CN107010964A - 一种增强超轻泡沫陶瓷坯体强度的方法 - Google Patents

一种增强超轻泡沫陶瓷坯体强度的方法 Download PDF

Info

Publication number
CN107010964A
CN107010964A CN201710352108.0A CN201710352108A CN107010964A CN 107010964 A CN107010964 A CN 107010964A CN 201710352108 A CN201710352108 A CN 201710352108A CN 107010964 A CN107010964 A CN 107010964A
Authority
CN
China
Prior art keywords
ceramic
slurry
foamed ceramics
powder
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710352108.0A
Other languages
English (en)
Other versions
CN107010964B (zh
Inventor
杨金龙
霍文龙
张笑妍
陈雨谷
刘静静
张在娟
闫姝
席小庆
王亚利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huaqi Ecological Technology Co ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710352108.0A priority Critical patent/CN107010964B/zh
Publication of CN107010964A publication Critical patent/CN107010964A/zh
Application granted granted Critical
Publication of CN107010964B publication Critical patent/CN107010964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明开发了一种利用聚乙烯醇冷冻解冻增强超轻泡沫陶瓷坯体强度的方法,该方法包括如下步骤:将陶瓷浆料进行球磨分散,加入表面疏水化修饰剂和聚乙烯醇,将浆料的pH值调节至合适的范围,然后对浆料进行机械搅拌发泡得到颗粒稳定泡沫浆料,将所得泡沫浆料进行冷冻解冻得到泡沫凝胶。待泡沫凝胶干燥后直接进行烧结。本方法可以获得气孔率在92~98%之间的超轻干燥陶瓷泡沫坯体(以下简称泡沫坯体)。经过聚乙烯醇冷冻解冻增强后,所获得的超轻泡沫坯体强度得到明显提高,保证其在运输过程中不会被破坏。进一步的,本发明制备的泡沫坯体具有很好的可加工性,可先对其进行切割、雕刻等机械加工后再烧结,降低了泡沫陶瓷的加工成本。

Description

一种增强超轻泡沫陶瓷坯体强度的方法
技术领域
本发明属于泡沫陶瓷制备技术领域,具体涉及一种增强超轻泡沫陶瓷坯体强度的方法。
背景技术
泡沫陶瓷具有陶瓷材料和多孔材料的双重优点,因而具有轻质、保温、绝热、耐高温、耐化学腐蚀等许多特点,因此广泛应用于流体过滤,催化剂载体,热、电、声音等绝缘材料以及人工骨骼等领域。
浆料直接发泡法相比于其它方法,更易于制备高气孔率泡沫陶瓷,而且其制备工艺相对简单。直接发泡法的关键在于陶瓷泡沫的稳定性,因为泡沫巨大的表面能以及气体密度低于液体而产生的逸出趋势使得泡沫是一个热力学不稳定体系。传统发泡工艺通过加入表面活性剂、蛋白质等物质可以提高陶瓷泡沫体系的稳定性。近十年发展起来了一种利用陶瓷颗粒本身稳定泡沫浆料的方法——即颗粒稳定泡沫法。该方法是采用具有两亲性的分子修饰氧化物颗粒表面,使其具有部分疏水性从而不可逆的吸附在气/液界面,以抵制泡沫的破裂、排液、歧化、奥斯瓦尔德熟化等不稳定因素。该方法无需附加凝胶等辅助其固化,更加经济、简单。进一步的,该方法可以制备具有高气孔率的泡沫陶瓷,其气孔率一般介于80~95%之间。
干燥后的陶瓷泡沫坯体仅靠陶瓷粉体之间的范德华引力保持坯体完整,其强度很低,在移动过程中外力作用易使其破碎。特别是对颗粒稳定泡沫法制备的泡沫坯体而言,因其具有超高气孔率,从而强度非常低。因此要想实现超轻泡沫陶瓷特别是大尺寸泡沫陶瓷的大批量工业化生产,就必须要克服干燥陶瓷泡沫坯体强度不足的瓶颈。有报道利用硅溶胶或者利用水泥的水化反应增强陶瓷泡沫坯体。但是这些方法都不可避免地引入杂质相,弱化了泡沫陶瓷的强度和使用稳定性。
发明内容
本发明的目的是提供一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,以常用陶瓷或蓝晶石为粉体原料,利用聚乙烯醇冷冻解冻形成微结晶对陶瓷泡沫坯体进行增强工艺得到高强、超轻泡沫陶瓷坯体,并通过烧结最终制备了微观结构均匀完整的泡沫陶瓷;本方法的前提是制备稳定的陶瓷泡沫浆料,核心是利用聚乙烯醇冷冻解冻形成微结晶对陶瓷泡沫坯体进行增强。聚乙烯醇可以在烧结过程中排除,因此不会引入杂质相,不会弱化泡沫陶瓷的性能。本发明可以制备气孔率在92~98%之间的超轻陶瓷泡沫坯体。所制备的超轻陶瓷泡沫坯体相比不采用增强手段制备的坯体而言,其强度得到明显提高,完全能够满足生产需求,保证其在运输过程中不会被破坏。进一步的,本发明制备的泡沫坯体具有很好的可加工性,可以对泡沫坯体进行切割、雕刻等机械加工。对加工后的泡沫坯体进行烧结,这样可以有效减少烧结后坯体的机械加工量,降低了成本,因此本发明也为泡沫陶瓷的机械加工提供了一条新思路。
具体步骤如下:
(1)以常用陶瓷或蓝晶石中的一种粉体制成陶瓷浆料;
(2)将质量分数为15~60%的陶瓷浆料进行球磨分散;
(3)在球磨后的浆料中加入陶瓷粉体疏水化修饰剂和聚乙烯醇,并将浆料的pH值调节至合适的范围;
(4)通过机械搅拌对浆料进行发泡得到颗粒稳定泡沫;
(5)将发泡后所得泡沫浆料,立刻在-10℃下冷冻12~24h,然后在0~10℃范围内解冻3~12h,重复该冷冻解冻过程1~5次,得到干燥泡沫坯体;干燥泡沫坯体气孔率介于92~98%;
(6)待陶瓷泡沫坯体干燥后在1400~1900℃的烧结温度下进行烧结,冷却后得到微观结构均匀完整的泡沫陶瓷;所制备的泡沫陶瓷孔径均匀,各向同性,孔径分布在30~200μm,陶瓷晶粒之间结合良好。
所述陶瓷粉体的粒径为50nm~4μm。
所述步骤1中陶瓷浆料为氧化铝、氧化锆、蓝晶石、氮化硅或者碳化硅中的一种粉体制成。
所述粉体为氧化铝、氧化锆、蓝晶石时,陶瓷粉体疏水化修饰剂为十二烷基硫酸钠、十六烷基硫酸钠、十八烷基硫酸,疏水化修饰剂添加量为陶瓷浆料质量的0.01~0.5wt%;聚乙烯醇添加量为陶瓷浆料质量的0.5~1.5wt%;陶瓷浆料pH调节为4.0~6.5;上述疏水化修饰剂对相应的陶瓷粉体进行原位修饰,提高疏水性,从而制备稳定的泡沫。
所述陶瓷粉体为氮化硅或碳化硅时,陶瓷粉体疏水化修饰剂为十二烷基氯化铵或者十六烷基氯化铵,添加量为陶瓷浆料质量的0.02~0.3wt%;聚乙烯醇添加量为陶瓷浆料质量的0.3~1.2wt%;陶瓷浆料的pH调节至9.0~11.5之间;上述疏水化修饰剂对相应的陶瓷粉体进行原位修饰,提高疏水性,从而制备稳定的泡沫。
所述氧化铝体系,聚乙烯醇的加入量为0.5~1.5wt%,其烧结温度为1400~1600℃;所述氧化锆体系或蓝晶石体系,聚乙烯醇的加入量为0.5~1.5wt%,其烧结温度为1300~1500℃;所述氮化硅或碳化硅体系,聚乙烯醇的加入量为0.3~1.2wt%,需要在氮气气氛保护下烧结,其烧结温度为1700~1900℃。
本发明的有益效果是:(1)所制备的陶瓷泡沫浆料均匀稳定,无需采用凝胶等方式辅助固化。(2)表面活性剂和坯体增强剂聚乙烯醇添加量较少,烧结时无需排胶工序,工艺简单,生产成本低廉。(3)本发明采用的增强陶瓷泡沫坯体的方法不会引入杂质相,因此不会弱化泡沫陶瓷的性能。(5)所制备的超轻陶瓷泡沫坯体相比不采用增强手段制备的泡沫坯体而言,其强度得到明显提高,能够满足生产需求,为大尺寸泡沫陶瓷的规模化生产提供了一个方案。(6)本发明制备的泡沫坯体具有很好的可加工性,可以对泡沫坯体进行切割、雕刻等机械加工,因此可对泡沫坯体进行先加工再烧结,降低了泡沫陶瓷的加工成本。
附图说明
图1是氧化铝泡沫坯体的宏观照片。
图2是氧化铝泡沫坯体的微观照片。
具体实施方式
本发明提供一种增强超轻泡沫陶瓷坯体强度的方法,是以常用陶瓷或蓝晶石中的一种粉体为原料,利用聚乙烯醇冷冻解冻形成微结晶对陶瓷泡沫坯体进行增强工艺得到高强、超轻泡沫陶瓷坯体,并通过烧结最终制备了微观结构均匀完整的泡沫陶瓷;下面结合附图和实施例予以说明。
实施例1
(1)配制质量分数为20%的氧化铝浆料,利用滚筒球磨机球磨2h。所述氧化铝陶瓷粉体平均粒径为0.41μm。
(2)在球磨后的浆料中加入相对浆料质量0.05wt%的十二烷基硫酸钠和1.0wt%聚乙烯醇,将浆料的pH值调节至4.5。
(3)然后将浆料在1800rmp的转速下机械搅拌10min进行发泡得到颗粒稳定泡沫。
(4)将发泡后所得泡沫浆料立刻在-10℃下冷冻20h,然后在10℃解冻6h。重复所述冷冻解冻过程2次。
(5)将干燥的陶瓷泡沫坯体以3℃/min的升温速率加热至1550℃,然后保温2h。
所制备的氧化铝泡沫坯体如图1氧化铝泡沫坯体的宏观照片所示,气孔率为97.1%,泡沫坯体微观形貌如图2所示。烧结后制备的氧化铝泡沫陶瓷气孔率为95.3%。从图1照片可以看出本发明制备的泡沫坯体具有很好的可加工性,可以对泡沫坯体进行切割、雕刻等机械加工;从图2照片可以看出泡沫坯体气孔分布均匀,各向同性,孔洞完整,陶瓷粉体间结合紧密。
实施例2
(1)配制质量分数为30%的氧化锆浆料,利用滚筒球磨机球磨4h。所述氧化锆陶瓷粉体平均粒径为0.76μm。
(2)在球磨后的浆料中加入相对浆料质量0.06wt%的十六烷基硫酸钠和1.2wt%聚乙烯醇,将浆料的pH值调节至5.1。
(3)然后将浆料在1600rmp的转速下机械搅拌15min进行发泡得到颗粒稳定泡沫。
(4)将发泡后所得泡沫浆料立刻在-10℃下冷冻24h,然后在10℃解冻4h。重复所述冷冻解冻过程3次。
(5)将干燥的陶瓷泡沫坯体以3℃/min的升温速率加热至1400℃,然后保温2h。
所制备的氧化锆泡沫坯体气孔率为95.9%,烧结后制备的氧化锆泡沫陶瓷气孔率为93.4%.
实施例3
(1)配制质量分数为30%的蓝晶石浆料,利用滚筒球磨机球磨5h,蓝晶石粉体平均粒径为0.98μm。
(2)在球磨后的浆料中加入相对浆料质量0.05wt%的十二烷基硫酸钠和0.8wt%聚乙烯醇,将浆料的pH值调节至6.0。
(3)然后将浆料在1800rmp的转速下机械搅拌10min进行发泡得到颗粒稳定泡沫。
(4)将发泡后所得泡沫浆料立刻在-10℃下冷冻24h,然后在10℃解冻3h。重复所述冷冻解冻过程3次。
(5)将干燥的陶瓷泡沫坯体以3℃/min的升温速率加热至1450℃,然后保温2h。
所制备蓝晶石泡沫坯体气孔率为94.8%,烧结后制备的泡沫陶瓷气孔率为92.2%。
实施例4
(1)配制质量分数为30%的氮化硅浆料,利用滚筒球磨机球磨4h。氮化硅粉体平均粒径为0.33μm。
(2)在球磨后的浆料中加入相对浆料质量0.13wt%的十六烷基氯化铵和0.7wt%聚乙烯醇,将浆料的pH值调节至11.2。
(3)将浆料在1400rmp的转速下机械搅拌10min进行发泡得到氮化硅颗粒稳定泡沫。
(4)将发泡后所得泡沫浆料立刻在-10℃下冷冻24h,然后在10℃解冻4h。重复所述冷冻解冻过程3次。
(5)将干燥的陶瓷泡沫坯体在氮气炉内以3℃/min的升温速率加热至1750℃,然后保温3h。
所制备的氮化硅泡沫坯体气孔率为93.9%,烧结后制备的氮化硅泡沫陶瓷气孔率为86.9%。

Claims (7)

1.一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,以常用陶瓷或蓝晶石为粉体原料,利用聚乙烯醇冷冻解冻形成微结晶对泡沫陶瓷坯体进行增强工艺得到高强、超轻泡沫陶瓷坯体,并通过烧结最终制备了微观结构均匀完整的泡沫陶瓷;具体步骤如下:
(1)以常用陶瓷或蓝晶石中的一种粉体制成陶瓷浆料;
(2)将质量分数为15~60%的陶瓷浆料进行球磨分散;
(3)在球磨后的浆料中加入陶瓷粉体疏水化修饰剂和聚乙烯醇,并将浆料的pH值调节至合适的范围;
(4)通过机械搅拌对浆料进行发泡得到颗粒稳定泡沫;
(5)将发泡后所得泡沫浆料,立刻在-10℃下冷冻12~24h,然后在0~10℃范围内解冻3~12h,重复该冷冻解冻过程1~5次;得到泡沫陶瓷坯体;干燥泡沫坯体气孔率介于92~98%;
(6)待陶瓷泡沫坯体干燥后在烧结温度为1400~1900℃下进行烧结,冷却后得到微观结构均匀完整的泡沫陶瓷。
2.根据权利要求1所述一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,所述陶瓷粉体的粒径为50nm~4μm。
3.根据权利要求1所述一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,所述步骤1中陶瓷浆料为氧化铝、氧化锆、蓝晶石、氮化硅或者碳化硅中的一种粉体制成。
4.根据权利要求1所述一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,所述陶瓷粉体为氧化铝、氧化锆、蓝晶石时,粉体疏水化修饰剂为十二烷基硫酸钠、十六烷基硫酸钠、十八烷基硫酸,疏水化修饰剂添加量为陶瓷浆料质量的0.01~0.5wt%;聚乙烯醇添加量为陶瓷浆料质量的0.5~1.5wt%;陶瓷浆料pH调节为4.0~6.5;上述疏水化修饰剂对相应的陶瓷粉体进行原位修饰,提高疏水性,从而制备稳定的泡沫陶瓷。
5.根据权利要求3所述一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,所述陶瓷粉体为氮化硅或者碳化硅时,陶瓷粉体疏水化修饰剂为十二烷基氯化铵或者十六烷基氯化铵,添加量为陶瓷浆料质量的0.02~0.3wt%;聚乙烯醇添加量为陶瓷浆料质量的0.3~1.2wt%;陶瓷浆料的pH调节至9.0~11.5之间;上述疏水化修饰剂对相应的陶瓷粉体进行原位修饰,提高疏水性,从而制备稳定的泡沫陶瓷。
6.根据权利要求4所述一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,所述陶瓷粉体为氧化铝时,其烧结温度为1400~1600℃;所述陶瓷粉体为氧化锆或蓝晶石时,烧结温度为1300~1500℃;所述陶瓷粉体为氮化硅或碳化硅时,在氮气气氛保护下,1700~1900℃烧结;由于聚乙烯醇的加入量非常少,因此无需排胶,直接进行烧结。
7.根据权利要求1所述一种增强超轻泡沫陶瓷坯体强度的方法,其特征在于,所述制备稳定的泡沫陶瓷的孔径均匀,各向同性,孔径分布在30~200μm,陶瓷晶粒之间结合良好。
CN201710352108.0A 2017-05-18 2017-05-18 一种增强超轻泡沫陶瓷坯体强度的方法 Active CN107010964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710352108.0A CN107010964B (zh) 2017-05-18 2017-05-18 一种增强超轻泡沫陶瓷坯体强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710352108.0A CN107010964B (zh) 2017-05-18 2017-05-18 一种增强超轻泡沫陶瓷坯体强度的方法

Publications (2)

Publication Number Publication Date
CN107010964A true CN107010964A (zh) 2017-08-04
CN107010964B CN107010964B (zh) 2020-01-21

Family

ID=59450149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710352108.0A Active CN107010964B (zh) 2017-05-18 2017-05-18 一种增强超轻泡沫陶瓷坯体强度的方法

Country Status (1)

Country Link
CN (1) CN107010964B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879731A (zh) * 2017-11-13 2018-04-06 清华大学 一种利用水性聚氨酯增强超轻泡沫陶瓷坯体强度的方法
CN107930581A (zh) * 2017-11-02 2018-04-20 苏州太平洋印务有限公司 印刷业废气处理专用活性炭吸附剂及其再生方法
CN108752009A (zh) * 2018-04-27 2018-11-06 湖南省美程陶瓷科技有限公司 一种电子陶瓷的烧结方法
CN110028337A (zh) * 2019-03-27 2019-07-19 辽宁科技大学 一种多级开孔泡沫陶瓷的制备方法
CN110183804A (zh) * 2019-06-14 2019-08-30 西安工程大学 一种聚乙烯醇发泡材料及其制备方法
CN112079650A (zh) * 2020-08-21 2020-12-15 西安理工大学 一种ZrC/ZrB2复相多孔超高温陶瓷的制备方法
CN116444251A (zh) * 2023-04-04 2023-07-18 北京科技大学 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350996A (zh) * 2001-10-08 2002-05-29 穆柏春 一种高强度耐高温陶瓷催化净化过滤器及其生产方法
US20040038065A1 (en) * 2002-08-21 2004-02-26 G-P Gypsum Corporation Gypsum board having polyvinyl alcohol binder in interface layer and method for making the same
JP2004155645A (ja) * 2002-09-12 2004-06-03 Daicel Chem Ind Ltd ガス発生剤組成物
CN105565795A (zh) * 2015-12-18 2016-05-11 湖南科技大学 一种镁铝尖晶石质高级保温材料的制备方法
CN105565812A (zh) * 2015-12-18 2016-05-11 湖南科技大学 一种Sialon结合SiC多孔材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350996A (zh) * 2001-10-08 2002-05-29 穆柏春 一种高强度耐高温陶瓷催化净化过滤器及其生产方法
US20040038065A1 (en) * 2002-08-21 2004-02-26 G-P Gypsum Corporation Gypsum board having polyvinyl alcohol binder in interface layer and method for making the same
JP2004155645A (ja) * 2002-09-12 2004-06-03 Daicel Chem Ind Ltd ガス発生剤組成物
CN105565795A (zh) * 2015-12-18 2016-05-11 湖南科技大学 一种镁铝尖晶石质高级保温材料的制备方法
CN105565812A (zh) * 2015-12-18 2016-05-11 湖南科技大学 一种Sialon结合SiC多孔材料的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930581A (zh) * 2017-11-02 2018-04-20 苏州太平洋印务有限公司 印刷业废气处理专用活性炭吸附剂及其再生方法
CN107879731A (zh) * 2017-11-13 2018-04-06 清华大学 一种利用水性聚氨酯增强超轻泡沫陶瓷坯体强度的方法
CN108752009A (zh) * 2018-04-27 2018-11-06 湖南省美程陶瓷科技有限公司 一种电子陶瓷的烧结方法
CN108752009B (zh) * 2018-04-27 2023-04-14 湖南省美程陶瓷科技有限公司 一种电子陶瓷的烧结方法
CN110028337A (zh) * 2019-03-27 2019-07-19 辽宁科技大学 一种多级开孔泡沫陶瓷的制备方法
CN110183804A (zh) * 2019-06-14 2019-08-30 西安工程大学 一种聚乙烯醇发泡材料及其制备方法
CN112079650A (zh) * 2020-08-21 2020-12-15 西安理工大学 一种ZrC/ZrB2复相多孔超高温陶瓷的制备方法
CN112079650B (zh) * 2020-08-21 2022-12-27 西安理工大学 一种ZrC/ZrB2复相多孔超高温陶瓷的制备方法
CN116444251A (zh) * 2023-04-04 2023-07-18 北京科技大学 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Also Published As

Publication number Publication date
CN107010964B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN107010964A (zh) 一种增强超轻泡沫陶瓷坯体强度的方法
CN111410523B (zh) 一种超轻质多孔熔融石英泡沫及其制备方法
CN103664073A (zh) 一种利用黄河沙制备的蒸压加气混凝土砌块及其制备方法
CN101348324A (zh) 用于多晶硅结晶的不透明石英坩埚及其制造方法
CN104326766A (zh) 一种具有球形孔结构的多孔氮化硅陶瓷材料的制备方法
CN104446625A (zh) 一种高孔隙率多孔陶瓷及其制备方法
CN102964095A (zh) 一种加气混凝土砌块及其制造方法
CN110294636B (zh) 一种轻质隔热镍冶金废渣泡沫陶瓷及其制备方法
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
CN109265136A (zh) 一种使用石英废砂生产陶瓷的方法
CN112723902B (zh) 一种金刚石工具的浆料直写成型方法
CN108395240A (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN107935628B (zh) 一种泡沫碳化硅陶瓷及其制备方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
CN111704440A (zh) 一种轻质多孔骨料及其制备工艺
CN109320257B (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN104860712A (zh) 一种利用废弃熔融石英坩埚制备微孔轻质隔热骨料的方法
CN105439620A (zh) 放电等离子烧结制备多孔氮化硅的方法
CN109796222A (zh) 氮化硅纳米线强化氮化硅泡沫陶瓷的制备方法
CN110002863B (zh) 一种钇铝石榴石多孔陶瓷的制备方法
CN113582699A (zh) 一种低粘度、高固含量的陶瓷浆料及其制备方法
CN108793911A (zh) 一种利用发泡法制备镁质轻质骨料的方法
CN102442833B (zh) 一种新型泡沫陶瓷材料的制备工艺及应用
CN108465772B (zh) 一种大型不锈钢制件整体铸造专用型砂的制备方法
CN114044695B (zh) 一种多孔陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230308

Address after: 509-20, Building 5, No. 97, Changping Road, Shahe Town, Changping District, Beijing 102200

Patentee after: Beijing Huaqi Ecological Technology Co.,Ltd.

Address before: 100084 Beijing City, Haidian District, Haidian District, 100084 mailbox

Patentee before: TSINGHUA University