弹需要负向偏转侧窗垂直轴Nside才能探测到视线,此时γc=-μRside0
因此有:
其中,qε0为初始时刻的弹目视线倾角。
步骤2的具体方法如下:
2-1)根据式(5)计算导弹每拍之间需要滚转的滚转角差值Δγc
2-2)计算导弹滚转Δγc后的导弹侧窗垂直轴N′side在弹道坐标系中的表示:
其中,表示的是绕弹道坐标系纵轴OXd旋转Δγc的旋转矩阵;表示的是导弹滚转前侧窗垂直轴Nside在弹道坐标系中的表示;具体为:
由于导弹侧窗垂直轴固连在导弹上,每拍导弹的弹道坐标系都在变动时,导弹侧窗垂直轴在弹道坐标系的位置并不改变,因此有下面的关系存在:
2-3)计算导弹滚转Δγc后,导弹侧窗垂直轴N′side在地面坐标系中的表示:
其中,Rgdmm)为弹道坐标系到地面坐标系的坐标变换公式,具体为:
2-4)计算导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在弹道坐标系的表示:
其中,为导弹速度矢量与旋转前的导弹侧窗垂直轴Nside所构成平面的法向量在弹道坐标系的表示,具体有:
2-5)计算导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在地面坐标系的表示:
2-6)计算按照初始滚转角指令滚转情况下的指标角;
定义弹目视线矢量与导弹速度矢量和旋转后的导弹侧窗垂直轴N′side所构成平面的线面角Δγ为视线偏离角,其能够作为评判和导弹侧窗垂直轴Nside三个矢量是否共面的依据;Δγ为零时表示上述三个矢量共面,满足侧窗探测要求的共面条件,同时将该角度要求放宽至Δγ∈[-5°,5°];视线偏离角Δγ求解如下:
定义弹目视线矢量与旋转后的导弹侧窗垂直轴N′side之间的角度γRside为探测夹角,其可作为和导弹侧窗垂直轴Nside三个矢量共面后,评价导弹侧窗垂直轴N′side能否探测到目标的依据;当20°≤γRside≤70°时,表明导弹侧窗垂直轴能探测到目标;其他范围时,表示导弹侧窗垂直轴探测不到目标;探测夹角γRside求解如下:
步骤3的具体方法如下:
带反馈项的滚转角指令差值计算模块,用于接受初始指标角计算模块提供的指标角:视线偏离角Δγ和探测夹角γRside,并将视线偏离角Δγ作为反馈项修正初始滚转角指令γc,以使得Δγ更好地逼近零;具体如下:
其中,为反馈后导弹每拍需要滚转的角度;Δγc为初始滚转角指令每拍之间的差值;Δγ*为带反馈项情况下的视线偏离角;m为反馈系数。
步骤4的具体方法如下:
4-1)计算导弹滚转后的导弹侧窗垂直轴N′side在弹道坐标系中的表示:
其中,表示的是绕弹道坐标系纵轴OXd旋转的旋转矩阵;表示的是带反馈项情况下导弹滚转前侧窗垂直轴Nside在弹道坐标系中的表示;具体为:
由于导弹侧窗垂直轴固连在导弹上,每拍导弹的弹道坐标系都在变动时,导弹侧窗垂直轴在弹道坐标系的位置并不改变,因此有下面的关系存在:
4-2)计算导弹滚转后,导弹侧窗垂直轴N′side在地面坐标系中的表示:
其中,Rgdmm)为弹道坐标系到地面坐标系的坐标变换公式,具体为:
4-3)计算导弹滚转后,导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在弹道坐标系的表示:
其中,为带反馈项情况下导弹速度矢量与旋转前的导弹侧窗垂直轴Nside所构成平面的法向量在弹道坐标系的表示,具体有:
4-4)计算导弹滚转后,导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在地面坐标系的表示:
4-5)计算按照带反馈项的滚转角差值滚转后的指标角:
带反馈项情况下的视线偏离角Δγ*
带反馈项情况下的探测夹角
步骤6中,采用式(23)计算得到最终的滚转角指令
与现有技术相比,本发明具有以下有益效果:
由于本发明采用了反馈控制技术,使得协调控制系统可以根据视线偏离角的大小来修正导弹初始滚转角指令最终使得视线偏离角尽可能地接近零,且反馈控制项只需调整一个反馈系数,即可适用于多种初始拦截情况,因此本发明具有控制指令准确、鲁棒性强的优点;此外,由于本发明仅对导弹的滚转控制系统提出指令要求且产生的滚转角指令光滑,因此本发明具有对导弹姿态控制系统要求低和指令易实现的优点。
【附图说明】
图1是本发明控制系统的结构示意图;
图2是本发明控制方法的流程图;
图3是拦截条件1的仿真结果;(a)为导弹和目标运动轨迹,(b)为滚转角指令,(c)为视线偏离角,(d)为探测夹角;
图4是拦截条件2的仿真结果;(a)为导弹和目标运动轨迹,(b)为滚转角指令,(c)为视线偏离角,(d)为探测夹角;
图5是拦截条件3的仿真结果;(a)为导弹和目标运动轨迹,(b)为滚转角指令,(c)为视线偏离角,(d)为探测夹角。
【具体实施方式】
下面结合附图对本发明做进一步详细描述:
参见图1,本发明构建侧窗探测条件下的导弹轨迹姿态协调控制系统,包括初始滚转角指令计算模块、初始指标角计算模块、带反馈项的滚转角指令差值计算模块、带反馈项情况下的指标角计算模块、最终滚转角指令计算模块,其中带反馈项的滚转角指令差值计算模块和带反馈项情况下的指标角计算模块组成反馈控制模块。
如图2所示,本发明侧窗探测条件下的导弹轨迹姿态协调控制方法,包括以下步骤:
步骤1:根据初始拦截条件和制导仿真参数,得到制导回路提供的弹目视线矢量导弹速度矢量导弹速度倾角θm和偏角ψm,计算导弹的初始滚转角指令γc
1-1)计算弹目视线矢量和导弹速度矢量所构成平面的法向量在地面坐标系的表示:
其中,为弹目视线矢量,Δx,Δy,Δz分别为导弹和目标在地面坐标系xg,yg,zg三轴的相对距离;为导弹速度矢量在地面坐标系的表示,θmm分别为导弹速度倾角和偏角;
1-2)计算初始时刻导弹侧窗垂直轴Nside和导弹初始速度矢量所构成平面的法向量在地面坐标系的表示为:
其中,为初始时刻导弹速度矢量在地面坐标系的表示,θm0m0分别为初始时刻的导弹速度倾角和偏角;Rgdm0m0)为初始时刻弹道坐标系到地面坐标系的坐标变换公式;Rgdm0m0)具体为:
为初始时刻导弹侧窗垂直轴Nside在地面坐标系的表示,要求起始时刻导弹侧窗垂直轴Nside与导弹弹道坐标系的OdZd轴重合,则起始时刻导弹侧窗垂直轴Nside在弹道坐标系的表示为那么Nside在地面坐标系的表示为:
为初始时刻的法向量在弹道坐标系的表示,由于要求起始时刻导弹侧窗垂直轴Nside与导弹弹道坐标系的OdZd轴重合,那么起始时刻导弹侧窗垂直轴Nside和导弹速度矢量构成平面的法向量在弹道坐标系表示为法向量在地面坐标系可表示为:
1-3)根据式(3)计算弹目视线矢量与导弹速度矢量所构成的平面和初始时刻侧窗垂直轴Nside与导弹初始速度矢量所构成的平面之间的二面角μRside0
1-4)计算初始滚转角指令γc
1-4-1)当导弹纵轴比视线方向高时,也即导弹速度矢量比视线矢量高时,为保证导弹能够探测到目标,导弹需要正向偏转侧窗垂直轴Nside才能探测到视线,此时γc=μRside0
1-4-2)当导弹纵轴比视线方向低时,也即导弹速度矢量比视线矢量低时,为保证导弹能够探测到目标,导弹需要负向偏转侧窗垂直轴Nside才能探测到视线,此时γc=-μRside0
因此有:
其中,qε0为初始时刻的弹目视线倾角。
步骤2:根据初始滚转角指令γc计算视线偏离角Δγ和探测夹角γRside
2-1)根据式(5)计算导弹每拍之间需要滚转的滚转角差值Δγc
2-2)计算导弹滚转Δγc后的导弹侧窗垂直轴N′side在弹道坐标系中的表示:
其中,表示的是绕弹道坐标系纵轴OXd旋转Δγc的旋转矩阵;表示的是导弹滚转前侧窗垂直轴Nside在弹道坐标系中的表示;具体为:
由于导弹侧窗垂直轴固连在导弹上,每拍导弹的弹道坐标系都在变动时,导弹侧窗垂直轴在弹道坐标系的位置并不改变,因此有下面的关系存在:
2-3)计算导弹滚转Δγc后,导弹侧窗垂直轴N′side在地面坐标系中的表示:
其中,Rgdmm)为弹道坐标系到地面坐标系的坐标变换公式,具体为:
2-4)计算导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在弹道坐标系的表示:
其中,为导弹速度矢量与旋转前的导弹侧窗垂直轴Nside所构成平面的法向量在弹道坐标系的表示,具体有:
2-5)计算导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在地面坐标系的表示:
2-6)计算按照初始滚转角指令滚转情况下的指标角;
定义弹目视线矢量与导弹速度矢量和旋转后的导弹侧窗垂直轴N′side所构成平面的线面角Δγ为视线偏离角,其能够作为评判和导弹侧窗垂直轴Nside三个矢量是否共面的依据;Δγ为零时表示上述三个矢量共面,满足侧窗探测要求的共面条件,但该条件太过严苛,根据相关参考文献,可将该角度要求放宽至Δγ∈[-5°,5°];视线偏离角Δγ求解如下:
定义弹目视线矢量与旋转后的导弹侧窗垂直轴N′side之间的角度γRside为探测夹角,其可作为和导弹侧窗垂直轴Nside三个矢量共面后,评价导弹侧窗垂直轴N′side能否探测到目标的依据;当20°≤γRside≤70°时,表明导弹侧窗垂直轴能探测到目标;其他范围时,表示导弹侧窗垂直轴探测不到目标;探测夹角γRside求解如下:
步骤3:计算带反馈项情况下导弹每拍需要滚转的角度
带反馈项的滚转角指令差值计算模块,用于接受初始指标角计算模块提供的指标角:视线偏离角Δγ和探测夹角γRside,并将视线偏离角Δγ作为反馈项修正初始滚转角指令γc,以使得Δγ更好地逼近零;具体如下:
其中,为反馈后导弹每拍需要滚转的角度;Δγc为初始滚转角指令每拍之间的差值;Δγ*为带反馈项情况下的视线偏离角;m为反馈系数。
步骤4:根据导弹每拍需要滚转的角度计算带反馈项情况下的视线偏离角Δγ*和探测夹角
4-1)计算导弹滚转后的导弹侧窗垂直轴N′side在弹道坐标系中的表示:
其中,表示的是绕弹道坐标系纵轴OXd旋转的旋转矩阵;表示的是带反馈项情况下导弹滚转前侧窗垂直轴Nside在弹道坐标系中的表示;具体为:
由于导弹侧窗垂直轴固连在导弹上,每拍导弹的弹道坐标系都在变动时,导弹侧窗垂直轴在弹道坐标系的位置并不改变,因此有下面的关系存在:
4-2)计算导弹滚转后,导弹侧窗垂直轴N′side在地面坐标系中的表示:
其中,Rgdmm)为弹道坐标系到地面坐标系的坐标变换公式,具体为:
4-3)计算导弹滚转后,导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在弹道坐标系的表示:
其中,为带反馈项情况下导弹速度矢量与旋转前的导弹侧窗垂直轴Nside所构成平面的法向量在弹道坐标系的表示,具体有:
4-4)计算导弹滚转后,导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在地面坐标系的表示:
4-5)计算按照带反馈项的滚转角差值滚转后的指标角:
带反馈项情况下的视线偏离角Δγ*
带反馈项情况下的探测夹角
步骤5:判断带反馈项情况下的视线偏离角Δγ*是否满足给定的指标要求,满足则直接进入下一步,不满足则继续调整反馈系数m重复步骤3和4直至满足给定的指标要求再进入下一步;
步骤6:计算最终的滚转角指令
采用式(23)计算得到最终的滚转角指令
为了验证本发明的有效性,以3种初始拦截条件下的仿真结果为例。
表1初始拦截条件
序号 θm0(°) ψm0(°) θt0(°) ψt0(°)
1 55 55 65 65
2 55 55 65 -5
3 5 55 -5 -5
仿真中不考虑目标机动问题,制导律采用比例导引,其它仿真条件和参数设定如表2所示。
表1制导仿真参数设定
表1所示的初始拦截条件仿真得到的结果如图3至图5所示。根据结果可知,在三种初始条件下,导弹均能成功拦截目标且视线偏离角Δγ*和探测夹角均符合侧窗探测制导的要求。结果显示导弹按照本发明给出的滚转角指令进行滚转可以有效协调导弹的轨迹与姿态,使得侧窗探测制导要求得以满足,这表明本发明有效。
此外,滚转角指令中的反馈项提高了视线偏离角Δγ*趋于零的程度,使得原本就符合侧窗探测制导要求的视线偏离角Δγ更接近零,如条件1和3;使得原本不符合要求的视线偏离角Δγ满足要求,如条件2。本发明仅随机选择了3种初始条件为例,但可使得制导结果符合侧窗探测制导要求的初始条件并不仅限于此。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (7)

1.一种侧窗探测条件下的导弹轨迹姿态协调控制系统,其特征在于,包括依次数据连接的初始滚转角指令计算模块、初始指标角计算模块、带反馈项的滚转角指令差值计算模块、带反馈项情况下的指标角计算模块以及最终滚转角指令计算模块;其中:
初始滚转角指令计算模块,用于接受制导回路提供的参数θmm来求解初始滚转角指令γc,并将所述初始滚转角指令γc发送至所述初始指标角计算模块;
初始指标角计算模块,用于计算表征侧窗探测效果的指标角,并将指标角发送至带反馈项的滚转角指令差值计算模块;
带反馈项的滚转角指令差值计算模块,用于接受初始指标角计算模块提供的指标角:视线偏离角Δγ和探测夹角γRside,并将视线偏离角Δγ作为反馈项修正导弹每拍需要滚转的角度以使得Δγ更好地逼近零,并将反馈后导弹每拍需要滚转的角度发送至带反馈项情况下的指标角计算模块;
带反馈项情况下的指标角计算模块,用于求解导弹按照带反馈项的滚转角差值滚转后的指标角:带反馈项情况下的视线偏离角Δγ*和带反馈项情况下的探测夹角并将视线偏离角Δγ*符合侧窗探测要求时的带反馈项的滚转角差值发送至最终滚转角指令计算模块;
最终滚转角指令计算模块,用于计算最终的滚转角指令
2.一种采用权利要求1所述系统的侧窗探测条件下的导弹轨迹姿态协调控制方法,其特征在于,包括以下步骤:
步骤1:根据初始拦截条件和制导仿真参数,得到制导回路提供的弹目视线矢量导弹速度矢量导弹速度倾角θm和偏角ψm,计算导弹的初始滚转角指令γc
步骤2:根据初始滚转角指令γc,计算视线偏离角Δγ和探测夹角γRside
步骤3:计算带反馈项情况下导弹每拍需要滚转的角度
步骤4:根据导弹每拍需要滚转的角度计算带反馈项情况下的视线偏离角Δγ*和探测夹角
步骤5:判断带反馈项情况下的视线偏离角Δγ*是否满足给定的指标要求,满足则直接进入下一步,不满足则继续调整反馈系数m重复步骤3和4直至满足给定的指标要求再进入下一步;
步骤6:计算最终的滚转角指令
3.根据权利要求2所述的侧窗探测条件下的导弹轨迹姿态协调控制方法,其特征在于,步骤1中的具体方法如下:
1-1)计算弹目视线矢量和导弹速度矢量所构成平面的法向量在地面坐标系的表示:
N → R X g = Δ R → × V → m g - - - ( 1 )
其中,为弹目视线矢量,Δx,Δy,Δz分别为导弹和目标在地面坐标系xg,yg,zg三轴的相对距离;为导弹速度矢量在地面坐标系的表示,θmm分别为导弹速度倾角和偏角;
1-2)计算初始时刻导弹侧窗垂直轴Nside和导弹初始速度矢量所构成平面的法向量在地面坐标系的表示为:
N → s i d e X g 0 = N → s i d e ( g ) 0 × V → m g 0 = R g d ( θ m 0 , ψ m 0 ) N → s i d e X d 0 - - - ( 2 )
其中,为初始时刻导弹速度矢量在地面坐标系的表示,θm0m0分别为初始时刻的导弹速度倾角和偏角;Rgdm0m0)为初始时刻弹道坐标系到地面坐标系的坐标变换公式;Rgdm0m0)具体为:
R g d ( θ m 0 , ψ m 0 ) = cosθ m 0 cosψ m 0 - sinθ m 0 cosψ m 0 sinψ m 0 sinθ m 0 cosθ m 0 0 - cosθ m 0 sinψ m 0 sinθ m 0 sinψ m 0 cosψ m 0
为初始时刻导弹侧窗垂直轴Nside在地面坐标系的表示,要求起始时刻导弹侧窗垂直轴Nside与导弹弹道坐标系的OdZd轴重合,则起始时刻导弹侧窗垂直轴Nside在弹道坐标系的表示为那么Nside在地面坐标系的表示为:
N → s i d e ( g ) 0 = cosθ m 0 cosψ m 0 - sinθ m 0 cosψ m 0 sinψ m 0 sinθ m 0 cosθ m 0 0 - cosθ m 0 sinψ m 0 sinθ m 0 sinψ m 0 cosψ m 0 0 0 1 = sinψ m 0 0 cosψ m 0
为初始时刻的法向量在弹道坐标系的表示,由于要求起始时刻导弹侧窗垂直轴Nside与导弹弹道坐标系的OdZd轴重合,那么起始时刻导弹侧窗垂直轴Nside和导弹速度矢量构成平面的法向量在弹道坐标系表示为法向量在地面坐标系可表示为:
N → s i d e X g 0 = cosθ m 0 cosψ m 0 - sinθ m 0 cosψ m 0 sinψ m 0 sinθ m 0 cosθ m 0 0 - cosθ m 0 sinψ m 0 sinθ m 0 sinψ m 0 cosψ m 0 0 1 0 = - sinθ m 0 cosψ m 0 cosθ m 0 sinθ m 0 sinψ m 0
1-3)根据式(3)计算弹目视线矢量与导弹速度矢量所构成的平面和初始时刻侧窗垂直轴Nside与导弹初始速度矢量所构成的平面之间的二面角μRside0
μ R s i d e 0 = | a r c c o s ( N → R X g · N → s i d e X g 0 | N → R X g | | N → s i d e X g 0 | ) | - - - ( 3 )
1-4)计算初始滚转角指令γc
1-4-1)当导弹纵轴比视线方向高时,也即导弹速度矢量比视线矢量高时,为保证导弹能够探测到目标,导弹需要正向偏转侧窗垂直轴Nside才能探测到视线,此时γc=μRside0
1-4-2)当导弹纵轴比视线方向低时,也即导弹速度矢量比视线矢量低时,为保证导弹能够探测到目标,导弹需要负向偏转侧窗垂直轴Nside才能探测到视线,此时γc=-μRside0
因此有:
γ c = μ R s i d e 0 θ m 0 > q ϵ 0 γ c = - μ R s i d e 0 θ m 0 ≤ q ϵ 0 - - - ( 4 )
其中,qε0为初始时刻的弹目视线倾角。
4.根据权利要求2所述的侧窗探测条件下的导弹轨迹姿态协调控制方法,其特征在于,步骤2的具体方法如下:
2-1)根据式(5)计算导弹每拍之间需要滚转的滚转角差值Δγc
Δγ c ( i ) = γ c ( i ) - γ c ( i - 1 ) i ≥ 2 Δγ c ( 1 ) = γ c ( 1 ) i = 1 - - - ( 5 )
2-2)计算导弹滚转Δγc后的导弹侧窗垂直轴N′side在弹道坐标系中的表示:
N → s i d e ( d ) ′ = R OX d ( Δγ c ) N → s i d e ( d ) - - - ( 6 )
其中,表示的是绕弹道坐标系纵轴OXd旋转Δγc的旋转矩阵;表示的是导弹滚转前侧窗垂直轴Nside在弹道坐标系中的表示;具体为:
R OX d ( Δγ c ) = 1 0 0 0 c o s ( Δγ c ) - s i n ( Δγ c ) 0 s i n ( Δγ c ) cos ( Δγ c )
由于导弹侧窗垂直轴固连在导弹上,每拍导弹的弹道坐标系都在变动时,导弹侧窗垂直轴在弹道坐标系的位置并不改变,因此有下面的关系存在:
N → s i d e ( d ) ( i ) = N → s i d e ( d ) ′ ( i - 1 ) - - - ( 7 )
2-3)计算导弹滚转Δγc后,导弹侧窗垂直轴N′side在地面坐标系中的表示:
N → s i d e ( g ) ′ = R g d ( θ m , ψ m ) N → s i d e ( d ) ′ - - - ( 8 )
其中,Rgdmm)为弹道坐标系到地面坐标系的坐标变换公式,具体为:
R g d ( θ m , ψ m ) = cosθ m cosψ m - sinθ m cosψ m sinψ m sinθ m cosθ m 0 - cosθ m sinψ m sinθ m sinψ m cosψ m
2-4)计算导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在弹道坐标系的表示:
N → s i d e X d ′ = R OX d ( Δγ c ) N → s i d e X d - - - ( 9 )
其中,为导弹速度矢量与旋转前的导弹侧窗垂直轴Nside所构成平面的法向量在弹道坐标系的表示,具体有:
N → s i d e X d ( i ) = N → s i d e X d ′ ( i - 1 ) - - - ( 10 )
2-5)计算导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在地面坐标系的表示:
N → s i d e X g ′ = R g d ( θ m , ψ m ) N → s i d e X d ′ - - - ( 11 )
2-6)计算按照初始滚转角指令滚转情况下的指标角;
定义弹目视线矢量与导弹速度矢量和旋转后的导弹侧窗垂直轴N′side所构成平面的线面角Δγ为视线偏离角,其能够作为评判和导弹侧窗垂直轴Nside三个矢量是否共面的依据;Δγ为零时表示上述三个矢量共面,满足侧窗探测要求的共面条件,同时将该角度要求放宽至Δγ∈[-5°,5°];视线偏离角Δγ求解如下:
定义弹目视线矢量与旋转后的导弹侧窗垂直轴N′side之间的角度γRside为探测夹角,其可作为和导弹侧窗垂直轴Nside三个矢量共面后,评价导弹侧窗垂直轴N′side能否探测到目标的依据;当20°≤γRside≤70°时,表明导弹侧窗垂直轴能探测到目标;其他范围时,表示导弹侧窗垂直轴探测不到目标;探测夹角γRside求解如下:
γ R s i d e = a r c c o s ( Δ R → · N → s i d e ( g ) ′ | Δ R → | | N → s i d e ( g ) ′ | ) - - - ( 13 )
5.根据权利要求2所述的侧窗探测条件下的导弹轨迹姿态协调控制方法,其特征在于,步骤3的具体方法如下:
带反馈项的滚转角指令差值计算模块,用于接受初始指标角计算模块提供的指标角:视线偏离角Δγ和探测夹角γRside,并将视线偏离角Δγ作为反馈项修正初始滚转角指令γc,以使得Δγ更好地逼近零;具体如下:
Δγ c * ( i ) = Δγ c ( i ) - m . Δγ * ( i - 1 ) / 100 - - - ( 14 )
其中,为反馈后导弹每拍需要滚转的角度;Δγc为初始滚转角指令每拍之间的差值;Δγ*为带反馈项情况下的视线偏离角;m为反馈系数。
6.根据权利要求2所述的侧窗探测条件下的导弹轨迹姿态协调控制方法,其特征在于,步骤4的具体方法如下:
4-1)计算导弹滚转后的导弹侧窗垂直轴N′side在弹道坐标系中的表示:
N → s i d e ( d ) ′ * = R OX d ( Δγ c * ) N → s i d e ( d ) * - - - ( 15 )
其中,表示的是绕弹道坐标系纵轴OXd旋转的旋转矩阵;表示的是带反馈项情况下导弹滚转前侧窗垂直轴Nside在弹道坐标系中的表示;具体为:
R OX d ( Δγ c * ) = 1 0 0 0 c o s ( Δγ c * ) - s i n ( Δγ c * ) 0 s i n ( Δγ c * ) cos ( Δγ c * )
由于导弹侧窗垂直轴固连在导弹上,每拍导弹的弹道坐标系都在变动时,导弹侧窗垂直轴在弹道坐标系的位置并不改变,因此有下面的关系存在:
N → s i d e ( d ) * ( i ) = N → s i d e ( d ) ′ * ( i - 1 ) - - - ( 16 )
4-2)计算导弹滚转后,导弹侧窗垂直轴N′side在地面坐标系中的表示:
N → s i d e ( g ) ′ * = R g d ( θ m , ψ m ) N → s i d e ( d ) ′ * - - - ( 17 )
其中,Rgdmm)为弹道坐标系到地面坐标系的坐标变换公式,具体为:
R g d ( θ m , ψ m ) = cosθ m cosψ m - sinθ m cosψ m sinψ m sinθ m cosθ m 0 - cosθ m sinψ m sinθ m sinψ m cosψ m
4-3)计算导弹滚转后,导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在弹道坐标系的表示:
N → s i d e X d ′ * = R OX d ( Δγ c * ) N → s i d e X d * - - - ( 18 )
其中,为带反馈项情况下导弹速度矢量与旋转前的导弹侧窗垂直轴Nside所构成平面的法向量在弹道坐标系的表示,具体有:
N → s i d e X d * ( i ) = N → s i d e X d ′ * ( i - 1 ) - - - ( 19 )
4-4)计算导弹滚转后,导弹速度矢量与旋转后的导弹侧窗垂直轴N′side所构成平面的法向量在地面坐标系的表示:
N → s i d e X g ′ * = R g d ( θ m , ψ m ) N → s i d e X d ′ * - - - ( 20 )
4-5)计算按照带反馈项的滚转角差值滚转后的指标角:
带反馈项情况下的视线偏离角Δγ*
带反馈项情况下的探测夹角
γ R s i d e * = a r c c o s ( Δ R → · N → s i d e ( g ) ′ * | Δ R → | | N → s i d e ( g ) ′ * | ) - - - ( 22 ) .
7.根据权利要求2所述的侧窗探测条件下的导弹轨迹姿态协调控制方法,其特征在于,步骤6中,采用式(23)计算得到最终的滚转角指令
γ c * ( i ) = γ c * ( i - 1 ) + Δγ c * ( i ) - - - ( 23 ) .
CN201710100280.7A 2017-02-23 2017-02-23 一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法 Active CN106705770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710100280.7A CN106705770B (zh) 2017-02-23 2017-02-23 一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710100280.7A CN106705770B (zh) 2017-02-23 2017-02-23 一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法

Publications (2)

Publication Number Publication Date
CN106705770A true CN106705770A (zh) 2017-05-24
CN106705770B CN106705770B (zh) 2018-02-09

Family

ID=58916951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710100280.7A Active CN106705770B (zh) 2017-02-23 2017-02-23 一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法

Country Status (1)

Country Link
CN (1) CN106705770B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319806A (zh) * 2018-01-04 2018-07-24 中国人民解放军国防科技大学 一种机动弹道间空域冲突检测方法
CN110095035A (zh) * 2019-04-22 2019-08-06 南京理工大学 导弹引信探测仿真方法
CN111026139A (zh) * 2019-09-25 2020-04-17 中国人民解放军63850部队 一种基于飞行轨迹的三维模型姿态调整控制方法
CN111369832A (zh) * 2019-12-27 2020-07-03 中国人民解放军海军大连舰艇学院 一种单艘区域舰空导弹舰艇纵横向水平机动掩护单艘邻舰方法
CN113465450A (zh) * 2021-06-16 2021-10-01 上海机电工程研究所 基于前向探测波束宽度指标进行引信宽波束赋形方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722614A (en) * 1996-10-30 1998-03-03 Mcdonnell Douglas Corporation Missile guidance command limitation system for dynamic controllability criteria
JP2001041699A (ja) * 1999-07-30 2001-02-16 Mitsubishi Electric Corp 誘導飛しょう体
CN102494564A (zh) * 2011-12-09 2012-06-13 南昌航空大学 一种前向追踪拦截尾置导引头小型化设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722614A (en) * 1996-10-30 1998-03-03 Mcdonnell Douglas Corporation Missile guidance command limitation system for dynamic controllability criteria
JP2001041699A (ja) * 1999-07-30 2001-02-16 Mitsubishi Electric Corp 誘導飛しょう体
CN102494564A (zh) * 2011-12-09 2012-06-13 南昌航空大学 一种前向追踪拦截尾置导引头小型化设计方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319806A (zh) * 2018-01-04 2018-07-24 中国人民解放军国防科技大学 一种机动弹道间空域冲突检测方法
CN108319806B (zh) * 2018-01-04 2020-10-13 中国人民解放军国防科技大学 一种机动弹道间空域冲突检测方法
CN110095035A (zh) * 2019-04-22 2019-08-06 南京理工大学 导弹引信探测仿真方法
CN110095035B (zh) * 2019-04-22 2021-06-29 南京理工大学 导弹引信探测仿真方法
CN111026139A (zh) * 2019-09-25 2020-04-17 中国人民解放军63850部队 一种基于飞行轨迹的三维模型姿态调整控制方法
CN111026139B (zh) * 2019-09-25 2023-07-18 中国人民解放军63850部队 一种基于飞行轨迹的三维模型姿态调整控制方法
CN111369832A (zh) * 2019-12-27 2020-07-03 中国人民解放军海军大连舰艇学院 一种单艘区域舰空导弹舰艇纵横向水平机动掩护单艘邻舰方法
CN113465450A (zh) * 2021-06-16 2021-10-01 上海机电工程研究所 基于前向探测波束宽度指标进行引信宽波束赋形方法及系统

Also Published As

Publication number Publication date
CN106705770B (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN106705770B (zh) 一种侧窗探测条件下的导弹轨迹姿态协调控制系统及方法
Kumar et al. Impact time guidance for large heading errors using sliding mode control
Jung et al. Guidance laws for anti-ship missiles using impact angle and impact time
CN103090728B (zh) 一种基于滑模控制的带末角约束制导方法
CN102706217B (zh) 一种控制多枚导弹攻击角度和攻击时间的方法
CN109634293B (zh) 一种固定翼无人机翻滚机动控制方法
CN103245257B (zh) 基于Bezier曲线的多约束飞行器导引方法
CN106681348A (zh) 考虑全捷联导引头视场约束的制导控制一体化设计方法
CN105425819B (zh) 一种无人机自动跟踪地面目标的制导方法
CN106444838A (zh) 一种自主水下航行器的精确航路跟踪控制方法
CN109581892A (zh) 全捷联导弹制导控制系统双转台半实物仿真系统及方法
CN111580547B (zh) 一种高超声速飞行器编队控制方法
CN106681170A (zh) 一种半实物制导仿真方法及仿真系统
CN112526872B (zh) 带大落角约束中制导和末制导交接与制导信息的处理方法
CN106529073A (zh) 基于拦截几何的高超声速目标拦截弹交接班条件分析方法
Alkaher et al. Dynamic-escape-zone to avoid energy-bleeding coasting missile
CN117171877A (zh) 基于时机博弈的高超声速飞行器机动突防策略设计方法
CN115857538A (zh) 三维空间下满足落角约束的多飞行器协同制导方法
CN106091816A (zh) 一种基于滑模变结构理论的半捷联空空导弹制导方法
EP0667005B1 (en) Helicopter integrated fire and flight control having coordinated area bombing control
Rubinovich Missile–target–defender problem with incomplete a priori information
CN106292700B (zh) 一种大落地倾角条件下应用的侧向导引方法
CN113639586A (zh) 一种抗雷达关机的制导方法、系统及介质
CN109764752A (zh) 一种单兵制导火箭降低加工精度要求的快速初始对准方法
CN105987652A (zh) 姿态角速率估算系统及应用其的弹药

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant