CN106653946A - 一种碲化镉薄膜太阳能电池吸收层的沉积方法 - Google Patents

一种碲化镉薄膜太阳能电池吸收层的沉积方法 Download PDF

Info

Publication number
CN106653946A
CN106653946A CN201611223290.1A CN201611223290A CN106653946A CN 106653946 A CN106653946 A CN 106653946A CN 201611223290 A CN201611223290 A CN 201611223290A CN 106653946 A CN106653946 A CN 106653946A
Authority
CN
China
Prior art keywords
cdse
cadmium telluride
solar battery
absorbed layer
deposition process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611223290.1A
Other languages
English (en)
Other versions
CN106653946B (zh
Inventor
马立云
彭寿
潘锦功
殷新建
蒋猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd
Original Assignee
CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd filed Critical CNBM (CHENGDU) OPTOELECTRONIC MATERIAL Co Ltd
Priority to CN201611223290.1A priority Critical patent/CN106653946B/zh
Publication of CN106653946A publication Critical patent/CN106653946A/zh
Application granted granted Critical
Publication of CN106653946B publication Critical patent/CN106653946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种碲化镉薄膜太阳能电池吸收层的沉积方法,它以三元组合物CdSexTe1‑x作为原材料,利用近空间升华法在具有TCO/CdS薄膜的玻璃衬底上连续多次沉积CdSexTe1‑x,其中CdSexTe1‑x的x值为0≤x≤1。本发明通过控制不同蒸发源CdSexTe1‑x中Se元素的含量及工艺温度获得获得较小的太阳电池吸收层的带隙,使电池吸收谱向红外方向拓展,提高了电池的短路电流;同时使吸收层带隙连续渐变,形成V形带隙,提高了电池的填充因子和开路电压;而多源蒸发沉积方法可以减短生产节拍时间,提高产能。

Description

一种碲化镉薄膜太阳能电池吸收层的沉积方法
技术领域
本发明涉及一种碲化镉薄膜太阳能电池吸收层的沉积方法,属于碲化镉薄膜太阳能电池技术领域。
背景技术
碲化镉(CdTe)薄膜太阳能电池是以多晶n型的硫化镉层和多晶p型碲化镉层做pn结,再加上相应的透明导电膜前电极和金属膜背电极所组成的薄膜太阳能电池器件。目前其组件效率已经达到18%左右,实验室效率达到22%以上,理论转化效率可以达到33%。碲化镉薄膜太阳能电池由于制造成本低,转化效率高,在光伏领域有着非常重要的角色。
目前CdTe薄膜太阳能电池的典型基本结构如图1所示为:玻璃衬底101/透明导电膜层(TCO)102/硫化镉层(CdS)103/碲化镉层(CdTe)104/背接触-背电极层105/封装材料106/背板玻璃107。其中碲化镉层为薄膜太阳能电池的吸收层,它是以二元化合物碲化镉(CdTe)作为原材料,通过近空间升华(CSS)或者气相输运沉积(VTD)的方法在已做好TCO/CdS薄膜的玻璃衬底上沉积。由于碲化镉(CdTe)本身材料带隙(1.45eV)的限制,碲化镉薄膜太阳能电池对太阳光的吸收波长只能到850nm左右,无法进一步吸收红外光,这限制了其对太阳辐照的利用率。
发明内容
有鉴于此,本发明提供一种碲化镉薄膜太阳能电池吸收层的沉积方法,它能减小吸收层的带隙,使电池的吸收谱向长波方向移动,提高电池的短路电流;同时使吸收层带隙连续渐变,形成V形带隙,提高电池的填充因子和开路电压。
为解决以上技术问题,本发明的技术方案提供了一种碲化镉薄膜太阳能电池吸收层的沉积方法,它以三元组合物CdSexTe1-x作为原材料,利用近空间升华法在具有TCO/CdS薄膜的玻璃衬底上连续多次沉积CdSexTe1-x,其中CdSexTe1-x的x值为0≤x≤1。
进一步的,上述近空间升华法的蒸发源个数与CdSexTe1-x沉积次数匹配,多源蒸发沉积可以减短生成节拍时间,提高产能。
进一步的,上述TCO/CdS薄膜的玻璃衬底上每次沉积的CdSexTe1-x中x值均不相同。
进一步的,上述TCO/CdS薄膜的玻璃衬底上沉积的CdSexTe1-x中,除第一次沉积和最后一次沉积的CdSexTe1-x外,其余沉积的CdSexTe1-x中0<x<1。也就是说,第一层吸收层的材料可以为三元合金CdSeTe,也可为纯的CdTe或纯的CdSe材料;最后一层吸收层的材料可以为三元合金CdSeTe,也可为纯的CdTe或p型CdSe薄膜;而其余中间吸收层的材料必须为具有一定组分比的CdSeTe三元合金,且每层Se含量不同。
进一步的,所述CdSexTe1-x的沉积次数不少于三次。
进一步的,本发明提供的一种碲化镉薄膜太阳能电池吸收层的沉积方法,具体包括以下步骤:
(1)准备具有TCO/CdS薄膜的玻璃衬底和数个蒸发源,每个蒸发源内的材料为三元组合物CdSexTe1-x,且0≤x≤1;当然优选的是,每个蒸发源中三元组合物CdSexTe1-x的x值均不相同;
(2)采用近空间升华法在玻璃衬底上沉积CdSexTe1-x,第一个蒸发源在玻璃衬底上沉积好第一层CdSexTe1-x后传至第二个蒸发源沉积第二层CdSexTe1-x,如此往复,直至传至最后一个蒸发源沉积最后一层CdSexTe1-x;所述第一层和最后一层CdSexTe1-x中0≤x≤1,其余各层CdSexTe1-x中0<x<1。
上述蒸发源为近空间升华法所使用的蒸发坩埚。
为了拓展碲化镉(CdTe)太阳能电池的红外吸收,需要降低其吸收层的带隙。掺杂Se元素部分代替CdTe的中的Te元素,可以有效改变CdTe的带隙。已知的结果表明,随着CdSexTe1-x中Se元素的含量从0开始增加,材料的带隙从纯CdTe 1.45eV的带隙开始降低,当Se元素增加到一定量(x≈0.3)后,CdSexTe1-x的带隙达到最小值(约为1.36eV)。随着Se的含量继续增加,CdSexTe1-x的带隙开始增大,当x=1时,即为纯CdSe,此时材料带隙为CdSe的带隙1.7ev。
从以上可以看出,调整CdSexTe1-x中Se元素的含量,可以控制整个吸收层的带隙。调整CdSexTe1-x中Se元素的含量为一适当值,就可以得到低于CdTe带隙的吸收层,提高CdTe太阳电池在红外波长的光吸收,进而提高CdTe太阳电池的短路电流。
但是由于吸收层CdTe(带隙1.45eV)与窗口层CdS(带隙2.4eV)的带隙差,如果减小吸收层的带隙,会造成更大的带隙失配,在界面形成势垒,降低太阳电池的开路电压和填充因子。因此在CdTe/CdS的界面处,吸收层应该有较高的带隙。同时由于Se元素的掺杂,会在吸收层产生更多缺陷,增大光生载流子的复合,迁移率降低。为了提高作为p型半导体的吸收层少子(电子)的迁移率,需要吸收层导带带隙从CdTe/CdS界面向背接触层逐渐升高。
为了使CdTe太阳能电池的吸收层达到理想的能带结构及分布,需要CdSexTe1-x吸收层Se含量有规律的分布,因此本发明以三元组合物CdSexTe1-x作为吸收层原材料,采用多个不同的蒸发源,蒸发沉积不同Se含量的CdSexTe1-x(0≤x≤1)。本发明通过改变吸收层的组分降低了部分吸收层的带隙,使碲化镉薄膜太阳能电池的吸收谱向长波方向拓展,提高了电池的短路电流;由于在CdSeTe的沉积以及后续的高温处理过程中各层之间Se元素和Te元素的互相扩散,使整个吸收层中形成Se元素的梯度分布,进而使吸收层形成带隙梯度分布,提高了载流子的收集效率,从而提供了电池的开路电压和填充因子;采用多个蒸发源的近空间升华方法沉积吸收层,多源蒸发沉积可以减短生产节拍时间,提高产能。
附图说明
图1为现有碲化镉薄膜太阳能电池的典型结构示意图;
图2为本发明沉积方法的示意图;
图3为采用本发明方法制备的碲化镉薄膜太阳能电池IV曲线与传统电池IV曲线对比图;
图4为采用本发明方法制备的碲化镉薄膜太阳能电池的外量子效率曲线与传统电池的外量子效率曲线对比图。
图例说明:
101、玻璃衬底;102、透明导电膜层;103、硫化镉层;104、碲化镉层;105、背接触-背电极层;106、封装材料;107背板玻璃;
201、传输方向;202、基板;203、蒸发坩埚。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
参见图2,本发明公开了一种碲化镉薄膜太阳能电池吸收层的沉积方法,它包括以下步骤:
(1)准备基板202和蒸发坩埚203,基板202为具有TCO/CdS薄膜的玻璃衬底,蒸发坩埚203为数个,每个蒸发坩埚内的材料为三元组合物CdSexTe1-x,且0≤x≤1;优选每个蒸发坩埚内的三元组合物CdSexTe1-x的x值均不相同;
(2)将基板202传输到第一个蒸发坩埚上方,采用近空间升华法在基板202上沉积一定厚度的CdSexTe1-x(0≤x≤1),此处沉积的CdSexTe1-x材料可以为纯CdTe,也可以为纯CdSe材料;
(3)沿传输方向201将沉积好第一层CdSexTe1-x的基板传输到第二个蒸发坩埚上方,采用近空间升华法继续沉积第二层CdSexTe1-x(0≤x≤1),此处沉积的CdSexTe1-x材料为有一定组分比的CdSeTe三元合金;
(4)如上重复沿传输方向201依次传输基板沉积CdSeTe三元合金,直至传输到最后一个蒸发坩埚上方沉积最后一层CdSexTe1-x(0≤x≤1),此处沉积的CdSexTe1-x薄膜可以为纯CdTe,也可以为p型的CdSe薄膜。
下面通过具体实施例对本发明进行进一步说明。
对比实施例1:
本实施例用于说明传统碲化镉薄膜太阳能电池的制备方法。
(1)取市售的FTO导电玻璃作为玻璃衬底,其表面附着有透明导电膜,透明导电膜层的材料为氟掺杂的氧化锡,透明导电膜层上沉积氧化锡高阻层,高阻层上沉积硫化镉层。
(2)硫化镉层沉积吸收层,吸收层材料为纯的CdTe;
(3)吸收层上喷涂一定浓度的CdCl2溶液,然后在大气条件下高温退火处理;
(4)依次溅射Cu、Mo、Al、Cr金属材料作为背电极;
(5)在大气气氛下进行高温退火处理;
(6)根据应用需求,在制备的过程中对样品进行激光刻蚀实现电池串联,最后经过封装工艺得到碲化镉薄膜电池A。
对比实施例2:
本实施例用于说明采用CdSexTe1-x作吸收层材料的碲化镉薄膜太阳能电池的制备方法。
(1)取市售的FTO导电玻璃作为玻璃衬底,其表面附着有透明导电膜,透明导电膜层的材料为氟掺杂的氧化锡,透明导电膜层上沉积氧化锡高阻层,高阻层上沉积硫化镉层。
(2)采用近空间升华法在硫化镉层沉积吸收层,吸收层材料为三元合金CdSe0.3Te0.7
(3)吸收层上喷涂一定浓度的CdCl2溶液,然后在大气条件下高温退火处理;
(4)依次溅射Cu、Mo、Al、Cr金属材料作为背电极;
(5)在大气气氛下进行高温退火处理;
(6)根据应用需求,在制备的过程中对样品进行激光刻蚀实现电池串联,最后经过封装工艺得到碲化镉薄膜电池B。
具体实施例3:
本实施例用于说明采用本发明公开的吸收层沉积方法来制备碲化镉薄膜太阳能电池。
(1)取市售的FTO导电玻璃作为玻璃衬底,其表面附着有透明导电膜,透明导电膜层的材料为氟掺杂的氧化锡,透明导电膜层上沉积氧化锡高阻层,高阻层上沉积硫化镉层。
(2)硫化镉层沉积吸收层,具体为:在第一个蒸发源,用近空间升华法硫化镉层上沉积一定厚度的纯CdSe材料;然后传输到第二个蒸发源,近空间升华法沉积一定厚度的三元合金CdSe0.3Te0.7;最后传输到第三个蒸发源,近空间升华法沉积一定厚度的CdTe薄膜完成吸收层的沉积;
(3)吸收层上喷涂一定浓度的CdCl2溶液,然后在大气条件下高温退火处理;
(4)依次溅射Cu、Mo、Al、Cr金属材料作为背电极;
(5)在大气气氛下进行高温退火处理;
(6)根据应用需求,在制备的过程中对样品进行激光刻蚀实现电池串联,最后经过封装工艺得到碲化镉薄膜电池C。
将上述三个实施例得到的碲化镉薄膜太阳能电池A、B、C进行性能测试,具体见下表所示:
其IV曲线和外量子效率曲线见图3、图4所示。
从上述表格和曲线对比图中可以看出,本发明方法通过控制不同蒸发源CdSexTe1-x中Se元素的含量及工艺温度获得获得较小的太阳电池吸收层的带隙,使电池吸收谱向红外方向拓展,提高了电池的短路电流;同时使吸收层带隙连续渐变,形成V形带隙,提高了电池的填充因子和开路电压。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:它以三元组合物CdSexTe1-x作为原材料,利用近空间升华法在具有TCO/CdS薄膜的玻璃衬底上连续多次沉积CdSexTe1-x,其中CdSexTe1-x的x值为0≤x≤1。
2.根据权利要求1所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述近空间升华法的蒸发源个数与CdSexTe1-x沉积次数匹配。
3.根据权利要求1所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述TCO/CdS薄膜的玻璃衬底上每次沉积的CdSexTe1-x中x值均不相同。
4.根据权利要求1或3所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述TCO/CdS薄膜的玻璃衬底上沉积的CdSexTe1-x中,除第一次沉积和最后一次沉积的CdSexTe1-x外,其余沉积的CdSexTe1-x中0<x<1。
5.根据权利要求1所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述CdSexTe1-x的沉积次数不少于三次。
6.根据权利要求1所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:具体包括以下步骤:
(1)准备具有TCO/CdS薄膜的玻璃衬底和数个蒸发源,每个蒸发源内的材料为三元组合物CdSexTe1-x,且0≤x≤1;
(2)采用近空间升华法在玻璃衬底上沉积CdSexTe1-x,第一个蒸发源在玻璃衬底上沉积好第一层CdSexTe1-x后传至第二个蒸发源沉积第二层CdSexTe1-x,如此往复,直至传至最后一个蒸发源沉积最后一层CdSexTe1-x
7.根据权利要求6所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述蒸发源为近空间升华法所使用的蒸发坩埚。
8.根据权利要求6所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述蒸发源中三元组合物CdSexTe1-x的x值均不相同。
9.根据权利要求6或8所述的一种碲化镉薄膜太阳能电池吸收层的沉积方法,其特征在于:所述第一层和最后一层CdSexTe1-x中0≤x≤1,其余各层CdSexTe1-x中0<x<1。
CN201611223290.1A 2016-12-27 2016-12-27 一种碲化镉薄膜太阳能电池吸收层的沉积方法 Active CN106653946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611223290.1A CN106653946B (zh) 2016-12-27 2016-12-27 一种碲化镉薄膜太阳能电池吸收层的沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611223290.1A CN106653946B (zh) 2016-12-27 2016-12-27 一种碲化镉薄膜太阳能电池吸收层的沉积方法

Publications (2)

Publication Number Publication Date
CN106653946A true CN106653946A (zh) 2017-05-10
CN106653946B CN106653946B (zh) 2018-07-06

Family

ID=58831511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611223290.1A Active CN106653946B (zh) 2016-12-27 2016-12-27 一种碲化镉薄膜太阳能电池吸收层的沉积方法

Country Status (1)

Country Link
CN (1) CN106653946B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012241A1 (en) * 2019-07-25 2021-01-28 China Triumph International Engineering Co., Ltd. Method for producing a double graded cdsete thin film structure
WO2021022558A1 (en) * 2019-08-08 2021-02-11 China Triumph International Engineering Co., Ltd. A method to deposit thin film high quality absorber layer
CN114990520A (zh) * 2022-05-20 2022-09-02 中国科学院长春光学精密机械与物理研究所 硒碲合金薄膜、光导型红外光探测器及制备方法
CN114424348B (zh) * 2019-07-25 2024-04-26 中国建材国际工程集团有限公司 用于产生双梯度CdSeTe薄膜结构的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794840A (zh) * 2010-02-11 2010-08-04 上海联孚新能源科技有限公司 柔性CdTe薄膜太阳能电池制备方法
CN102800719A (zh) * 2012-07-27 2012-11-28 中国科学院电工研究所 一种柔性CdTe薄膜太阳能电池及其制备方法
CN103904166A (zh) * 2014-04-23 2014-07-02 桂林理工大学 一种CdSexTey量子点光电薄膜的制备方法
CN104051565A (zh) * 2013-03-14 2014-09-17 通用电气公司 制造光伏器件的方法
US20140360565A1 (en) * 2013-06-07 2014-12-11 First Solar, Inc. Photovoltaic devices and method of making
CN104377261A (zh) * 2014-10-18 2015-02-25 中山市创科科研技术服务有限公司 一种CdTe薄膜太阳能电池板及制备方法
CN104638038A (zh) * 2013-11-06 2015-05-20 恒基伟业知识产权管理顾问(北京)有限公司 一种碲化镉薄膜太阳能电池的电子反射层及制造方法
CN105556682A (zh) * 2013-06-21 2016-05-04 第一阳光公司 光生伏打装置
CN105765719A (zh) * 2013-05-02 2016-07-13 第阳光公司 光伏装置及制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794840A (zh) * 2010-02-11 2010-08-04 上海联孚新能源科技有限公司 柔性CdTe薄膜太阳能电池制备方法
CN102800719A (zh) * 2012-07-27 2012-11-28 中国科学院电工研究所 一种柔性CdTe薄膜太阳能电池及其制备方法
CN104051565A (zh) * 2013-03-14 2014-09-17 通用电气公司 制造光伏器件的方法
CN105765719A (zh) * 2013-05-02 2016-07-13 第阳光公司 光伏装置及制作方法
US20140360565A1 (en) * 2013-06-07 2014-12-11 First Solar, Inc. Photovoltaic devices and method of making
CN105556682A (zh) * 2013-06-21 2016-05-04 第一阳光公司 光生伏打装置
CN104638038A (zh) * 2013-11-06 2015-05-20 恒基伟业知识产权管理顾问(北京)有限公司 一种碲化镉薄膜太阳能电池的电子反射层及制造方法
CN103904166A (zh) * 2014-04-23 2014-07-02 桂林理工大学 一种CdSexTey量子点光电薄膜的制备方法
CN104377261A (zh) * 2014-10-18 2015-02-25 中山市创科科研技术服务有限公司 一种CdTe薄膜太阳能电池板及制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012241A1 (en) * 2019-07-25 2021-01-28 China Triumph International Engineering Co., Ltd. Method for producing a double graded cdsete thin film structure
CN114424348A (zh) * 2019-07-25 2022-04-29 中国建材国际工程集团有限公司 用于产生双梯度CdSeTe薄膜结构的方法
CN114424348B (zh) * 2019-07-25 2024-04-26 中国建材国际工程集团有限公司 用于产生双梯度CdSeTe薄膜结构的方法
WO2021022558A1 (en) * 2019-08-08 2021-02-11 China Triumph International Engineering Co., Ltd. A method to deposit thin film high quality absorber layer
CN114450807A (zh) * 2019-08-08 2022-05-06 中国建材国际工程集团有限公司 沉积薄膜高质量吸收层的方法
US11563138B2 (en) 2019-08-08 2023-01-24 China Triumph International Engineering Co., Ltd. Method to deposit thin film high quality absorber layer
EP4010933A4 (en) * 2019-08-08 2023-05-03 China Triumph International Engineering Co., Ltd. METHOD FOR DEPOSITING A LAYER OF HIGH-QUALITY THIN-FILM ABSORBER
CN114450807B (zh) * 2019-08-08 2023-07-07 中国建材国际工程集团有限公司 沉积薄膜高质量吸收层的方法
CN114990520A (zh) * 2022-05-20 2022-09-02 中国科学院长春光学精密机械与物理研究所 硒碲合金薄膜、光导型红外光探测器及制备方法
CN114990520B (zh) * 2022-05-20 2023-08-22 中国科学院长春光学精密机械与物理研究所 硒碲合金薄膜、光导型红外光探测器及制备方法

Also Published As

Publication number Publication date
CN106653946B (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
McCandless et al. Cadmium telluride solar cells
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
WO2021159728A1 (zh) 叠层光伏器件及生产方法
US20110083743A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
US8283187B2 (en) Photovoltaic device and method for making
KR101893411B1 (ko) 황화아연 버퍼층을 적용한 czts계 박막 태양전지 제조방법
JP2011205098A (ja) 薄膜太陽電池
CN109560144B (zh) 一种cigs薄膜太阳能电池及其制备方法
WO2021243896A1 (zh) 一种高效碲化镉薄膜太阳能电池及其制备方法
US8785232B2 (en) Photovoltaic device
CN104332515B (zh) 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法
CN106653946B (zh) 一种碲化镉薄膜太阳能电池吸收层的沉积方法
Mazur et al. Solar cells based on CdTe thin films
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
JPH11150282A (ja) 光起電力素子及びその製造方法
KR101906712B1 (ko) 광흡수층 조성물, 이를 포함하는 투명태양전지 및 이의 제조방법
CN103348488B (zh) 具有金属硫氧化物窗口层的光伏装置
KR102015985B1 (ko) 태양전지용 cigs 박막의 제조방법
US20120080306A1 (en) Photovoltaic device and method for making
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
KR102076544B1 (ko) 광흡수층의 제조방법
CN219679160U (zh) 光伏电池
KR102337783B1 (ko) 황화주석 광흡수층을 구비하는 박막태양전지 및 이의 제조방법
KR20170036606A (ko) 이중 광흡수층을 포함하는 czts계 박막 태양전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant