CN106676275B - 基于废弃钢渣及酸碱性废水的提钒方法 - Google Patents

基于废弃钢渣及酸碱性废水的提钒方法 Download PDF

Info

Publication number
CN106676275B
CN106676275B CN201611170136.2A CN201611170136A CN106676275B CN 106676275 B CN106676275 B CN 106676275B CN 201611170136 A CN201611170136 A CN 201611170136A CN 106676275 B CN106676275 B CN 106676275B
Authority
CN
China
Prior art keywords
vanadium
slag
acidic
discarded
alkaline wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611170136.2A
Other languages
English (en)
Other versions
CN106676275A (zh
Inventor
魏朝阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panzhihua Hao Heng Vanadium Titanium Technology Co Ltd
Original Assignee
Panzhihua Hao Heng Vanadium Titanium Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panzhihua Hao Heng Vanadium Titanium Technology Co Ltd filed Critical Panzhihua Hao Heng Vanadium Titanium Technology Co Ltd
Priority to CN201611170136.2A priority Critical patent/CN106676275B/zh
Publication of CN106676275A publication Critical patent/CN106676275A/zh
Application granted granted Critical
Publication of CN106676275B publication Critical patent/CN106676275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明属于提钒技术领域。为解决现有的提钒工艺成本高、废弃钢渣及酸碱性废水污染环境的技术问题,提供一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:A.钢渣粉碎;B.磁选除铁;C.溶解浸取;D.除杂过滤;E.粗钒制备;F.粗钒洗涤;G.粗钒精制;H.制备偏钒酸铵。本发明的基于废弃钢渣及酸碱性废水的提钒方法,采用产生的废弃酸碱性废水处理钢渣从中提取钒,降低了钒的生产成本,节约了矿产资源,避免了大量的钢渣、废弃酸碱性废水对环境的影响;从而实现了在减轻环境压力的同时,提高了资源利用率。

Description

基于废弃钢渣及酸碱性废水的提钒方法
技术领域
本发明属于提钒技术领域,具体涉及一种基于废弃钢渣及酸碱性废水的提钒方法。
背景技术
现全国每年钢产量为1300-1400万吨,而钢渣的产量为钢产量的10%-13%。因此探索钢渣利用的新途径,加快综合利用的步伐,化害为利,变废为宝,对保护环境,延长渣场使用寿命,具有可持续发展战略具有重要的意义。随着工业生产的发展,工业废物数量日益增加。工业废物数量庞大,种类繁多,成分复杂,处理相当困难。这些工业固废除部分综合利用外,还有相当部分量仍采取贮存或者填埋的方式进行处理,并没有得到妥善的最终处置。这些没有得到妥善处置的工业固体废物,虽然不具有危险废物的危险性,但它产出量大,贮存、处置占地多,给企业的生产造成困难的同时对环境造成的影响也不可低估。企业普遍采用付费给具有相关处理资质的公司,由专业公司代为处理工业生产中产生的固废从而达到清洁生产的目标,这样的方式大大增加了企业的生产成本,而且造成了资源的浪费。而现有的提钒工艺中,并未对其在生产过程中产生的废弃钢渣和其它废弃物做出妥善的处理,从而大大提高了生产成本,对环境造成了污染。
发明内容
本发明的目的在于解决以上现有技术中存在的技术问题,提供一种成本低,利于环保,充分利用现有的废弃钢渣及酸碱性废水,节省矿物资源的基于废弃钢渣及酸碱性废水的提钒方法。
一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:
A.钢渣粉碎:将钢渣粉碎球磨,得到钢渣粉;
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
C.溶解浸取:将所述渣粉用酸性废水溶解、搅拌浸取后,得到浸取液;
D.除杂过滤:将所述浸取液用除硅剂和除铁剂除杂、过滤后得到滤液;
E.粗钒制备:将所述滤液用沉钒剂加热沉淀、压滤后,得到粗钒和废水;
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和氧化剂搅拌混合均匀后压滤,得到含钒液体和压滤渣;
H.制备偏钒酸铵:向所述含钒液体中加入可溶铵盐搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤I,I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理、粉碎后得到粉状五氧化二钒。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,所述脱氨处理的温度为550℃-600℃。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤J,J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤K,K.含钒氧化铁处理:将所述含钒氧化铁在800℃-850℃下焙烧60min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤L,L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液与步骤G的含钒液体混合。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,所述步骤C中浸取的时间为60-90min,浸取液的pH值为1.5-2.0。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,步骤A的所述钢渣先通过破碎机,再经过球磨处理后,得到目数为100-120目的钢渣粉。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,所述步骤E的所述废水经过中和后回用或排放。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,所述步骤G的搅拌的温度为90-100℃,搅拌时间为2h。
本发明相对于现有技术的有益效果是:本发明的基于废弃钢渣及酸碱性废水的提钒方法,采用产生的废弃酸碱性废水处理钢渣从中提取钒,降低了钒的生产成本,节约了矿产资源,避免了大量的钢渣、废弃酸碱性废水对环境的影响;从而实现了在减轻环境压力的同时,提高了资源利用率。采用本方法提钒其成本节约至少30%,同时本方法为清洁化生产方法,在生产过程中不会产生任何的有害排放物,同时废渣、废水、废气均能够实现综合利用,不排放。
具体实施方式
下面结合实施例详细说明本发明的技术方案,以使本领域的技术人员在不需要经过创造性劳动的情况下,根据本说明书的记载实现本发明的技术方案解决现有技术中存在的问题,达到相应的技术效果,需要说明的是,在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均属于本发明的保护范围。
一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:
A.钢渣粉碎:将钢渣粉碎球磨,得到钢渣粉;
具体地,将钢渣破碎球磨:用破碎机破成规格颗粒料,然后钢球磨成100-200目数的粉末。
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
具体地,磁选:用磁选机选去钢渣粉里的金属铁,渣粉中主要含有含钒氧化铁和含钒氧化钙。
C.溶解浸取:将所述渣粉用酸性废水溶解、搅拌浸取后,得到浸取液;
具体地,所述酸性废水中含有重量百分数为15%-20%钛白废酸以及重量百分数为10%的硫酸亚铁;将渣粉与酸性废水混匀搅拌浸取,同时调整溶液的pH值,使最终浸取液的pH值在1.5-2.0,浸取时间:60-90min。
D.除杂过滤:将所述浸取液用除硅剂和除铁剂除杂、过滤后得到滤液;
具体地,采用板框压滤机进行压滤,向浸取液中加入除硅剂和除铁剂;所述除硅剂、除钙剂和除铁剂与浸取液发生沉淀反应,从而将浸取液中的铁、硅、钙等以沉淀的形式析出,如除硅剂可以为氧化钙或氧化镁;除铁剂可以为双氧水。
E.粗钒制备:将所述滤液用沉钒剂加热沉淀、压滤后,得到粗钒和废水;
沉钒剂与所述滤液发生沉淀反应,从而将钒以沉淀的形式析出;沉钒剂可以为氯化钙或氯化铵;将废水用膜分离处理后,将废液中氨氮制成硫酸铵并调节pH值至7-9,然后用离子交换树脂交换,回钛白粉厂回用或者排放。
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和氧化剂搅拌混合均匀后压滤,得到含钒液体和压滤渣;
具体地,将洗涤水用于配制步骤C的酸性废水。将粗钒加去离子水洗涤后,再次压滤,向洗涤粗钒中加入去离子水、氢氧化钠和氧化剂,氧化剂为双氧水或氯酸钠;在温度为90-100℃下,加温搅拌2h,完全溶解后,用板框压滤机压滤,得到含钒液体和滤渣。
H.制备偏钒酸铵:向所述含钒液体中加入可溶铵盐搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵。优选地,可溶铵盐为氯化铵或硫酸铵。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤I,I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理、粉碎后得到粉状五氧化二钒。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,所述脱氨处理的温度为550℃-600℃。
具体地,在550-600℃下,脱氨,微细粉碎,规格包装成粉状五氧化二钒。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤J,J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
具体地,筛选出的氧化铁中含钒,用回转窑低温空白焙烧,焙烧温度为800-850℃,保温时间为60min。选出的钙渣可作为生产水泥的原料。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤K,K.含钒氧化铁处理:将所述含钒氧化铁在800℃-850℃下焙烧60min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
进一步的改进是,所述的基于废弃钢渣及酸碱性废水的提钒方法,还包括步骤L,L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液与步骤G的含钒液体混合。
进一步的改进是,所述步骤C中浸取的时间为60-90min,浸取液的pH值为1.5-2.0。
进一步的改进是,步骤A的所述钢渣先通过破碎机,再经过球磨处理后,得到目数为100-120目的钢渣粉。
进一步的改进是,所述步骤E的所述废水经过中和后回用或排放。
进一步的改进是,所述步骤G的搅拌的温度为90-100℃,搅拌时间为2h。
本发明的相关的反应原理如下:
步骤C:渣粉经酸性废水搅拌反应,加入酸性废水对渣粉中钒的浸取,既可利用硫酸溶解钒,又利用氧化钙中和废硫酸的酸度。在常温中进行搅拌溶解对钒进行浸取。
化学反应方程式如下:
V2O5+2H2SO4→2VOSO4+H2O
FeO+H2SO4→FeSO4
CaO+H2SO4→CaSO4+H2O
Fe2O3+3H2SO4→Fe2(SO4)3+3H2O
Ca(OH)2+(VO2)2SO4→Ca(VO3)2+H2SO4
实施例1
一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:
A.钢渣粉碎:将所述钢渣先通过破碎机,再经过球磨处理后,得到目数为100目的钢渣粉;
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
C.溶解浸取:将所述渣粉用含硫酸20%的酸性废水溶解、搅拌浸取,所述浸取的时间为60min,调节pH值为1.5,得到浸取液;
D.除杂过滤:将所述浸取液用氧化钙和双氧水除杂、过滤后得到滤液;
E.粗钒制备:将所述滤液加热至50℃用氯化钙沉淀、压滤后,得到粗钒和废水;将废水用膜分离处理后,将废液中氨氮制成硫酸铵并调节pH值至8,然后用离子交换树脂交换,回钛白粉厂回用或者排放;
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和双氧水在温度为90℃,搅拌2h,混合均匀后压滤,得到含钒液体和压滤渣;
H.制备偏钒酸铵:向所述含钒液体中加入氯化铵搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵。
I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理,粉碎后得到粉状五氧化二钒;所述脱氨处理的温度为550℃。
J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
K.含钒氧化铁处理:将所述含钒氧化铁在800℃下焙烧60min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液返至步骤G的含钒液体混合使用进行步骤H,制备偏钒酸铵。
实施例2
一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:
A.钢渣粉碎:将所述钢渣先通过破碎机,再经过球磨处理后,得到目数为100目的钢渣粉;
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
C.溶解浸取:将所述渣粉用含硫酸重量百分数含量为15%的钛白废硫酸溶解(酸性废水)、搅拌浸取,所述浸取的时间为90min,调节pH值为2.0,得到浸取液;
D.除杂过滤:将所述浸取液用氧化镁和双氧水除杂、过滤后得到滤液;
E.粗钒制备:将所述滤液用氯化铵加热沉淀、压滤后,得到粗钒和废水;将所述废水进行氨氮回收调节PH值为7后回用或排放;
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和双氧水在温度为90℃,搅拌2h,混合均匀后压滤,得到含钒液体和压滤渣;
H.制备偏钒酸铵:向所述含钒液体中加入硫酸铵搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵。
I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理,粉碎后得到粉状五氧化二钒;所述脱氨处理的温度为600℃。
J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
K.含钒氧化铁处理:将所述含钒氧化铁在850℃下焙烧80min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液返至步骤G的含钒液体混合使用进行步骤H,制备偏钒酸铵。
实施例3
一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:
A.钢渣粉碎:将所述钢渣先通过破碎机,再经过球磨处理后,得到目数为110目的钢渣粉;
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
C.溶解浸取:将所述渣粉用含硫酸重量百分数含量为17%的钛白废硫酸溶解、搅拌浸取,所述浸取的时间为80min,调节pH值为1.7,得到浸取液;
D.除杂过滤:将所述浸取液用氧化钙和双氧水除杂、过滤后得到滤液;
E.粗钒制备:将所述滤液加热至40℃用氯化铵沉淀、压滤后,得到粗钒和废水;将所述废水调节PH值为8后回用或排放;
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和氯酸钠在温度为95℃,搅拌2h,混合均匀后压滤,得到含钒液体和压滤渣;
H.制备偏钒酸铵:向所述含钒液体中加入硫酸铵搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵。
I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理,粉碎后得到粉状五氧化二钒;所述脱氨处理的温度为570℃。
J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
K.含钒氧化铁处理:将所述含钒氧化铁在820℃下焙烧60min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液返至步骤G的含钒液体混合使用用于制备偏钒酸铵。
实施例4
一种基于废弃钢渣及酸碱性废水的提钒方法,包括步骤:
A.钢渣粉碎:将所述钢渣先通过破碎机,再经过球磨处理后,得到目数为150目的钢渣粉;
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
C.溶解浸取:将所述渣粉用含废盐酸重量百分数为20%的工业废水溶解、搅拌浸取,所述浸取的时间为85min,调节pH值为1.8,得到浸取液;
D.除杂过滤:将所述浸取液用氧化镁和双氧水除杂、过滤后得到滤液;
E.粗钒制备:将所述滤液加热至65℃用氯化钙沉淀、压滤后,得到粗钒和废水;将所述废水调节PH值为9后回用或排放;
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和氯酸钠在温度为92℃,搅拌2h,混合均匀后压滤,得到含钒液体和压滤渣;
H.制备偏钒酸铵:向所述含钒液体中加入硫酸铵搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵。
I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理,粉碎后得到粉状五氧化二钒;所述脱氨处理的温度为580℃。
J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
K.含钒氧化铁处理:将所述含钒氧化铁在830℃下焙烧60min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液与步骤G的含钒液体混合使用进行步骤H,制备偏钒酸铵。

Claims (9)

1.一种基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,包括步骤:
A.钢渣粉碎:将钢渣粉碎球磨,得到钢渣粉;
B.磁选除铁:将所述钢渣粉进行磁选除铁,得到渣粉;
C.溶解浸取:将所述渣粉用酸性废水溶解、搅拌浸取后,得到浸取液;
D.除杂过滤:将所述浸取液用除硅剂和除铁剂除杂、过滤后得到滤液;
E.粗钒制备:将所述滤液用沉钒剂加热沉淀、压滤后,得到粗钒和废水;
F.粗钒洗涤:将所述粗钒用去离子水洗涤后,得到洗涤水和洗涤粗钒;
G.粗钒精制:将洗涤粗钒、去离子水、氢氧化钠和氧化剂搅拌混合均匀后压滤,得到含钒液体和压滤渣;
H.制备偏钒酸铵:向所述含钒液体中加入可溶铵盐搅拌沉淀,离心脱水,洗涤后得到粗品偏钒酸铵;
还包括步骤I,I.制备五氧化二钒:将所述粗品偏钒酸铵,进行脱氨处理、粉碎后得到粉状五氧化二钒。
2.根据权利要求1所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,所述脱氨处理的温度为550℃-600℃。
3.根据权利要求1所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,还包括步骤J,J.压滤渣处理:将步骤G的所述压滤渣用梯式选矿机筛选后,得到含钒氧化铁和钙渣。
4.根据权利要求3所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,还包括步骤K,K.含钒氧化铁处理:将所述含钒氧化铁在800℃-850℃下焙烧60min,然后洗涤,得到洗涤液;再经真空抽滤,得到含钒溶液和含氧化铁的固体渣。
5.根据权利要求4所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,还包括步骤L,L.含钒溶液和洗涤液回用:将所述含钒溶液和洗涤液与步骤G的含钒液体混合。
6.根据权利要求1所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,所述步骤C中浸取的时间为60-90min,浸取液的pH值为1.5-2.0。
7.根据权利要求1所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,步骤A的所述钢渣先通过破碎机,再经过球磨处理后,得到目数为100-120目的钢渣粉。
8.根据权利要求1所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,所述步骤E的所述废水经过中和后回用或排放。
9.根据权利要求1所述的基于废弃钢渣及酸碱性废水的提钒方法,其特征在于,所述步骤G的搅拌的温度为90-100℃,搅拌时间为2h。
CN201611170136.2A 2016-12-16 2016-12-16 基于废弃钢渣及酸碱性废水的提钒方法 Active CN106676275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611170136.2A CN106676275B (zh) 2016-12-16 2016-12-16 基于废弃钢渣及酸碱性废水的提钒方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611170136.2A CN106676275B (zh) 2016-12-16 2016-12-16 基于废弃钢渣及酸碱性废水的提钒方法

Publications (2)

Publication Number Publication Date
CN106676275A CN106676275A (zh) 2017-05-17
CN106676275B true CN106676275B (zh) 2018-10-26

Family

ID=58870768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611170136.2A Active CN106676275B (zh) 2016-12-16 2016-12-16 基于废弃钢渣及酸碱性废水的提钒方法

Country Status (1)

Country Link
CN (1) CN106676275B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381754A (zh) * 2017-09-19 2017-11-24 攀钢集团研究院有限公司 用于钙化提钒废水的处理方法
CN113549769B (zh) * 2021-07-30 2022-09-27 攀枝花钢城集团有限公司 一种富集含钒钢渣中钒的方法
CN114350933B (zh) * 2021-11-29 2024-04-26 攀钢集团研究院有限公司 一种钠法提钒残渣的脱钠方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899582A (zh) * 2010-07-30 2010-12-01 四川省川威集团有限公司 由钒渣提取五氧化二钒的方法
CN102627321B (zh) * 2012-04-01 2014-05-07 沙立林 一种采用钛铁氧化物直接还原得到的钛渣制备钛白粉的方法
CN103131867A (zh) * 2013-03-12 2013-06-05 昆明理工大学 一种含钒钢渣提钒的方法

Also Published As

Publication number Publication date
CN106676275A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
Binnemans et al. Hydrometallurgical processes for the recovery of metals from steel industry by-products: a critical review
CN103397213B (zh) 包头稀土矿混合碱焙烧法分解提取稀土方法
CN107326182B (zh) 一种赤泥高值化综合利用的方法
CN102534220B (zh) 废旧铅酸蓄电池闭合循环回收利用方法
CN106119544A (zh) 一种从废弃scr催化剂中提取钛渣、钨和钒盐的方法
CN101407355B (zh) 一种综合利用黄钠铁矾渣的方法
CN101618929A (zh) 含重金属碱性污泥的资源化处理方法
CN106676275B (zh) 基于废弃钢渣及酸碱性废水的提钒方法
JP4880909B2 (ja) ニッケル化合物またはコバルト化合物から硫黄などを除去する精製方法、フェロニッケルの製造方法
CN103290221A (zh) 从黑铜泥中回收铜砷锑的方法
CN104120259B (zh) 一种氧化镍矿酸浸液两步除铁方法
CN107619068A (zh) 一种铁锍制备硫化氢用于污酸处理的方法
CN101798637A (zh) 一种酸浸提钒残渣的化学脱硫方法
JP2010270378A (ja) 製鋼スラグからのリン回収方法
CN110453093A (zh) 一种含钛炉渣选择性浸出钛的方法
CN102220499A (zh) 精细钒渣的焙烧浸出方法
CN101586196A (zh) 空白焙烧碱浸出离子交换法提钒工艺
CN104711428B (zh) 一种用于酸洗污泥制备回收金属的方法
CN102146523A (zh) 一种用钛铁矿制备二氧化钛和氧化铁的方法
CN108383142B (zh) 一种再生铝铝灰渣资源化生产氧化铝的方法
Vaysgant et al. A low-temperature technique for recycling lead/acid battery scrap without wastes and with improved environmental control
CN215236722U (zh) 一种铝电解槽废阴极炭块处理系统
CN113265547B (zh) 一种湿法炼锌有机净化钴渣综合回收工艺
CN101514400A (zh) 一种含锌烟尘的处理方法
CN110431245A (zh) 金属锰的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant