CN106699841A - 一种自组装的多肽纳米棒及其制备方法 - Google Patents

一种自组装的多肽纳米棒及其制备方法 Download PDF

Info

Publication number
CN106699841A
CN106699841A CN201710008388.3A CN201710008388A CN106699841A CN 106699841 A CN106699841 A CN 106699841A CN 201710008388 A CN201710008388 A CN 201710008388A CN 106699841 A CN106699841 A CN 106699841A
Authority
CN
China
Prior art keywords
polypeptide
amino acid
side chain
natural amino
nanorod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710008388.3A
Other languages
English (en)
Other versions
CN106699841B (zh
Inventor
李子刚
胡宽
江意翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Shenzhen Graduate School
Original Assignee
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Shenzhen Graduate School filed Critical Peking University Shenzhen Graduate School
Priority to CN201710008388.3A priority Critical patent/CN106699841B/zh
Publication of CN106699841A publication Critical patent/CN106699841A/zh
Application granted granted Critical
Publication of CN106699841B publication Critical patent/CN106699841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/1008Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1027Tetrapeptides containing heteroatoms different from O, S, or N
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种自组装的多肽纳米棒,其结构式为或者本发明还提供了上述纳米棒的制备方法,包括一个合成具有侧链芳香环取代基以及末端烯烃的非天然氨基酸的步骤;将上述氨基酸的羧基端连接非天然氨基酸后,继续接上2个氨基酸,再接上半胱氨酸,将上述的产物脱除半胱氨酸的巯基保护基,再经过分子内巯基‑烯反应获得侧链2位碳手性修饰的多肽化合物,该碳手性侧链偶联氨基酸的位置为i/i+3;将多肽从树脂上剪切下来得到白色粉末状固体;将白色粉末状固体用超纯水分散,超声,得到纳米棒。

Description

一种自组装的多肽纳米棒及其制备方法
技术领域:
本发明属于生物工程领域,涉及一种纳米棒,具体来说是一种自组装的多肽纳米棒及其制备方法。
背景技术:
纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100nm)或由它们作为基本单元构成的材料。纳米材料由于独特的结构特性,使其具有与宏观物质显著不同的物理性质,包括:表面与界面效应,小尺寸效应,量子尺寸效应,以及宏观量子隧道效应。近年来,有机纳米材料因具有独特的表面效应、量子效应及局域场效应,表现出新颖的光学、电学、催化、药物、生物等方面的特殊性能,受到越来越多材料研究者的广泛关注。因为有机分子的多样性,将纳米材料从金属和半导体扩展到有机化合物,尤其是扩展到一般的有机分子已成为一个必然的趋势。发展高效的有机纳米材料的制备方法至关重要,微乳液法、激光辐射法、再沉淀法等被用于有机纳米材料的合成。
近年来,国际纳米材料,主要研究控制形成过程几个方面:一通过改性纳米表面物质和异性沉积层表面,来改变表面电子状态、表面结构和粗糙度;二是纳米颗粒在多空隙基体中分布状况进行控制量子尺寸效果和渗流效果;三是通过设计纳米丝、棒、管等阵列系统获得必要的特性。
回顾过去的三十年,无机纳米材料获得了突飞猛进,相比之下,生物纳米材料的发展相形见绌。原因是多方面的。首先,生物材料的可操作性比无机材料更加脆弱。生物材料一般是由蛋白质,核酸,或者糖类等分子组成的,这些材料抵抗极端条件的能力较弱。其次,生物材料在合成上更加困难。因此,要得到足够多的质量进行性质的研究十分困难。第三,生物材料的活性保持往往与特定的条件相关,而且条件的改变会引起结构的变化,导致性质发生改变。
由于以上原因,间接导致了生物纳米材料的研究停滞不前。但是,生物纳米材料具有完全不同于无机材料的性质。生物纳米材料具有复杂的空间结构,独特的电学和光学性质,以及良好的生物兼容性以及可降解性能,使得生物纳米材料在光催化,电学,生物医学,仿生材料,以及生命科学等众多领域大展身手。
在常见的生物纳米材料里面,以多肽为代表的材料最受重视。多肽是一类由氨基酸通过酰胺键连接的生物分子。由于氨基酸的丰富性,以及多肽修饰的多样性,使得多肽的组成形式异常丰富。多肽分子中往往包含丰富的氢键的供体和受体,以及侧链中包含共轭电子体系,同时,酸和氨基形成的盐桥,使得多肽分子自发的组装成超分子的形式相当普遍。这类体系包括两亲性多肽,beta折叠类多肽,D,L交替的多肽,螺旋组成的collagen体系,以及基于二肽FF等。目前,这类多肽自组装纳米材料已经在上述领域中取得了广泛的应用。
发明内容:
针对现有技术中的上述技术问题,本发明提供了一种自组装的多肽纳米棒及其制备方法,所述的这种自组装的多肽纳米棒及其制备方法要解决现有技术中采用生物学的方法制备纳米棒的方法困难、纳米棒的性状不稳定的技术问题。
本发明提供了一种自组装的多肽纳米棒,其结构式为
或者
其中,Y1、Y2选自任意一种天然氨基酸、或者经过修饰的非天然氨基酸的侧链;Y3为Fmoc基团、Boc基团、2-chloro-z基团、Acetyl基团、H或者自由的氨基;X为
或者基团中的任意一个。
本发明还提供了上述的一种自组装的多肽纳米棒的制备方法,包括如下步骤:1)一个合成-Fmoc保护的侧链2位碳R手性的非天然氨基酸的步骤,所述的
-Fmoc保护的侧链2位碳R手性的非天然氨基酸的结构式如下所示,
其中X为
或者基团中的任意一个。
2)采用固相合成多肽的方法,先将步骤1)的非天然氨基酸与树脂连接,然后继续接上任意的两个天然氨基酸,再接上半胱氨酸,并将多肽的氨基端用乙酰基封闭;
3)将步骤2)的产物脱除半胱氨酸巯基上的保护基,再经过分子内巯基-烯反应获得侧链2位碳手性修饰的多肽化合物,该碳手性侧链偶联氨基酸的位置为i/i+3;
4)将多肽从树脂上剪切下来,用高效液相色谱进行纯化;
5)将纯化后的多肽样品在冻干机上冻干,得到白色粉末状固体;
6)将白色粉末状的多肽样品用超纯水分散,置于超声仪中超声,得到自组装的多肽纳米棒。
上述制备方法中,步骤2)、步骤3)和步骤4)的反应方程式如下所示:
本发明形成纳米棒的基本单元多肽为具有稳定螺旋结构的多肽,使用稳定的订书机多肽作为单体,通过多肽侧链精准的手性中心的调控,通过固相合成方法合成侧链具有碳端非天然氨基酸γ位的四肽,将多肽用超纯水分散(2mg/ml),置于超声仪中超声10分钟,简单高效的得到了大小均一,结构特殊的多肽纳米棒,溶液相的多肽纳米棒可以进一步通过冻干,空气中挥发等方式去除溶剂,得到所需的多肽纳米棒固体粉末。
本发明和已有技术相比,其技术进步是显著的。本发明的纳米棒的显著特征是组成纳米棒的基本单元是螺旋结构。该多肽螺旋是通过侧链精准的手性中心的调控实现的。本发明的纳米棒在生物医学上的体外诊断和体内治疗,以及在传感器及光学元件等领域有良好的应用前景。
附图说明:
图1为实施例2得到的多肽在扫描电子显微镜下的形貌图。
图2为实施例2得到的多肽纳米材料的圆二色谱数据。
图3为实施例2得到的多肽纳米棒的原子力显微镜形貌图。
图4为实施例2得到的多肽纳米棒的红外表征数据。
图5为实施例2得到的多肽纳米棒的固体粉末衍射数据。
图6为实施例2得到的多肽纳米棒的共聚焦荧光显微镜成像图。
图7为实施例2得到的多肽纳米棒的荧光光谱吸收和发射图。
图8为实施例2得到的多肽纳米棒的交流阻抗谱。
具体实施方式:
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明中。文中所述的较佳实施方法与材料仅作示范之用。
实施例1
本发明提供了一种自组装的多肽纳米棒的制备方法,包括以下步骤:
(ⅰ)合成-Fmoc保护的侧链2位碳R手性的非天然氨基酸;本发明的非天然氨基酸可以采用常规的技术合成((a)Y.N.Belokon,V.I.Tararov,V.I.Maleev,T.F.Savel'eva,M.G.Ryzhov.Tetrahedron:Asymmetry,1998,9,4249-4252.(b)B.Aillard,N.S.Robertson,A.R.Baldwin,S.Robins and A.G.Jamieson,Org.Biomol.Chem.,2014,12,8775-8782.(c)V.A.Soloshonok,X.Tang,V.J.Hruby and L.V.Meervelt,Org.Lett.,2001,3,341-343.(d)W.Qiu,V.A.Soloshonok,C.Cai,X.Tang and V.J.Hruby,Tetrahedron,2000,56,2577-2582.(e)X.Tang,V.A.Soloshonok,V.J.Hruby.Tetrahedron:Asymmetry,2000,11,2917-2925.),在此不再赘述。
结构式如下所示:
其中X为
或者基团中的任意一个。
(ⅱ)用固相合成多肽的方法,将非天然氨基酸连接到树脂上,继续接上2个天然氨基酸再接上半胱氨酸并将多肽的氨基端用乙酰基封闭;
乙酰化封闭试剂由乙酸酐、N,N-二异丙基乙胺(DIEA)、N-甲基吡咯烷酮(NMP)组成,乙酸酐:N,N-二异丙基乙胺(DIEA):N-甲基吡咯烷酮(NMP)的质量百分之比为4.25%:15.75%:80%;
(ⅲ)将步骤(ⅱ)的产物脱除半胱氨酸上巯基的保护基,再经过分子内巯基-烯反应获得侧链2位碳手性修饰的多肽化合物,该碳手性侧链偶联氨基酸的位置为i/i+4;反应过程如下所示:
Y1、Y2、Y3包括20种天然氨基酸以及经过修饰的非天然氨基酸的侧链。
脱除半胱氨酸上巯基保护基的条件为:3%三氟乙酸(TFA),5%三异丙基硅烷(TIS)和92%DCM(二氯甲烷)。
分子内巯基-烯反应条件为:对甲氧基苯乙酮(MAP)(1.0eq),2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮(MNP)(1.0eq),以无水二甲基甲酰胺(DMF)为溶剂在紫外光365nm条件下反应3h。
(ⅳ)将多肽从树脂上剪切下来,用高效液相色谱进行纯化。
(v)将纯化后的多肽样品在冻干机上冻干,得到白色粉末状固体。
(vi)将白色粉末状的多肽样品用超纯水分散(2mg/ml),置于超声仪中超声10分钟,得到自组装的多肽纳米棒。
实施例2
订书机环肽Ac-cyclo(1,4)-CAAS5(2-phenyl)-NH2自组装形成的多肽纳米棒的制备方法,
R构型Fmoc保护的非天然氨基酸S5(2-phenyl)的结构式为:
首先是以Fmoc固相多肽合成法合成NH2-CAAS5(2-phenyl)-MBHA树脂,具体路线如下:
具体操作为:
1.接第一个氨基酸:称取1.0g MBHA树脂于100ml接肽管中,加入20ml N-甲基吡咯烷酮(NMP)鼓氮气溶胀30min;滤掉溶剂加入体积比为25%吗啡啉的NMP溶液,鼓氮气30min,洗涤;连接反应:加入Fmoc-S5(2-phenyl)-OH(0.4M in NMP)溶液,HCUT(0.38M in NMP),DIEA按5.0ml/5.0ml/0.71ml混匀加入树脂中鼓氮气120min,滤掉反应液。洗涤:将接肽管中的溶剂抽干,将树脂用NMP(10ml*3)洗涤三次,每次一分钟;
2.接第二个氨基酸:脱保护:加入体积比为25%吗啡啉的NMP溶液,鼓氮气30min,洗涤;连接反应:将配制好的Fmoc-Ala-OH(0.4M in NMP)溶液,6-氯苯并三氮唑-1,1,3,3-四甲基脲六氟磷酸酯(HCUT)(0.38M in NMP),DIEA按7.5ml/7.5ml/1ml混匀加入树脂中鼓氮气50min;滤掉反应液,洗涤然后进行下一步操作。
3.接第三个氨基酸:操作同2接第三个Ala。
4.接第四个氨基酸:接第四个氨基酸Cys:脱保护:加入体积比为25%吗啡啉的NMP溶液,鼓氮气30min,洗涤;连接反应:将配制好的Fmoc-Cys(Trt)-OH(0.4M in NMP)溶液,6-氯苯并三氮唑-1,1,3,3-四甲基脲六氟磷酸酯(HCUT)(0.38M in NMP),DIEA按7.5ml/7.5ml/1ml混匀加入树脂中鼓氮气50min;滤掉反应液,洗涤然后进行下一步操作。
6.N端乙酰化封闭:脱保护:加入体积比为25%吗啡啉的NMP溶液,鼓氮气30min,洗涤;N端乙酰化封闭:将配好的乙酰化封闭试剂(乙酸酐:DIEA:NMP=4.25%:15.7%:80%)混匀加入树脂中鼓氮气120min;滤掉反应液,洗涤然后进行下一步操作。
7.脱除半胱氨酸上巯基的-Trt保护基:将配好的脱除-Trt基团的试剂(3%TFA,5%TIS和92%DCM)混匀加入树脂中鼓氮气20min后,滤掉反应液,洗涤,再次加入脱除-Trt基团的试剂鼓氮气20min,滤掉反应液,洗涤,然后进行下一步操作。
8.滤掉反应液,将树脂依次用NMP(10ml),二氯甲烷(DCM)(10ml),甲醇(MeOH)(10ml)交替洗涤,抽干保存或用于下一步反应。
通过thiol-ene反应(巯基-烯反应)来完成侧链构建。
具体操作为:称取1.0g AcHN-CAAS5(2-phenyl)-MBHA树脂于100ml烧瓶中,依次加入70mg MAP,105mg MNP和50ml DMF;用氩气换气三次除掉溶剂中的氧;将该烧瓶置于光反应器中搅拌下反应3h;然后将反应树脂转入接肽管中,滤除反应液,用DMF(10ml),DCM(10ml),交替洗涤,抽干得Ac-cyclo(1,4)-CAAS5(2-phenyl)-NH2树脂。
使用剪切液(三氟乙酸:三异丙基硅烷:水=95:2.5:2.5)把多肽从树脂上剪切下来,滤掉树脂,用N2把剪切液吹干,用冷却的(乙醚:正己烷=1:1)沉淀,沉淀加水和乙腈溶解后用HPLC纯化,460nm*2.5mm C18反相色谱,A液:0.1%三氟乙酸/水,B液:0.1%三氟乙酸/乙腈;溶剂梯度:0-10min 5-15%;10-30min 15-55%;Rt=26.00min。MS检测后至于冻干机上冻干,得到白色粉末状固体。
将冻干的白色粉末状的多肽样品用超纯水分散(2mg/ml),置于超声仪中超声10分钟,得到自组装的多肽纳米棒。
将多肽纳米棒吸出,均匀地涂抹在硅片上,放置在通风良好的环境下,待溶剂挥发完毕,多肽纳米管在硅片上形成均匀地薄膜层。
使用扫描电子显微镜或者上面提到的技术手段对多肽纳米棒的形貌进行表征。
本发明利用稳定的订书机多肽制得的新型多肽纳米棒具有特定的结构和潜在的生物医学以及纳米光电方面的应用,经扫描电子显微镜(SEM),对纳米棒结构进行了详细的表征。图1为多肽纳米棒在扫面电子显微镜下面的形貌,如图所示,多肽纳米棒为立方体长条形结构。通过圆二色谱表征说明多肽具有beta转角的结构(图2和图3)。红外数据表明,形成纳米棒是通过单个多肽之间形成beta折叠而组装(图5)。原子力显微镜说明多肽纳米棒的高度约为200nm(图4)。荧光显微镜以及荧光光谱说明多肽纳米管具有量子限制效应,并表现出来二维量子材料的特性(图6和图7)。最后,交流阻抗谱说明多肽具有良好的导电性(图8)。
本发明的纳米棒由于结构均一,组成成分特殊,在以下几个方面具有重要的应用前景:1)该生物纳米棒具有较大的比表面积,可以作为金属纳米线的制作模板,制作结构均匀,尺寸较小的金属纳米线。2)多肽纳米线是由右手螺旋组成的,因此,该纳米线在手性分离方面具有优势。3)多肽纳米线内部具有金属螯合位点,可以制作结构精密的金属有机结构,在电催化,金属催化领域具有广阔的前景。4)多肽纳米线具有良好的导电性,可以在柔性器件,电学,以及生物传感器等领域大展身手。5)多肽纳米棒可以作为药物输运的载体,将小分子药物,核酸,蛋白等药物输运到细胞中。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (2)

1.一种自组装的多肽纳米棒,其特征在于,其结构式为或者其中,Y1、Y2选自任意一种天然氨基酸、或者经过修饰的非天然氨基酸的侧链;Y3为Fmoc基团、Boc基团、2-chloro-z基团、Acetyl基团、H或者自由的氨基;X为 或者基团中的任意一个。
2.权利要求1所述的一种自组装的多肽纳米棒的制备方法,其特征在于包括如下步骤:
1)一个合成-Fmoc保护的侧链2位碳R手性的非天然氨基酸的步骤,所述的-Fmoc保护的侧链2位碳R手性的非天然氨基酸的结构式如下所示,
其中X为
或者基团中的任意一个。
2)采用固相合成多肽的方法,先将步骤1)的非天然氨基酸与树脂连接,然后继续接上2个任意的两个天然氨基酸,再接上半胱氨酸,并将多肽的氨基端用乙酰基封闭;
3)将步骤2)的产物脱除半胱氨酸巯基上的保护基,再经过分子内巯基-烯反应获得侧链2位碳手性修饰的多肽化合物,该碳手性侧链偶联氨基酸的位置为i/i+3;
4)将多肽从树脂上剪切下来,用高效液相色谱进行纯化;
5)将纯化后的多肽样品在冻干机上冻干,得到白色粉末状固体;
6)将白色粉末状的多肽样品用超纯水分散,置于超声仪中超声,得到自组装的多肽纳米棒。
CN201710008388.3A 2017-01-05 2017-01-05 一种自组装的多肽纳米棒及其制备方法 Active CN106699841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710008388.3A CN106699841B (zh) 2017-01-05 2017-01-05 一种自组装的多肽纳米棒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710008388.3A CN106699841B (zh) 2017-01-05 2017-01-05 一种自组装的多肽纳米棒及其制备方法

Publications (2)

Publication Number Publication Date
CN106699841A true CN106699841A (zh) 2017-05-24
CN106699841B CN106699841B (zh) 2020-07-24

Family

ID=58908034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710008388.3A Active CN106699841B (zh) 2017-01-05 2017-01-05 一种自组装的多肽纳米棒及其制备方法

Country Status (1)

Country Link
CN (1) CN106699841B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871401A (zh) * 2020-07-31 2020-11-03 天津大学 高效液相色谱用多肽超分子手性填料及制备方法与应用
CN113292720A (zh) * 2021-04-02 2021-08-24 江苏大学 一种类肽单分子层二维纳米材料的制备方法
CN114456229A (zh) * 2021-12-16 2022-05-10 北京大学深圳研究生院 一种s-构型环状五肽、其自组装材料及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006043A1 (en) * 2001-07-10 2003-01-23 Massachusetts Institute Of Technology Surfactant peptide nanostructures, and uses thereof
WO2003092632A2 (en) * 2002-05-06 2003-11-13 The Scripps Research Institute Cyclic peptide anti-cancer agents and methods
WO2009026729A1 (en) * 2007-08-30 2009-03-05 University Of Waterloo Amino acid pairing-based self assembling peptides and methods
CN103087149A (zh) * 2011-11-02 2013-05-08 中国人民解放军军事医学科学院毒物药物研究所 含肽片段的氰基丙烯酸衍生物及其制备方法和用途
CN104211751A (zh) * 2013-05-29 2014-12-17 北京大学深圳研究生院 一种将多肽稳定为alpha螺旋二级结构的方法
CN104926924A (zh) * 2014-03-17 2015-09-23 北京大学深圳研究生院 一种利用手性锍盐侧链稳定多肽α-螺旋二级结构的方法
CN105960411A (zh) * 2013-11-30 2016-09-21 新加坡科技研究局 自组装肽、肽模拟物和肽缀合物作为构件用于生物制造和打印
WO2016209978A2 (en) * 2015-06-22 2016-12-29 University Of Utah Research Foundation Thiol-ene based peptide stapling and uses thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006043A1 (en) * 2001-07-10 2003-01-23 Massachusetts Institute Of Technology Surfactant peptide nanostructures, and uses thereof
WO2003092632A2 (en) * 2002-05-06 2003-11-13 The Scripps Research Institute Cyclic peptide anti-cancer agents and methods
WO2009026729A1 (en) * 2007-08-30 2009-03-05 University Of Waterloo Amino acid pairing-based self assembling peptides and methods
CN103087149A (zh) * 2011-11-02 2013-05-08 中国人民解放军军事医学科学院毒物药物研究所 含肽片段的氰基丙烯酸衍生物及其制备方法和用途
CN104211751A (zh) * 2013-05-29 2014-12-17 北京大学深圳研究生院 一种将多肽稳定为alpha螺旋二级结构的方法
CN105960411A (zh) * 2013-11-30 2016-09-21 新加坡科技研究局 自组装肽、肽模拟物和肽缀合物作为构件用于生物制造和打印
CN104926924A (zh) * 2014-03-17 2015-09-23 北京大学深圳研究生院 一种利用手性锍盐侧链稳定多肽α-螺旋二级结构的方法
WO2016209978A2 (en) * 2015-06-22 2016-12-29 University Of Utah Research Foundation Thiol-ene based peptide stapling and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马杰等: "苯丙氨酸衍生类多肽聚合物纳米棒的制备及表征", 《应用化工》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871401A (zh) * 2020-07-31 2020-11-03 天津大学 高效液相色谱用多肽超分子手性填料及制备方法与应用
CN111871401B (zh) * 2020-07-31 2023-01-17 天津大学 高效液相色谱用多肽超分子手性填料及制备方法与应用
CN113292720A (zh) * 2021-04-02 2021-08-24 江苏大学 一种类肽单分子层二维纳米材料的制备方法
CN113292720B (zh) * 2021-04-02 2022-07-22 江苏大学 一种类肽单分子层二维纳米材料的制备方法
CN114456229A (zh) * 2021-12-16 2022-05-10 北京大学深圳研究生院 一种s-构型环状五肽、其自组装材料及制备方法
CN114456229B (zh) * 2021-12-16 2023-09-01 北京大学深圳研究生院 一种s-构型环状五肽、其自组装材料及制备方法

Also Published As

Publication number Publication date
CN106699841B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN106699841A (zh) 一种自组装的多肽纳米棒及其制备方法
Roveri et al. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers
Fairman et al. Peptides as novel smart materials
CN107266562B (zh) 一种特异性识别胶原蛋白的胶原多肽探针及其制备和成像方法
JPS5833863B2 (ja) サケ・カルシトニンの合成
CN110129029A (zh) 一种电荷排斥作用诱导的单链胶原多肽功能探针及其制备方法
CN106749523A (zh) 一种利用订书机多肽自组装形成纳米管的方法
CN104211751B (zh) 一种将多肽稳定为alpha螺旋二级结构的方法
CN101857629A (zh) 布雷默浪丹的固相合成方法
CN101195654B (zh) 一种美拉诺坦-ⅱ的固相合成方法
CN109593116A (zh) 一种响应型小分子肽纳米载药载体
CN1254484C (zh) 醋酸奥曲肽的固相合成方法
CN114957388B (zh) 一种短肽荧光探针及其制备方法和应用
Su et al. Incubating lead selenide nanoclusters and nanocubes on the eggshell membrane at room temperature
CN114315957B (zh) 一种多肽的制备方法
KR20130060267A (ko) 펩타이드계 물질의 결정체 및 그의 제조방법과 용도
Podder et al. Formation of toroids by self-assembly of an α–α corner mimetic: supramolecular cyclization
CN107129523A (zh) 一种自组装短肽及其制备金纳米线或金纳米膜的方法
CN109908363A (zh) 一种靶向无痕释放药物缀合物及其制备方法与应用
CN114456229B (zh) 一种s-构型环状五肽、其自组装材料及制备方法
CN110867510B (zh) 一种压电水凝胶短肽纳米材料及其制备方法
CN107400162B (zh) 均环肽Cyclo-[(Asn)5-Cys]的制备方法
CN106432472A (zh) 一种胰岛素的固相合成方法
KR20120044773A (ko) 생모방 분자 및 이를 포함하는 자기 조립체
CN1199988C (zh) 醋酸奥曲肽的液相合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant