CN106673703A - 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法 - Google Patents

一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN106673703A
CN106673703A CN201611070374.6A CN201611070374A CN106673703A CN 106673703 A CN106673703 A CN 106673703A CN 201611070374 A CN201611070374 A CN 201611070374A CN 106673703 A CN106673703 A CN 106673703A
Authority
CN
China
Prior art keywords
zirconium oxide
preparation
slurry
porous ceramic
alumina porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611070374.6A
Other languages
English (en)
Inventor
杨金龙
霍文龙
陈雨谷
张笑妍
干科
鲁毓钜
席小庆
王亚利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201611070374.6A priority Critical patent/CN106673703A/zh
Publication of CN106673703A publication Critical patent/CN106673703A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,包括以下步骤:1)配制总固相含量为7~45wt%的氧化锆、氧化铝和二氧化硅溶胶的混合浆料,并进行球磨;2)将球磨好的上述浆料调节pH,加入浆料总量0.006~0.8wt%的粉体疏水化修饰剂;3)将步骤2)所得浆料进行发泡得到氧化铝和氧化锆粉体均匀混合的颗粒稳定泡沫浆料,然后在石膏板上注模,干燥;4)将步骤3)所得的干燥坯体在1300~1650℃烧结。本发明可获得最高气孔率高达98.7%的多孔氧化锆增强氧化铝陶瓷,其气孔率可以与气凝胶相媲美。该泡沫结构气孔均匀完整、以闭孔为主,导热系数最低的样导热系数为0.04W/K·m,可以作为轻质阻热材料应用于高温保温耐火领域。

Description

一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法
技术领域
本发明属于无机材料技术领域,具体涉及具有高强度、低密度、低热导率的无机多孔材料的制备方法,尤其是涉及一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法。
背景技术
多孔氧化物陶瓷结合了泡沫材料和氧化物陶瓷的优点,具有保温绝热性能好,密度小,耐高温、耐腐蚀、高温状态下化学稳定等许多特点。其中,氧化锆增强氧化铝陶瓷是一种综合性能优良的工程材料,在工程领域广泛应用,掺杂少量氧化物稳定的四方氧化锆陶瓷在外力作用下还具有诱导相转变而增韧的特点。更重要的是,氧化锆陶瓷的本征导热系数很低,常温下只有2W/K·m,相比于常见的氧化物陶瓷在保温性能上具有明显的优势。
随着现代工业的飞速发展,对高温耐火保温材料的阻热性能提出了更高的要求,提高多孔材料的气孔率相比于其他方法是最直接也是最廉价的方法,因此进一步降低多孔材料的导热系数一直是研究的热点。具有超高气孔率的气凝胶的出现使其成为耐火保温领域中绝热性能最好的一类产品。然而气凝胶需要超临界干燥,制备成本高昂,而且还存在机械强度低,难以制备大尺寸块材等一系列问题。
发明内容
针对上述现有技术存在的问题,本发明开发了一种具有闭孔结构的多孔陶瓷,其超高的气孔率和保温性能可以与无机气凝胶相媲美。而且其制备工艺简单,成本较低,具有很好的应用价值。本发明将致密陶瓷领域常见的氧化锆增强氧化铝陶瓷原理应用于高气孔率多孔陶瓷的制备,有效提高了其机械强度。此外,本发明将金属铸造领域中常用的二氧化硅溶胶增强型壳强度的方法应用于陶瓷直接发泡环节,有效提高了干燥陶瓷泡沫坯体的强度。
本发明采用技术方案如下,一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,包括以下步骤:
1)配制总固相含量为7~45wt%的氧化锆、氧化铝和二氧化硅溶胶的混合浆料,并进行球磨。
2)将球磨好的上述浆料调节pH,加入浆料总量0.006~0.8wt%的粉体疏水化修饰剂,以提高陶瓷粉体的疏水性。
3)将所得浆料进行发泡得到氧化铝和氧化锆粉体均匀混合的颗粒稳定泡沫浆料,然后在石膏板上注模,干燥,
4)将步骤3)所得的干燥坯体在1300~1650℃烧结。
进一步,步骤1)中所述浆料含有氧化锆1.8~15wt%,氧化铝5~35wt%,二氧化硅溶胶颗粒0.2~0.5wt%。所述氧化锆和氧化铝粉体粒径为50nm~5μm,所述二氧化硅溶胶颗粒粒径为15~30nm。
优选的,所述氧化锆为氧化铱稳定的四方氧化锆。
进一步,所述粉体疏水化修饰剂为癸酸、十六烷基硫酸钠、十八烷基硫酸钠、十二烷基硫酸钠中的一种。选择癸酸时,浆料的pH调节至4.5~5.5之间;选择十六烷基硫酸钠、十二烷基硫酸钠或十八硫酸钠时,浆料的pH调节至3.0~9.5之间。
进一步,步骤3)中所述发泡采用机械搅拌法,所述干燥的方法选用在石膏板上常温常压干燥、40~70℃的烘箱干燥或间歇式微波干燥。在不追求干燥效率的时候,优选在石膏板上常温常压干燥。
上述方法制备的氧化锆增强氧化铝多孔陶瓷,其气孔率为87.4~98.7%。抗压强度是相同气孔率下的氧化铝多孔陶瓷抗压强度的1.5~1.9倍。导热系数介于0.04~0.28W/K·m之间。
本发明的有益效果是:①使用本发明所用的粉体疏水化修饰剂,通过调节pH至规定值可实现同时对氧化铝和氧化铝粉体表面的疏水化改性从而制备超稳定的陶瓷颗粒泡沫浆料,无需采用凝胶等方式辅助固化,且粉体疏水化修饰剂添加量少,烧结时无需排胶工序。②创新性地将铸造领域常用的硅溶胶应用于泡沫陶瓷的成型,提高了干燥泡沫坯体的强度。③创新性地将致密陶瓷制备领域中的氧化锆增韧氧化铝原理应用在多孔陶瓷制备领域,大大提高了其机械强度。④所述多孔氧化锆增强氧化铝陶瓷密度小、导热系数低,可以作为性能优良的保温耐火材料在工程领域推广应用。⑤气孔率最高的样品在气孔率保温性能上可以与无机气凝胶媲美,同时又克服了气凝胶强度低、应用受限、难以制备大尺寸块材等问题,因而可以在部分领域作为低成本无机多孔材料取代气凝胶。⑥通过调节粉体疏水化修饰剂种类及数量、粉体固相含量、pH值、烧结温度等参数可以实现对氧化锆增韧氧化铝多孔陶瓷微观结构、气孔率、导热系数、抗压强度等性能的精确调控,可以精确产出所需性能的多孔陶瓷。⑦本发明工艺流程简单,成本低廉,可以制备较大尺寸的块材(如图1所示),每个生产环节不产生有毒、有害物质。
附图说明
图1是本发明方法生产的轻质高强氧化锆增强氧化铝多孔陶瓷照片。
图2是本发明方法中轻质高强氧化锆增强氧化铝多孔陶瓷的干燥泡沫坯体的微观照片。
图3是本发明方法生产的轻质高强氧化锆增强氧化铝多孔陶瓷烧结后的氧化锆增强氧化铝多孔陶瓷微观照片。
具体实施方式
下面结合附图和实施例,对本发明进一步详细说明。
图1是本发明方法生产的轻质高强氧化锆增强氧化铝多孔陶瓷照片。图2是本发明方法中轻质高强氧化锆增强氧化铝多孔陶瓷的干燥泡沫坯体的微观照片。可以看到硅凝胶填充了陶瓷颗粒之间的缝隙,因此粉体在硅凝胶的胶结作用下得以均匀而又紧密的排列,使得干燥泡沫坯体的强度有效提高。图3是本发明方法生产的轻质高强氧化锆增强氧化铝多孔陶瓷烧结后的氧化锆增强氧化铝多孔陶瓷微观照片。其中白色晶粒为氧化锆,灰色晶粒为氧化铝。氧化锆粉体和氧化铝粉体在浆料中混合均匀,氧化锆晶粒均匀嵌入氧化铝晶粒中,起到增韧和钉扎的作用,因此抗压强度相比同气孔率下的多孔氧化铝陶瓷得到有效提高。
实施例1
(1)配制固相含量为4wt%氧化锆(D50=0.6μm)、16wt%氧化铝(D50=0.5μm)、0.3wt%的二氧化硅溶胶(D50=20nm)的混合浆料,利用滚筒球磨机球磨4h。;
(2)在上述球磨后的浆料中加入0.05wt%的癸酸,然后用稀盐酸调节pH至5.1。
(3)利用机械搅拌机在1800rmp转速下搅拌发泡10min得到陶瓷颗粒稳定泡沫浆料,在石膏板上注模脱模并在常温常压下干燥24h。
(4)将完全干燥后的干燥泡沫坯体以5℃/min的升温速率最高加热至1400℃,保温2h。
所制备的氧化锆增强氧化铝多孔陶瓷气孔率为96.7%,抗压强度为1.12MPa,抗压强度是相同气孔率的多孔氧化铝陶瓷的1.9倍。导热系数为0.08W/K·m。
实施例2
(1)配制固相含量为9.5wt%氧化锆(D50=0.6μm)、35wt%氧化铝(D50=0.5μm)、0.5wt%的二氧化硅溶胶(D50=20nm)的混合浆料,利用滚筒球磨机球磨6h。;
(2)在上述球磨后的浆料中加入0.8wt%的十六烷基硫酸钠,然后用稀盐酸调节pH至4.0。
(3)利用机械搅拌机在1600rmp转速下搅拌发泡10min得到陶瓷颗粒稳定泡沫浆料,在烘箱50℃干燥4h。
(4)将完全干燥后的干燥泡沫坯体以5℃/min的升温速率最高加热至1450℃,保温2h。
所制备的氧化锆增强氧化铝多孔陶瓷气孔率为87.4%,抗压强度为11.6MPa,抗压强度是相同气孔率的多孔氧化铝陶瓷的1.6倍。导热系数为0.28W/K·m。
实施例3
(1)配制固相含量为1.8wt%氧化锆(D50=0.2μm)、5wt%氧化铝(D50=0.2μm)、0.2wt%的二氧化硅溶胶(D50=20nm)的混合浆料,利用滚筒球磨机球磨1h。;
(2)在上述球磨后的浆料中加入0.006wt%的十二烷基硫酸钠,然后用稀盐酸调节pH至5.5。
(3)利用机械搅拌机在1900rmp转速下搅拌发泡10min得到陶瓷颗粒稳定泡沫浆料,在石膏板上注模脱模并在常温常压下干燥24h。
(4)将完全干燥后的干燥泡沫坯体以5℃/min的升温速率最高加热至1350℃,保温2h。
所制备的氧化锆增强氧化铝多孔陶瓷气孔率为98.7%,抗压强度为0.02MPa,抗压强度是相同气孔率的多孔氧化铝陶瓷的1.5倍。导热系数为0.04W/K·m。
以上对本发明进行了详细说明,显然,只要实质上没有脱离本发明的发明点及效果、对本领域的技术人员来说是显而易见的变形,也均包含在本发明的保护范围之内。

Claims (8)

1.一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,所述方法包括以下步骤:
1)配制总固相含量为7~45wt%的氧化锆、氧化铝和二氧化硅溶胶的混合浆料,并进行球磨;
2)将球磨好的上述浆料调节pH,加入浆料总量0.006~0.8wt%的粉体疏水化修饰剂;
3)将步骤2)所得浆料进行发泡,然后在石膏板上注模,干燥;
4)将步骤3)所得的干燥坯体在1300~1650℃烧结。
2.按照权利要求1所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,步骤1)中所述浆料含有氧化锆1.8~14.5wt%,氧化铝5~30wt%,二氧化硅溶胶颗粒0.2~0.5wt%,所述氧化锆和氧化铝粉体粒径为50nm~5μm,所述二氧化硅溶胶颗粒粒径为15~30nm。
3.按照权利要求1或2所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,所述氧化锆为氧化铱稳定的四方氧化锆。
4.按照权利要求1所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,步骤2)中所述粉体疏水化修饰剂为癸酸、十六烷基硫酸钠、十八烷基硫酸钠、十二烷基硫酸钠中的一种。
5.按照权利要求4所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,所述粉体疏水化修饰剂选择癸酸时,浆料的pH调节至4.5~5.5之间;选择十六烷基硫酸钠、十二烷基硫酸钠或十八烷基硫酸钠时,浆料的pH调节至3.0~9.5之间。
6.按照权利要求1所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,步骤3)中所述发泡采用机械搅拌法,所述干燥选用在石膏板上常温常压干燥、40~70℃的烘箱干燥或间歇式微波干燥。
7.按照权利要求6所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法,其特征在于,步骤3)中所述干燥选用在石膏板上常温常压干燥。
8.按照权利要求1-7任一项所述轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法制备的氧化锆增强氧化铝多孔陶瓷,其特征在于所述多孔陶瓷的气孔率为87.4~98.7%,抗压强度是相同气孔率下的氧化铝多孔陶瓷抗压强度的1.5~1.9倍,导热系数介于0.04~0.28W/K·m之间。
CN201611070374.6A 2016-11-29 2016-11-29 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法 Pending CN106673703A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611070374.6A CN106673703A (zh) 2016-11-29 2016-11-29 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611070374.6A CN106673703A (zh) 2016-11-29 2016-11-29 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106673703A true CN106673703A (zh) 2017-05-17

Family

ID=58866935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611070374.6A Pending CN106673703A (zh) 2016-11-29 2016-11-29 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106673703A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108585798A (zh) * 2018-05-09 2018-09-28 安徽中航名坤新材料科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN108623309A (zh) * 2018-04-25 2018-10-09 清华大学 一种氧化硅或氮化硅泡沫陶瓷材料的制备方法
CN110028337A (zh) * 2019-03-27 2019-07-19 辽宁科技大学 一种多级开孔泡沫陶瓷的制备方法
CN110540434A (zh) * 2019-09-06 2019-12-06 辽宁科技大学 一种氧化锆溶胶增强镁铝尖晶石多孔陶瓷的制备方法
CN110723968A (zh) * 2019-11-06 2020-01-24 苏州博恩希普新材料科技有限公司 一种高介电常数的微波介质陶瓷及其制备方法
CN113200738A (zh) * 2021-05-25 2021-08-03 江苏省陶瓷研究所有限公司 一种低玻璃相多孔陶瓷材料、多孔陶瓷及其制备方法
CN114149276A (zh) * 2020-12-31 2022-03-08 郑州轻工业大学 一种含氧化锆的微纳孔绝隔热耐火材料及其制备方法
CN116444251A (zh) * 2023-04-04 2023-07-18 北京科技大学 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011884A (zh) * 2013-01-07 2013-04-03 中钢集团洛阳耐火材料研究院有限公司 一种刚玉莫来石轻质隔热材料的制备方法
CN103044065A (zh) * 2012-12-28 2013-04-17 武汉理工大学 多孔氧化物陶瓷窑炉保温材料及其制备方法
CN104016703A (zh) * 2014-06-09 2014-09-03 清华大学 一种超轻质闭孔陶瓷的制备方法
CN105541306A (zh) * 2015-12-25 2016-05-04 江苏和腾热工装备科技有限公司 一种氧化铝纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044065A (zh) * 2012-12-28 2013-04-17 武汉理工大学 多孔氧化物陶瓷窑炉保温材料及其制备方法
CN103011884A (zh) * 2013-01-07 2013-04-03 中钢集团洛阳耐火材料研究院有限公司 一种刚玉莫来石轻质隔热材料的制备方法
CN104016703A (zh) * 2014-06-09 2014-09-03 清华大学 一种超轻质闭孔陶瓷的制备方法
CN105541306A (zh) * 2015-12-25 2016-05-04 江苏和腾热工装备科技有限公司 一种氧化铝纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623309A (zh) * 2018-04-25 2018-10-09 清华大学 一种氧化硅或氮化硅泡沫陶瓷材料的制备方法
CN108585798A (zh) * 2018-05-09 2018-09-28 安徽中航名坤新材料科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN108585798B (zh) * 2018-05-09 2022-02-18 安徽弘徽科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN110028337A (zh) * 2019-03-27 2019-07-19 辽宁科技大学 一种多级开孔泡沫陶瓷的制备方法
CN110540434A (zh) * 2019-09-06 2019-12-06 辽宁科技大学 一种氧化锆溶胶增强镁铝尖晶石多孔陶瓷的制备方法
CN110723968A (zh) * 2019-11-06 2020-01-24 苏州博恩希普新材料科技有限公司 一种高介电常数的微波介质陶瓷及其制备方法
CN114149276A (zh) * 2020-12-31 2022-03-08 郑州轻工业大学 一种含氧化锆的微纳孔绝隔热耐火材料及其制备方法
CN113200738A (zh) * 2021-05-25 2021-08-03 江苏省陶瓷研究所有限公司 一种低玻璃相多孔陶瓷材料、多孔陶瓷及其制备方法
CN116444251A (zh) * 2023-04-04 2023-07-18 北京科技大学 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Similar Documents

Publication Publication Date Title
CN106673703A (zh) 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法
CN102718512B (zh) 一种抗热震刚玉-尖晶石质耐火浇注料及其制备方法
CN100371303C (zh) 高孔隙率多孔陶瓷的制备方法
Du et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics
CN103111585B (zh) 一种镁合金铸造陶瓷石膏复合铸型的制备工艺
CN105036788B (zh) 泡沫陶瓷的制备方法
CN105272137B (zh) 一种碱激发磷渣微粉轻质泡沫混凝土保温板及其制备方法
CN103664073A (zh) 一种利用黄河沙制备的蒸压加气混凝土砌块及其制备方法
CN105523740B (zh) 一种保温轻质混凝土材料及其制备方法
CN104496520A (zh) 一种低成本轻质莫来石基保温隔热材料及其制备方法
CN102241515A (zh) 一种轻质、高强、高韧性陶瓷及其制备方法
CN107010964A (zh) 一种增强超轻泡沫陶瓷坯体强度的方法
CN103910520B (zh) 一种氧化铝多孔陶瓷的制备方法
CN108017379A (zh) 一种氧化铝质轻质隔热砖及其制备方法
CN106588026A (zh) 基于琼脂糖凝胶注模成型致密或多孔AlN陶瓷的方法
CA2505182C (en) Gypsum product and method therefor
CN107337442A (zh) 一种颗粒稳定发泡工艺制备氧化铝陶瓷支撑体及其制备方法
CN106830962A (zh) 一种二氧化硅改性的多孔氧化锆陶瓷及其制备方法
CN103708814A (zh) 一种莫来石-氧化铝多孔陶瓷的制备方法
CN109534733A (zh) 一种白云石强化的泡沫无机聚合物材料及其制备方法
CN107188610A (zh) 一种多孔碳化硅陶瓷的制备方法
CN106830961A (zh) 一种有闭孔结构的氧化锆增强氧化铝多孔陶瓷的制备方法
Yang et al. Effect of sintering aid combined vacuum infiltration on the properties of Al2O3-based ceramics via binder jetting
CN105621932B (zh) 化学发泡泡沫混凝土用稳泡增强剂
CN108751952A (zh) 一种高强度隔热耐火砖的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170517