CN106673649B - 一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法 - Google Patents

一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106673649B
CN106673649B CN201611241405.XA CN201611241405A CN106673649B CN 106673649 B CN106673649 B CN 106673649B CN 201611241405 A CN201611241405 A CN 201611241405A CN 106673649 B CN106673649 B CN 106673649B
Authority
CN
China
Prior art keywords
ceramic material
ball
potassium
hours
sodium niobate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611241405.XA
Other languages
English (en)
Other versions
CN106673649A (zh
Inventor
杨祖培
柴启珍
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201611241405.XA priority Critical patent/CN106673649B/zh
Publication of CN106673649A publication Critical patent/CN106673649A/zh
Application granted granted Critical
Publication of CN106673649B publication Critical patent/CN106673649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法,该陶瓷材料的通式为0.95K0.5Na0.5NbO3‑0.05Ca(ZrxZnyNbz)1.025O3,式中x、y依次表示ZrO2、ZnO摩尔百分比,z表示Nb2O5摩尔百分比的2倍,x=0.08~0.40、x+y+z=1.00、z/y=1.95,其通过高温固相法制备。本发明陶瓷材料透明性好、介电常数大、居里温度高,透过率64%~82%(近红外区)、介电常数1480~1787、居里温度303~314℃,在30~400℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有铁电性能,剩余极化强度为1.3~3.1μC/cm2、矫顽场为7.9~14.4kV/cm。

Description

一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料 及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种通过掺杂改性制备的高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料,以及该陶瓷材料的制备方法。
背景技术
透明铁电陶瓷是一类具有电光效应的透明陶瓷,同时兼具优异的机械性能和耐高温、抗腐蚀、高硬度等特性,使其成为现代光学器件技术、未来光计算机技术、电子信息技术和国防军事应用开发中的关键材料。目前应用较多的透明铁电陶瓷以铅基材料为主,例如Pb1-xLax(ZryTiz)O3、(1-x)Pb(Mgl/3Nb2/3)O3-xPbTiO3、Pb(Zr,Ti)O3-Pb(Zn1/3Nb2/3)O3、Pb(Zr,Ti)O3-Pb(Ni1/3Nb2/3)O3等。但由于铅污染,世界各国都立法禁止有害物质特别是含铅材料在电子器件中的使用,又由于无铅压铁电陶瓷电性能无法与有铅陶瓷相媲美且直线透过率偏低难以制得透明陶瓷,使得兼顾高透过率和高电性能的无铅透明铁电陶瓷的研究和开发成为迫在眉睫的课题。
从透明无铅铁电陶瓷的发展来看,LiNbO3单晶是钙钛矿型结构材料里典型的具有强电光效应的材料,但是由于该单晶在制备过程中需要非常复杂的设备、制备工艺复杂难以控制、生产成本较高周期较长,很难长出大尺寸和完整的单晶,限制了其发展和在商业上的应用。2004年日本的Saito教授成功制备了铌酸钾钠(KNN)陶瓷,其压电常数达到了490,同时其具有较高的居里温度,达到了390℃,成为最有希望替代锆钛酸铅(PZT)和PMN-PT等的无铅陶瓷材料。随后2007年Du等人在研究KNN-LiNbO3时,发现了其具有透明现象。紧接着2007年8月Du通过掺杂Bi2O3,首次系统研究了KNN基的透明无铅铁电陶瓷,发现其在可见光区域的透过率达到了50%左右;之后他又在KNN中通过钛酸铋钠(BNT)掺杂也获得了透明现象,但是透过率并不高也在50%左右;直到2011年,香港理工大学的Kwok教授在铌酸钾钠铋(KNNB)陶瓷中获得了超过55%的透过率,之后Li等人在KNNB的基础上掺杂Li离子发现了铌酸钾钠铋锂(KNNLB)透明陶瓷,透过率提升到60%,所以,铌酸钾钠基透明铁电材料最有希望替代锆钛酸铅(PZT)和铌镁酸铅-钛酸铅(PMN-PT)。但是,透过率好、介电常数大、居里温度高的铌酸钾钠基透明铁电陶瓷材料却很少有报道。
发明内容
本发明所要解决的技术问题在于提供一种透明性好、介电常数大、居里温度高、温度稳定性好的铌酸钾钠基透明铁电陶瓷材料,以及该陶瓷材料的制备方法。
解决上述技术问题所采用的技术方案是:该陶瓷材料的通式为0.95K0.5Na0.5NbO3-0.05Ca(ZrxZnyNbz)1.025O3,式中x、y依次表示0.05Ca(ZrxZnyNbz)1.025O3中ZrO2、ZnO的摩尔百分比,z表示0.05Ca(ZrxZnyNbz)1.025O3中Nb2O5的摩尔百分比的2倍,并且x=0.08~0.40、x+y+z=1.00、z/y=1.95;该陶瓷材料在近红外区的透过率为64%~82%、介电常数为1480~1787、居里温度为303~314℃、剩余极化强度为1.3~3.1μC/cm2、矫顽场为7.9~14.4kV/cm。
本发明铌酸钾钠基透明铁电陶瓷材料的制备方法如下:
1、配料
按照0.95K0.5Na0.5NbO3-0.05Ca(ZrxZnyNbz)1.025O3的化学计量分别称取纯度等于99.99%的原料Na2CO3、K2CO3、Nb2O5、CaCO3、ZnO、ZrO2混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,900℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过160目筛。
4、造粒及压片
向过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1150~1200℃,烧结5~8小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基透明铁电陶瓷材料。
上述步骤5中,优选以3℃/分钟的升温速率升温至1180℃,烧结6小时。
本发明制备方法简单、重复性好、成品率高,所制备的陶瓷材料透明性好、介电常数大、居里温度高,其中透过率为64%~82%(近红外区)、介电常数为1480~1787、居里温度为303~314℃,且在温度为30~400℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有铁电性能,其剩余极化强度为1.3~3.1μC/cm2、矫顽场为7.9~14.4kV/cm。本发明陶瓷材料在光学上各向同性、实用性强、易于生产,能兼顾电学性能和光学性能,是一种性能优良的无铅透明铁电陶瓷。
附图说明
图1是实施例1~5制备的铌酸钾钠基透明铁电陶瓷材料的XRD图。
图2是实施例1~5制备的铌酸钾钠基透明铁电陶瓷材料的透过率图。
图3是实施例1~5制备的铌酸钾钠基透明铁电陶瓷材料在1KHz下的介电常数随温度的变化关系图。
图4是实施例1~5制备的铌酸钾钠基透明铁电陶瓷材料的电滞回线图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照0.95K0.5Na0.5NbO3-0.05Ca(Zr0.08Zn0.31186Nb0.6081)1.025O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5790g、纯度为99.99%的K2CO3 3.3630g、纯度为99.99%的Nb2O513.3598g、纯度为99.99%的CaCO3 0.5127g、纯度为99.99%的ZnO 0.1332g、纯度为99.99%的ZrO2 0.0523g,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将原料混合物置于干燥箱内在80℃下干燥10小时,用研钵研磨30分钟,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至850℃预烧5小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与预烧粉的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将预烧粉置于干燥箱内在80℃下干燥15小时,用研钵研磨10分钟,过160目筛。
4、造粒及压片
向步骤3过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的50%,造粒,过120目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用粉末压片机在300MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1180℃,烧结6小时,随炉自然冷却至室温。
6、抛光
将步骤5烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5mm厚,用酒精搽拭干净。采用日本理学MiniFlex600型衍射仪进行XRD测试,采用UV-3600型紫外可见近红外光分光光度计进行光学透过率测试,结果见图1~2。
7、烧银
在步骤6抛光后的陶瓷上下表面涂覆厚度为0.02mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基透明铁电陶瓷材料。采用Agilient4980A型精密阻抗分析仪和AixACCT-TF2000型铁电参数测试仪分别对陶瓷材料的介电性能和铁电性能进行测试,结果见图3~4。
实施例2
本实施例的步骤1中,按照0.95K0.5Na0.5NbO3-0.05Ca(Zr0.16Zn0.28475Nb0.0.5553)1.025O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5785g、纯度为99.99%的K2CO3 3.3623g、纯度为99.99%的Nb2O5 13.3204g、纯度为99.99%的CaCO3 0.0.5126g、纯度为99.99%的ZnO 0.1216g、纯度为99.99%的ZrO2 0.1045g,其他步骤与实施例1相同,制备成铌酸钾钠基透明铁电陶瓷材料。
实施例3
本实施例的步骤1中,按照0.95K0.5Na0.5NbO3-0.05Ca(Zr0.24Zn0.25763Nb0.5024)1.025O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5780g、纯度为99.99%的K2CO3 3.3617g、纯度为99.99%的Nb2O5 13.2810g、纯度为99.99%的CaCO3 0.5125g、纯度为99.99%的ZnO0.1100g、纯度为99.99%的ZrO2 0.1568g,其他步骤与实施例1相同,制备成铌酸钾钠基透明铁电陶瓷材料。
实施例4
本实施例的步骤1中,按照0.95K0.5Na0.5NbO3-0.05Ca(Zr0.32Zn0.23051Nb0.4495)1.025O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5775g、纯度为99.99%的K2CO3 3.3610g、纯度为99.99%的Nb2O5 13.2417g、纯度为99.99%的CaCO3 0.5124g、纯度为99.99%的ZnO0.0983g、纯度为99.99%的ZrO2 0.2090g,其他步骤与实施例1相同,制备成铌酸钾钠基透明铁电陶瓷材料。
实施例5
本实施例的步骤1中,按照0.95K0.5Na0.5NbO3-0.05Ca(Zr0.40Zn20339Nb0.3966)1.025O3的化学计量分别称取纯度为99.99%的Na2CO3 2.5770g、纯度为99.99%的K2CO3 3.3604g、纯度为99.99%的Nb2O5 13.2022g、纯度为99.99%的CaCO3 0.5123g、纯度为99.99%的ZnO0.0868g、纯度为99.99%的ZrO2 0.2612g,其他步骤与实施例1相同,制备成铌酸钾钠基透明铁电陶瓷材料。
由图1可见,实施例1~5制备的陶瓷材料均为纯的钙钛矿结构。由图2可见,实施例1~5制备的陶瓷材料均呈现较高的透明性,其在近红外区(790~2000nm)透过率最高均可达80%以上。由图3~4可见,实施例1~5制备的陶瓷材料在具有高透明性的同时,均具有较好的电学性能,x在0.08~0.40范围内变化,其介电常数和居里温度变化幅度较小,介电常数为1480~1787、居里温度为303~314℃,且在温度为30~400℃范围内,介电常数随温度变化小,具有优异的温度稳定性,同时具有铁电性能,其剩余极化强度为1.3~3.1μC/cm2、矫顽场为7.9~14.4kV/cm。

Claims (3)

1.一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料,其特征在于:该陶瓷材料的通式为0.95K0.5Na0.5NbO3-0.05Ca(ZrxZnyNbz)1.025O3,式中x、y依次表示0.05Ca(ZrxZnyNbz)1.025O3中ZrO2、ZnO的摩尔百分比,z表示0.05Ca(ZrxZnyNbz)1.025O3中Nb2O5的摩尔百分比的2倍,并且x=0.08~0.40、x+y+z=1.00、z/y=1.95;该陶瓷材料在近红外区的透过率为64%~82%、介电常数为1480~1787、居里温度为303~314℃、剩余极化强度为1.3~3.1μC/cm2、矫顽场为7.9~14.4kV/cm。
2.一种权利要求1所述的铌酸钾钠基透明铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照0.95K0.5Na0.5NbO3-0.05Ca(ZrxZnyNbz)1.025O3的化学计量分别称取纯度等于99.99%的原料Na2CO3、K2CO3、Nb2O5、CaCO3、ZnO、ZrO2混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛;
(2)预烧
将步骤(1)过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,900℃预烧5小时,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过160目筛;
(4)造粒及压片
向过160目筛后的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为预烧粉质量的40%~50%,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯件;
(5)无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1150~1200℃,烧结5~8小时,随炉自然冷却至室温;
(6)抛光
将步骤(5)烧结后的陶瓷选取其中一个样品表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5~0.6mm厚,用酒精搽拭干净;
(7)烧银
在步骤(6)抛光后的陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟,自然冷却至室温,制备成铌酸钾钠基透明铁电陶瓷材料。
3.根据权利要求2所述的铌酸钾钠基透明铁电陶瓷材料的制备方法,其特征在于:在步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用118分钟升温至500℃,保温2小时,再以3℃/分钟的升温速率升温至1180℃,烧结6小时,随炉自然冷却至室温。
CN201611241405.XA 2016-12-29 2016-12-29 一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法 Active CN106673649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611241405.XA CN106673649B (zh) 2016-12-29 2016-12-29 一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611241405.XA CN106673649B (zh) 2016-12-29 2016-12-29 一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106673649A CN106673649A (zh) 2017-05-17
CN106673649B true CN106673649B (zh) 2019-05-14

Family

ID=58872983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611241405.XA Active CN106673649B (zh) 2016-12-29 2016-12-29 一种高透明性和高居里温度的铌酸钾钠基透明铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106673649B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194691A1 (en) * 2005-02-28 2006-08-31 National Taipei University Technology Low-temperature sintered barium titanate microwave dielectric ceramic material
CN104973863A (zh) * 2014-04-11 2015-10-14 日本特殊陶业株式会社 无铅压电陶瓷组合物、使用其的压电元件、及无铅压电陶瓷组合物的制造方法
CN105669193A (zh) * 2014-11-20 2016-06-15 中国科学院声学研究所 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194691A1 (en) * 2005-02-28 2006-08-31 National Taipei University Technology Low-temperature sintered barium titanate microwave dielectric ceramic material
CN104973863A (zh) * 2014-04-11 2015-10-14 日本特殊陶业株式会社 无铅压电陶瓷组合物、使用其的压电元件、及无铅压电陶瓷组合物的制造方法
CN105669193A (zh) * 2014-11-20 2016-06-15 中国科学院声学研究所 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法

Also Published As

Publication number Publication date
CN106673649A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN105819856B (zh) 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN101265084B (zh) (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
CN103979955B (zh) 锂-铝离子对掺杂改性的钛酸钡基无铅压电陶瓷材料的制备方法
CN102924078A (zh) 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN105541413B (zh) 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法
CN103304235B (zh) 一种细晶高强度pmn-pzt压电陶瓷材料的生产方法
CN106747669B (zh) 一种高居里温度和温度稳定性好的铌酸钾钠基透明铁电陶瓷材料及其制备方法
CN107244898A (zh) 一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法
CN107117965B (zh) 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN108558400B (zh) 一种锆钛酸钡钙基透明陶瓷的制备方法
CN106588011B (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN110981468A (zh) 一种钛酸铋钠基压电陶瓷的制备方法
CN106673650B (zh) 一种高透明铌酸钾钠基压电陶瓷材料及其制备方法
CN104628379A (zh) 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN105819855B (zh) 铌镁酸铋改性的铌酸钾钠透明铁电陶瓷材料及其采用低纯度原料制备的方法
CN110357624A (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN104030683A (zh) 一种(K0.5Na0.5)NbO3-Sr(Sc0.5Nb0.5)O3无铅透明铁电陶瓷材料及其制备方法
CN103288450B (zh) 铌酸钾钠-锆钛酸铋钾/锂系无铅压电陶瓷
CN102320831B (zh) 锌铋基钙钛矿-钛酸铅-铅基弛豫铁电体三元系压电陶瓷及其制备方法
CN113979748A (zh) 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN104557035A (zh) 溅射用铌酸钾钠陶瓷靶材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant