CN106654271A - 超高容量锂电池阴极材料及制备工艺 - Google Patents

超高容量锂电池阴极材料及制备工艺 Download PDF

Info

Publication number
CN106654271A
CN106654271A CN201611205164.3A CN201611205164A CN106654271A CN 106654271 A CN106654271 A CN 106654271A CN 201611205164 A CN201611205164 A CN 201611205164A CN 106654271 A CN106654271 A CN 106654271A
Authority
CN
China
Prior art keywords
graphite
parts
lithium battery
ultra
high capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201611205164.3A
Other languages
English (en)
Inventor
邓衍虎
杨丛利
邓威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Guowei Electric Vehicle Manufacturing Co Ltd
Original Assignee
Anhui Guowei Electric Vehicle Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Guowei Electric Vehicle Manufacturing Co Ltd filed Critical Anhui Guowei Electric Vehicle Manufacturing Co Ltd
Priority to CN201611205164.3A priority Critical patent/CN106654271A/zh
Publication of CN106654271A publication Critical patent/CN106654271A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种超高容量锂电池阴极材料及制备工艺,其特征在于,所述阴极材料由以下重量份的原料组成:石墨18‑20份,铂金粉0.5‑0.8份,碳化硅0.3‑0.7份,钛白粉0.3‑0.6份,碳酸锂1.3‑1.8份,锡粉1.2‑1.5份,二氧化硅0.5‑0.8份,氧化铁0.3‑0.6份,二氧化钛0.6‑1.0份。与其它商业化的阴极材料相比,本发明的阴极材料具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点。避免了在充放电时产生的体积效应,保证了材料的在充放电过程中的稳定性,解决了单一钛酸锂负极材料容量偏低等缺点。

Description

超高容量锂电池阴极材料及制备工艺
技术领域
本发明涉及电池技术领域,具体涉及一种超高容量锂电池阴极材料及制备工艺。
背景技术
电子信息时代使对锂离子电池的需求快速增长。由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。负极材料是锂离子电池的核心和关键。但是现有负极材料在实际应用中还有一些难以克服的弱点,例如,首次放电过程中与电解液发生反应形成表面钝化膜,导致电解液的消耗和首次库伦效率较低;普通电极的电位与金属锂的电位很接近,当电池过充电时,电极表面易析出金属锂,从而可能会引起短路,进而导致电池爆炸。
发明内容
本发明为解决上述问题,提供一种超高容量锂电池阴极材料及制备工艺。
本发明所要解决的技术问题采用以下的技术方案来实现:
一种超高容量锂电池阴极材料,所述阴极材料由以下重量份的原料组成:
石墨18-20份,铂金粉0.5-0.8份,碳化硅0.3-0.7份,钛白粉0.3-0.6份,碳酸锂1.3-1.8份,锡粉1.2-1.5份,二氧化硅0.5-0.8份,氧化铁0.3-0.6份,二氧化钛0.6-1.0份。
所述石墨是天然鳞片墨、微晶石墨、人造石墨或中间相炭微球。
所述石墨颗粒平均粒径为25~30um。
一种超高容量锂电池阴极材料制备工艺,包括以下步骤:
(1)将上述原料混合均匀并加入到高速粉碎机内,在1500至1800rpm的转速下粉碎30至40分钟得到混合粉料;
(2)将混合粉料加入到低速冲击式球化粉碎机内,在800至1000rpm的转速下整形和球形化15至20分钟,得到球形混合粉料;
(3)利用氧化剂对球形混合粉料进行纯化处理;
(4)将纯化处理后的物料制成氧化石墨水溶液,超声处理后得到不同二维尺度的氧化石墨水溶液;
(5)将步骤(4)得到的不同二维尺度的氧化石墨水溶液按比例混合,超声分散均匀后得到具有分散尺度的复合氧化石墨水溶液,然后通过还原法得到具有分散尺度的石墨水溶液,再经干燥处理后得到具有分散尺度的复合石墨;
(6)将干燥后的复合石墨在浓度1.0M至1.2M的掺杂多价态过渡金属盐溶液中浸渍20至30小时,反应温度25至3,然后过滤、脱水烘干;
(7)将上述处理后的复合石墨与5~8%的有机物混合包覆形成包覆石墨;
(8)将包覆石墨进行碳化处理或石墨化处理,在保护气氛中加热500至550℃,保温4小时,然后降至室温。
所述步骤(3)中纯化处理采用的氧化剂是双氧水、过氧乙酸、二氧化氯、氯气、氢氧化钠、浓硫酸、硝酸、浓盐酸、高氯酸、其中任意两种或三种氧化剂的混合物。
所述步骤(6)中掺杂多价态过渡金属元素为Ag、Cu、Cr、Fe、Co、Ni、V、Mo或Sn,盐溶液采用硝酸盐,碳酸盐,硫酸盐、盐酸盐或含有掺杂元素的络盐溶液。
所述步骤(7)中的有机物混合包覆采用的包覆材料为水溶性的聚乙烯醇、丁苯橡胶乳SBR、羧甲基纤维素CMC、有机溶剂系的聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯、聚偏氟乙烯或聚丙烯腈。
本发明的有益效果为:与其它商业化的阴极材料相比,本发明的阴极材料具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点。避免了在充放电时产生的体积效应,保证了材料的在充放电过程中的稳定性,解决了单一钛酸锂负极材料容量偏低等缺点。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合实施例,进一步阐述本发明。
实施例1
一种超高容量锂电池阴极材料,所述阴极材料由以下重量份的原料组成:
石墨18份,铂金粉0.5份,碳化硅0.3份,钛白粉0.3份,碳酸锂1.3份,锡粉1.2份,二氧化硅0.5份,氧化铁0.3份,二氧化钛0.6份。
实施例2
一种超高容量锂电池阴极材料,所述阴极材料由以下重量份的原料组成:
石墨19份,铂金粉0.7份,碳化硅0.5份,钛白粉0.4,碳酸锂1.5份,锡粉1.3份,二氧化硅0.6份,氧化铁0.5份,二氧化钛0.8份。
实施例3
一种超高容量锂电池阴极材料,所述阴极材料由以下重量份的原料组成:
石墨20份,铂金粉0.8份,碳化硅0.7份,钛白粉0.6份,碳酸锂1.8份,锡粉1.5份,二氧化硅0.8份,氧化铁0.6份,二氧化钛1.0份。
所述石墨是天然鳞片墨、微晶石墨、人造石墨或中间相炭微球。
所述石墨颗粒平均粒径为25~30um。
一种超高容量锂电池阴极材料制备工艺,包括以下步骤:
(1)将上述原料混合均匀并加入到高速粉碎机内,在1500至1800rpm的转速下粉碎30至40分钟得到混合粉料;
(2)将混合粉料加入到低速冲击式球化粉碎机内,在800至1000rpm的转速下整形和球形化15至20分钟,得到球形混合粉料;
(3)利用氧化剂对球形混合粉料进行纯化处理;
(4)将纯化处理后的物料制成氧化石墨水溶液,超声处理后得到不同二维尺度的氧化石墨水溶液;
(5)将步骤(4)得到的不同二维尺度的氧化石墨水溶液按比例混合,超声分散均匀后得到具有分散尺度的复合氧化石墨水溶液,然后通过还原法得到具有分散尺度的石墨水溶液,再经干燥处理后得到具有分散尺度的复合石墨;
(6)将干燥后的复合石墨在浓度1.0M至1.2M的掺杂多价态过渡金属盐溶液中浸渍20至30小时,反应温度25至3,然后过滤、脱水烘干;
(7)将上述处理后的复合石墨与5~8%的有机物混合包覆形成包覆石墨;
(8)将包覆石墨进行碳化处理或石墨化处理,在保护气氛中加热500至550℃,保温4小时,然后降至室温。
所述步骤(3)中纯化处理采用的氧化剂是双氧水、过氧乙酸、二氧化氯、氯气、氢氧化钠、浓硫酸、硝酸、浓盐酸、高氯酸、其中任意两种或三种氧化剂的混合物。
所述步骤(6)中掺杂多价态过渡金属元素为Ag、Cu、Cr、Fe、Co、Ni、V、Mo或Sn,盐溶液采用硝酸盐,碳酸盐,硫酸盐、盐酸盐或含有掺杂元素的络盐溶液。
所述步骤(7)中的有机物混合包覆采用的包覆材料为水溶性的聚乙烯醇、丁苯橡胶乳SBR、羧甲基纤维素CMC、有机溶剂系的聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯、聚偏氟乙烯或聚丙烯腈。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的仅为本发明的优选例,并不用来限制本发明,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种超高容量锂电池阴极材料,其特征在于,所述阴极材料由以下重量份的原料组成:
石墨18-20份,铂金粉0.5-0.8份,碳化硅0.3-0.7份,钛白粉0.3-0.6份,碳酸锂1.3-1.8份,锡粉1.2-1.5份,二氧化硅0.5-0.8份,氧化铁0.3-0.6份,二氧化钛0.6-1.0份。
2.如权利要求1所述的超高容量锂电池阴极材料,其特征在于,所述石墨是天然鳞片墨、微晶石墨、人造石墨或中间相炭微球。
3.如权利要求1或2所述的超高容量锂电池阴极材料,其特征在于,所述石墨颗粒平均粒径为25~30um。
4.一种超高容量锂电池阴极材料制备工艺,包括以下步骤:
(1)将上述原料混合均匀并加入到高速粉碎机内,在1500至1800rpm的转速下粉碎30至40分钟得到混合粉料;
(2)将混合粉料加入到低速冲击式球化粉碎机内,在800至1000rpm的转速下整形和球形化15至20分钟,得到球形混合粉料;
(3)利用氧化剂对球形混合粉料进行纯化处理;
(4)将纯化处理后的物料制成氧化石墨水溶液,超声处理后得到不同二维尺度的氧化石墨水溶液;
(5)将步骤(4)得到的不同二维尺度的氧化石墨水溶液按比例混合,超声分散均匀后得到具有分散尺度的复合氧化石墨水溶液,然后通过还原法得到具有分散尺度的石墨水溶液,再经干燥处理后得到具有分散尺度的复合石墨;
(6)将干燥后的复合石墨在浓度1.0M至1.2M的掺杂多价态过渡金属盐溶液中浸渍20至30小时,反应温度25至3,然后过滤、脱水烘干;
(7)将上述处理后的复合石墨与5~8%的有机物混合包覆形成包覆石墨;
(8)将包覆石墨进行碳化处理或石墨化处理,在保护气氛中加热500至550℃,保温4小时,然后降至室温。
5.如权利要求4所述的超高容量锂电池阴极材料制备工艺,其特征在于,所述步骤(3)中纯化处理采用的氧化剂是双氧水、过氧乙酸、二氧化氯、氯气、氢氧化钠、浓硫酸、硝酸、浓盐酸、高氯酸、其中任意两种或三种氧化剂的混合物。
6.如权利要求4所述的超高容量锂电池阴极材料制备工艺,其特征在于,所述步骤(6)中掺杂多价态过渡金属元素为Ag、Cu、Cr、Fe、Co、Ni、V、Mo或Sn,盐溶液采用硝酸盐,碳酸盐,硫酸盐、盐酸盐或含有掺杂元素的络盐溶液。
7.如权利要求4所述的超高容量锂电池阴极材料制备工艺,其特征在于,所述步骤(7)中的有机物混合包覆采用的包覆材料为水溶性的聚乙烯醇、丁苯橡胶乳SBR、羧甲基纤维素CMC、有机溶剂系的聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯、聚偏氟乙烯或聚丙烯腈。
CN201611205164.3A 2016-12-23 2016-12-23 超高容量锂电池阴极材料及制备工艺 Withdrawn CN106654271A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611205164.3A CN106654271A (zh) 2016-12-23 2016-12-23 超高容量锂电池阴极材料及制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611205164.3A CN106654271A (zh) 2016-12-23 2016-12-23 超高容量锂电池阴极材料及制备工艺

Publications (1)

Publication Number Publication Date
CN106654271A true CN106654271A (zh) 2017-05-10

Family

ID=58828096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611205164.3A Withdrawn CN106654271A (zh) 2016-12-23 2016-12-23 超高容量锂电池阴极材料及制备工艺

Country Status (1)

Country Link
CN (1) CN106654271A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203978A (zh) * 2020-09-17 2022-03-18 湖南中科星城石墨有限公司 一种高容量石墨负极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697215A (zh) * 2005-05-27 2005-11-16 深圳市贝特瑞电子材料有限公司 锂离子电池复合碳负极材料及其制备方法
CN103253655A (zh) * 2013-04-15 2013-08-21 中国科学院宁波材料技术与工程研究所 一种具有分散尺度的复合石墨烯及其制备方法
CN104218214A (zh) * 2013-05-28 2014-12-17 上海杉杉新能源科技有限公司 一种锂离子电池负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697215A (zh) * 2005-05-27 2005-11-16 深圳市贝特瑞电子材料有限公司 锂离子电池复合碳负极材料及其制备方法
CN103253655A (zh) * 2013-04-15 2013-08-21 中国科学院宁波材料技术与工程研究所 一种具有分散尺度的复合石墨烯及其制备方法
CN104218214A (zh) * 2013-05-28 2014-12-17 上海杉杉新能源科技有限公司 一种锂离子电池负极材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203978A (zh) * 2020-09-17 2022-03-18 湖南中科星城石墨有限公司 一种高容量石墨负极材料及其制备方法和应用
CN114203978B (zh) * 2020-09-17 2024-05-17 湖南中科星城石墨有限公司 一种高容量石墨负极材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN103022446B (zh) 一种锂离子电池硅氧化物/碳负极材料及其制备方法
CN105070894B (zh) 一种锂离子电池用多孔硅基复合负极材料、制备方法及用途
CN102522530B (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
CN102983313B (zh) 硅碳复合材料及其制备方法、锂离子电池
CN105355911B (zh) 一种氧化铝包覆镍钴锰酸锂正极材料的制备方法
CN108539163A (zh) 一种介孔中空氮掺杂碳纳米球/二氧化锰锌离子电池正极材料的制备方法
WO2016201979A1 (zh) 一种硅碳复合负极材料的制备方法
CN103078087B (zh) 一种钛酸锂/碳纳米管复合负极材料的制备方法
CN108281634A (zh) 一种石墨烯包覆锂离子电池石墨负极材料的方法及其应用
CN107221665A (zh) 一种锌离子电池钒氧化物复合电极材料的制备方法
CN106159229A (zh) 硅基复合材料、制备方法及包含该复合材料的锂离子电池
CN105460917A (zh) 一种具有分级结构的氮掺杂碳纳米管及制备方法
CN102881870A (zh) 一种锂离子电池硅基锂盐复合负极材料及其制备方法与应用
CN112186145A (zh) 一种镁还原碳包覆氧化亚硅材料及其制备方法、应用
CN106058179A (zh) 一种碳纳米管/二氧化硅/碳复合负极材料的制备方法
CN102983307A (zh) 锂离子电池石墨负极的制备方法
CN108493444A (zh) 一种锂锰扣式电池的正极及其制备方法
CN108199014A (zh) 一种多孔氮掺杂碳/Fe2O3/石墨烯泡沫柔性复合材料、制备方法及其应用
CN109378451A (zh) 一种石墨烯复合二氧化锡纤维材料及其制备方法和应用
CN102820459A (zh) 一种介孔二氧化钛合成高比能钛酸锂材料的制备方法
CN109473665A (zh) 一种纳米硅基材料及其制备方法和应用
CN106276910A (zh) 一种锂离子电池用低温石墨负极材料制备方法
CN107317012B (zh) 一种高性能锂离子二次电池负极材料Si/C复合材料及其制备方法
CN109494399A (zh) 一种硅/固态电解质纳米复合材料及其制备方法和应用
CN112216831B (zh) 一种合成锂离子动力电池高容量负极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170510