WO2021243896A1 - 一种高效碲化镉薄膜太阳能电池及其制备方法 - Google Patents

一种高效碲化镉薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2021243896A1
WO2021243896A1 PCT/CN2020/118393 CN2020118393W WO2021243896A1 WO 2021243896 A1 WO2021243896 A1 WO 2021243896A1 CN 2020118393 W CN2020118393 W CN 2020118393W WO 2021243896 A1 WO2021243896 A1 WO 2021243896A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cadmium telluride
solar cell
film solar
efficiency
Prior art date
Application number
PCT/CN2020/118393
Other languages
English (en)
French (fr)
Inventor
彭寿
陈瑛
殷新建
周显华
魏梦楠
Original Assignee
中国建材国际工程集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材国际工程集团有限公司 filed Critical 中国建材国际工程集团有限公司
Priority to EP20939025.1A priority Critical patent/EP4163983A1/en
Publication of WO2021243896A1 publication Critical patent/WO2021243896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of thin film solar cells, in particular to a high-efficiency cadmium telluride thin film solar cell and a preparation method thereof.
  • Cadmium telluride solar cells have the advantages of convenient manufacturing, lower cost and lighter weight than monocrystalline silicon solar cells.
  • Cadmium telluride thin-film solar cells are abbreviated as CdTe cells, which are thin-film solar cells based on the heterojunction of p-type CdTe and n-type CdSe.
  • CdTe cells are thin-film solar cells based on the heterojunction of p-type CdTe and n-type CdSe.
  • Generally standard cadmium telluride thin film solar cells are composed of five layers: back electrode, back contact layer, CdTe absorber layer, CdTe window layer, and TCO layer.
  • the production cost of cadmium telluride thin-film solar cells is much lower than that of crystalline silicon and other solar cell technologies. Secondly, it is very consistent with the solar spectrum and can absorb more than 95% of the sunlight.
  • CdTe batteries in many countries in the world have moved from the laboratory research stage to large-scale industrial production
  • the purpose of the present invention is to provide a high-efficiency cadmium telluride thin-film solar cell and a preparation method thereof in view of the deficiencies in the prior art.
  • a suitable amount of As is substituted for Cu to dope the cadmium-selenium telluride thin-film layer to achieve a high p-type doping density. , Get Voc>1V, conversion efficiency>23%, and make the cadmium telluride battery have long-term high-efficiency stability.
  • the first aspect of the present invention is a high-efficiency cadmium telluride thin-film solar cell.
  • the solar cell includes a substrate layer, a window layer, a light absorption layer, and a back electrode layer sequentially arranged from bottom to top;
  • the material of the window layer is magnesium-doped zinc oxide
  • the light absorption layer is an arsenic-doped cadmium selenide telluride thin film layer
  • the back electrode layer is composed of a composite metal material of molybdenum, aluminum and chromium.
  • the material of the substrate layer is one of an indium tin oxide conductive film layer, a TiO 2 conductive film layer, and an aluminum-doped zinc oxide conductive film layer.
  • the thickness of the window layer is 40-70 nm; the thickness of the light absorption layer is 2.0-4.0 ⁇ m; the thickness of the back electrode layer is 220-250 nm.
  • the molar percentage of magnesium in the magnesium-doped zinc oxide is 0-8 mol%; the molar percentage of arsenic in the arsenic-doped cadmium selenide tellurium is 3-20 mol%.
  • the second aspect of the present invention provides a method for preparing the above-mentioned high-efficiency cadmium telluride thin film solar cell, which includes the following steps:
  • step S4 The battery prepared in step S3 is etched and cleaned with hydrochloric acid with a mass concentration of 0.05-5%, and then a zinc telluride film layer is deposited on the battery by magnetron sputtering, and the thickness of the zinc telluride film layer 20-80nm;
  • step S5 The battery processed in step S4 is first scribed by laser 1, and the battery is divided into 200-300 units, and then photoresist coating and development are performed to fill the scribed units After scribing by laser 2, 200-300 lines are also scribed, the back electrode layer is deposited after scribing, and then the components are activated and annealed for conventional component packaging;
  • step S6 Perform electrical injection activation of cadmium telluride on the component packaged in step S5, and apply a certain bias voltage and current to the terminal of the battery.
  • the window layer is deposited by magnetron sputtering, screen printing, or radio frequency sputtering; the light absorbing layer is deposited by near-space sublimation, vapor transport deposition, or electrochemical deposition. ⁇ ;
  • the back electrode layer is deposited by magnetron sputtering.
  • the specific deposition process of the light absorption layer is as follows: first deposit a cadmium selenide film with a thickness of 100-1700 nm by the near-space sublimation method; then deposit an arsenic-doped cadmium telluride film with a thickness of 1300-3900 nm.
  • the specific preparation process of the arsenic-doped cadmium telluride material is: mixing a Cd 3 As 2 material with a purity greater than 5N and a CdTe material with a purity greater than 5N and then grinding; the concentration of arsenic in the mixed material is 1x10 15- 1x10 22 cm -3 .
  • the activation annealing temperature is 350-600°C and the time is 5-40 min; in S5, the activation annealing temperature is 150-280°C and the time is 5-30 min.
  • the electric injection temperature is 80-150° C., and the time is 3-15 min; the range of the bias voltage is Voc ⁇ 15%, and the range of the current is 1-3 times Jsc.
  • the present invention adopts the above technical solutions and has the following technical effects:
  • the material of the window layer of the cadmium telluride thin film solar cell of the present invention is magnesium-doped zinc oxide, and the material of the light absorption layer is arsenic-doped cadmium selenide telluride.
  • the cadmium selenide telluride thin film layer is doped by replacing Cu with an appropriate amount of As to achieve high With p-type doping density, Voc>1V, conversion efficiency>23%, and high conversion efficiency are obtained.
  • the preparation method of the present invention improves the performance of the cadmium telluride battery by means of electric injection regeneration, and the cadmium telluride battery prepared by the method has excellent initial performance, and makes the cadmium telluride battery have long-term high-efficiency stability.
  • the entire preparation process is simple to operate and easy to control.
  • Figure 1 is a schematic diagram of the structure of the high-efficiency cadmium telluride thin film solar cell of the present invention
  • the present invention provides a high-efficiency cadmium telluride thin-film solar cell, which includes a substrate layer 1, a window layer 2, a light absorption layer 3, and a back electrode layer 4 sequentially arranged from bottom to top; wherein,
  • the window layer 2 is made of magnesium-doped zinc oxide
  • the light absorption layer 3 is an arsenic-doped cadmium selenide telluride thin film layer
  • the back electrode layer 4 is composed of a composite metal material of molybdenum, aluminum and chromium.
  • the material of the substrate layer 1 is one of an indium tin oxide conductive film layer, a TiO 2 conductive film layer, and an aluminum-doped zinc oxide conductive film layer.
  • the thickness of the window layer 2 is 40-70 nm; the thickness of the light absorption layer 3 is 2.0-4.0 ⁇ m; the thickness of the back electrode layer 4 is 220-250 nm.
  • the molar percentage of magnesium in the magnesium-doped zinc oxide is 0-8 mol%; the molar percentage of arsenic in the arsenic-doped cadmium selenide tellurium is 3-20 mol%.
  • the method for preparing the above-mentioned high-efficiency cadmium telluride thin film solar cell includes the following steps:
  • step S4 The battery prepared in step S3 is etched and cleaned with hydrochloric acid with a mass concentration of 0.05-5%, and then a zinc telluride film layer is deposited on the battery by magnetron sputtering, and the thickness of the zinc telluride film layer 20-80nm;
  • step S5 The battery processed in step S4 is first scribed by laser 1, and the battery is divided into 200-300 units, and then photoresist coating and development are performed to fill the scribed units After scribing by laser 2, 200-300 lines are also scribed. After scribing, the back electrode layer 4 is deposited, and then the components are subjected to activation annealing treatment for conventional component packaging;
  • step S6 Perform electrical injection activation of cadmium telluride on the component packaged in step S5, and apply a certain bias voltage and current to the terminal of the battery.
  • the window layer 2 is deposited by magnetron sputtering, screen printing, or radio frequency sputtering; the light absorbing layer 3 is deposited by near-space sublimation or vapor transport deposition or electrical It is deposited by a chemical deposition method; the back electrode layer 4 is deposited by a magnetron sputtering method.
  • the specific deposition process of the light absorption layer 3 is: first deposit a cadmium selenide film with a thickness of 100-1700 nm by the near-space sublimation method; then deposit an arsenic-doped cadmium telluride film with a thickness of 1300-3900nm.
  • the specific preparation process of the arsenic-doped cadmium telluride material is: mixing a Cd 3 As 2 material with a purity greater than 5N and a CdTe material with a purity greater than 5N and then grinding, which is grinding under vacuum conditions;
  • the concentration of arsenic in the mixed material is 1 ⁇ 10 15 -1 ⁇ 10 22 cm -3 .
  • the activation annealing temperature is 350-600°C and the time is 5-40 min; in S5, the activation annealing temperature is 150-280°C and the time is 5-30 min.
  • the electrical injection temperature is 80-150° C., and the time is 3-15 min; the range of the bias voltage is Voc ⁇ 15%, and the range of the current is 1-3 times Jsc.
  • the cadmium telluride thin film solar cell of the present invention uses an appropriate amount of As instead of Cu to dope the cadmium selenium telluride thin film layer to achieve high p-type doping density, obtain Voc>1V, conversion efficiency>23%, High conversion efficiency.

Abstract

本发明公开了一种高效碲化镉薄膜太阳能电池及其制备方法,由下至上包括依次设置的衬底层、窗口层、光吸收层和背电极层;其中,所述窗口层的材料为掺镁氧化锌,所述光吸收层为掺砷碲硒镉薄膜层,所述背电极层由钼、铝和铬的复合金属材料构成。本发明通过电注入再生的方式,以适量As替代Cu来掺杂碲硒镉薄膜层,实现高的p型掺杂密度,得到Voc>1V,转换效率>23%,转换效率高,整个制备过程操作简单且容易控制。

Description

一种高效碲化镉薄膜太阳能电池及其制备方法 技术领域
本发明涉及薄膜太阳能电池技术领域,尤其涉及一种高效碲化镉薄膜太阳能电池及其制备方法。
背景技术
碲化镉太阳能电池,较单晶硅太阳能电池有制作方便、成本低廉和重量较轻等优点。碲化镉薄膜太阳能电池简称CdTe电池,它是一种以p型CdTe和n型CdSe的异质结为基础的薄膜太阳能电池。一般标准的碲化镉薄膜太阳能电池由五层结构组成:背电极、背接触层、CdTe吸收层、CdTe窗口层、TCO层。碲化镉薄膜太阳能电池的生产成本远远低于晶体硅和其他材料的太阳能电池技术,其次它和太阳光谱很一致,可吸收95%以上的阳光。在广泛深入的应用研究基础上,国际上许多国家的CdTe电池已由实验室研究阶段开始走向规模工业化生产。
但是,当前针对碲化镉薄膜电池效率的提升已经达到一定的瓶颈,由于Voc很难进一步提升,同时由于现有高效的电池都会掺杂铜,而铜的引入同时也会损失电池的稳定性。
发明内容
本发明的目的是针对现有技术中的不足,提供一种高效碲化镉薄膜太阳能电池及其制备方法,通过适量As替代Cu来掺杂碲硒镉薄膜层,实现高的p型掺杂密度,得到Voc>1V,转换效率>23%,并且使得碲化镉电池拥有长期的高效稳定性。
为实现上述目的,本发明采取的技术方案是:
本发明第一方面一种高效碲化镉薄膜太阳能电池,所述太阳能电池由下至上包括依次设置的衬底层、窗口层、光吸收层和背电极层;
其中,所述窗口层的材料为掺镁氧化锌,所述光吸收层为掺砷碲硒镉薄膜层,所述背电极层由钼、铝和铬的复合金属材料构成。
优选地,所述衬底层的材料为氧化铟锡导电膜层、TiO 2导电膜层和掺铝氧化锌导电膜层中的一种。
优选地,所述窗口层的厚度为40-70nm;所述光吸收层的厚度为2.0-4.0μm;所述背电极层的厚度为220-250nm。
优选地,所述掺镁氧化锌中镁的摩尔百分比为0-8mol%;所述掺砷碲硒镉中砷的摩尔百分比为3-20mol%。
本发明第二方面提供上述高效碲化镉薄膜太阳能电池的制备方法,包括如下步骤:
S1、在所述衬底层上沉积所述窗口层;
S2、在所述窗口层上沉积所述光吸收层,通过活化退火工序对所述光吸收层进行活化退火处理;
S3、在所述光吸收层上沉积所述背电极层,即得碲化镉薄膜太阳能电池;
S4、将经步骤S3制得的电池用质量浓度为0.05-5%的盐酸蚀刻清洗,然后在所述电池上采用磁控溅射法沉积碲化锌薄膜层,且碲化锌薄膜层的厚度为20-80nm;
S5、将经步骤S4处理后的电池先经过激光1刻划,进行组件的电池分割,分割为200-300个不等的单元,然后进行光刻胶涂覆显影,填充刻划的所述单元;再经过激光2刻划,同样刻划200-300个线,刻划后沉积所述背电极层,接着对所述组件进行活化退火处理,进行常规组件封装;
S6、将经步骤S5封装后的所述组件进行碲化镉的电注入激活,给所述电池的接线端加载一定的偏压和电流。
优选地,所述窗口层采用磁控溅射法或丝网印刷技术或射频溅射法沉积制得;所述光吸收层采用近空间升华法或气相输运沉积法或电化学沉积法沉积制得;所述背电极层采用磁控溅射法沉积制得。
优选地,S2中,所述光吸收层的具体沉积过程为:通过近空间升华法先沉积硒化镉薄膜的厚度为100-1700nm;然后沉积掺砷碲化镉薄膜的厚度为1300-3900nm。
优选地,所述掺砷碲化镉材料的具体制备过程为:把纯度大于5N的Cd 3As 2材料和纯度大于5N的CdTe材料混合后研磨;所述混合材料中砷的浓度为 1x10 15-1x10 22cm -3
优选地,S2中,所述活化退火温度为350-600℃,时间为5-40min;S5中,所述活化退火温度为150-280℃,时间为5-30min。
优选地,S6中,所述电注入温度为80-150℃,时间为3-15min;所述偏压的范围为Voc±15%,所述电流的范围为1-3倍Jsc。
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:
1、本发明的碲化镉薄膜太阳能电池窗口层的材料为掺镁氧化锌,光吸收层的材料为掺砷碲硒镉,通过适量As替代Cu来掺杂碲硒镉薄膜层,实现高的p型掺杂密度,得到Voc>1V,转换效率>23%,转换效率高。
2、本发明的制备方法通过电注入再生的方式,提升了碲化镉电池的性能,而且采用本方法制备的碲化镉电池初始性能优异,并且使得碲化镉电池拥有长期的高效稳定性,整个制备过程操作简单且容易控制。
附图说明
图1为本发明中高效碲化镉薄膜太阳能电池的结构示意图;
其中的各附图标记为:
1-衬底层;2-窗口层;3-光吸收层;4-背电极层。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
如图1所示,本发明提供一种高效碲化镉薄膜太阳能电池,所述太阳能电池由下至上包括依次设置的衬底层1、窗口层2、光吸收层3和背电极层4;其中,所述窗口层2的材料为掺镁氧化锌,所述光吸收层3为掺砷碲硒镉薄膜层,所述背电极层4由钼、铝和铬的复合金属材料构成。
作为一个优选实施例,所述衬底层1的材料为氧化铟锡导电膜层、TiO 2导电膜层和掺铝氧化锌导电膜层中的一种。
作为一个优选实施例,所述窗口层2的厚度为40-70nm;所述光吸收层3的厚度为2.0-4.0μm;所述背电极层4的厚度为220-250nm。
作为一个优选实施例,所述掺镁氧化锌中镁的摩尔百分比为0-8mol%;所述掺砷碲硒镉中砷的摩尔百分比为3-20mol%。
上述高效碲化镉薄膜太阳能电池的制备方法,包括如下步骤:
S1、在所述衬底层1上沉积所述窗口层2;
S2、在所述窗口层2上沉积所述光吸收层3,通过活化退火工序对所述光吸收层3进行活化退火处理;
S3、在所述光吸收层3上沉积所述背电极层4,即得碲化镉薄膜太阳能电池;
S4、将经步骤S3制得的电池用质量浓度为0.05-5%的盐酸蚀刻清洗,然后在所述电池上采用磁控溅射法沉积碲化锌薄膜层,且碲化锌薄膜层的厚度为20-80nm;
S5、将经步骤S4处理后的电池先经过激光1刻划,进行组件的电池分割,分割为200-300个不等的单元,然后进行光刻胶涂覆显影,填充刻划的所述单元;再经过激光2刻划,同样刻划200-300个线,刻划后沉积所述背电极层4,接着对所述组件进行活化退火处理,进行常规组件封装;
S6、将经步骤S5封装后的所述组件进行碲化镉的电注入激活,给所述电池的接线端加载一定的偏压和电流。
作为一个优选实施例,所述窗口层2采用磁控溅射法或丝网印刷技术或射频溅射法沉积制得;所述光吸收层3采用近空间升华法或气相输运沉积法或电化学沉积法沉积制得;所述背电极层4采用磁控溅射法沉积制得。
作为一个优选实施例,S2中,所述光吸收层3的具体沉积过程为:通过近空间升华法先沉积硒化镉薄膜的厚度为100-1700nm;然后沉积掺砷碲化镉薄膜的厚度为1300-3900nm。
作为一个优选实施例,所述掺砷碲化镉材料的具体制备过程为:把纯度大于5N的Cd 3As 2材料和纯度大于5N的CdTe材料混合后研磨,是在抽真空条件下的研磨;所述混合材料中砷的浓度为1x10 15-1x10 22cm -3
作为一个优选实施例,S2中,所述活化退火温度为350-600℃,时间为5-40min;S5中,所述活化退火温度为150-280℃,时间为5-30min。
作为一个优选实施例,S6中,所述电注入温度为80-150℃,时间为3-15min;所述偏压的范围为Voc±15%,所述电流的范围为1-3倍Jsc。
应用例
将本发明电池与现有技术进行各方面性能的比较,结果如表1所示:
表1
掺杂情况 Jsc(mA/cm 2) Voc(mV) FF(%) Eff(%)
无掺杂 25.8 759 33.1 6.48
掺铜 26.5 788 67.5 14.10
掺砷 26.8 1000 76.5 16.79
由表1中数据可知,本发明的碲化镉薄膜太阳能电池通过适量As替代Cu来掺杂碲硒镉薄膜层,实现高的p型掺杂密度,得到Voc>1V,转换效率>23%,转换效率高。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

  1. 一种高效碲化镉薄膜太阳能电池,其特征在于,所述太阳能电池由下至上包括依次设置的衬底层(1)、窗口层(2)、光吸收层(3)和背电极层(4);
    其中,所述窗口层(2)的材料为掺镁氧化锌,所述光吸收层(3)为掺砷碲硒镉薄膜层,所述背电极层(4)由钼、铝和铬的复合金属材料构成。
  2. 根据权利要求1所述的高效碲化镉薄膜太阳能电池,其特征在于,所述衬底层(1)的材料为氧化铟锡导电膜层、TiO 2导电膜层和掺铝氧化锌导电膜层中的一种。
  3. 根据权利要求1所述的高效碲化镉薄膜太阳能电池,其特征在于,所述窗口层(2)的厚度为40-70nm;所述光吸收层(3)的厚度为2.0-4.0μm;所述背电极层(4)的厚度为220-250nm。
  4. 根据权利要求1所述的高效碲化镉薄膜太阳能电池,其特征在于,所述掺镁氧化锌中镁的摩尔百分比为0-8mol%;所述掺砷碲硒镉中砷的摩尔百分比为3-20mol%。
  5. 根据权利要求1-4任一项所述的高效碲化镉薄膜太阳能电池的制备方法,其特征在于,包括如下步骤:
    S1、在所述衬底层(1)上沉积所述窗口层(2);
    S2、在所述窗口层(2)上沉积所述光吸收层(3),通过活化退火工序对所述光吸收层(3)进行活化退火处理;
    S3、在所述光吸收层(3)上沉积所述背电极层(4),即得碲化镉薄膜太阳能电池;
    S4、将经步骤S3制得的电池用质量浓度为0.05-5%的盐酸蚀刻清洗,然后在所述电池上采用磁控溅射法沉积碲化锌薄膜层,且碲化锌薄膜层的厚度为20-80nm;
    S5、将经步骤S4处理后的电池先经过激光1刻划,进行组件的电池分割,分割为200-300个不等的单元,然后进行光刻胶涂覆显影,填充刻划的所述单元; 再经过激光2刻划,同样刻划200-300个线,刻划后沉积所述背电极层(4),接着对所述组件进行活化退火处理,进行常规组件封装;
    S6、将经步骤S5封装后的所述组件进行碲化镉的电注入激活,给所述电池的接线端加载一定的偏压和电流。
  6. 根据权利要求5所述的高效碲化镉薄膜太阳能电池的制备方法,其特征在于,所述窗口层(2)采用磁控溅射法或丝网印刷技术或射频溅射法沉积制得;所述光吸收层(3)采用近空间升华法或气相输运沉积法或电化学沉积法沉积制得;所述背电极层(4)采用磁控溅射法沉积制得。
  7. 根据权利要求6所述的高效碲化镉薄膜太阳能电池的制备方法,其特征在于,S2中,所述光吸收层(3)的具体沉积过程为:通过近空间升华法先沉积硒化镉薄膜的厚度为100-1700nm;然后沉积掺砷碲化镉薄膜的厚度为1300-3900nm。
  8. 根据权利要求7所述的高效碲化镉薄膜太阳能电池的制备方法,其特征在于,所述掺砷碲化镉材料的具体制备过程为:把纯度大于5N的Cd 3As 2材料和纯度大于5N的CdTe材料混合后研磨;所述混合材料中砷的浓度为1x10 15-1x10 22cm -3
  9. 根据权利要求5所述的高效碲化镉薄膜太阳能电池的制备方法,其特征在于,S2中,所述活化退火温度为350-600℃,时间为5-40min;S5中,所述活化退火温度为150-280℃,时间为5-30min。
  10. 根据权利要求5所述的高效碲化镉薄膜太阳能电池的制备方法,其特征在于,S6中,所述电注入温度为80-150℃,时间为3-15min;所述偏压的范围为Voc±15%,所述电流的范围为1-3倍Jsc。
PCT/CN2020/118393 2020-06-05 2020-09-28 一种高效碲化镉薄膜太阳能电池及其制备方法 WO2021243896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20939025.1A EP4163983A1 (en) 2020-06-05 2020-09-28 High-efficiency cadmium telluride thin-film solar cell and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010507161.5A CN111739959B (zh) 2020-06-05 2020-06-05 一种高效碲化镉薄膜太阳能电池及其制备方法
CN202010507161.5 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021243896A1 true WO2021243896A1 (zh) 2021-12-09

Family

ID=72648388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118393 WO2021243896A1 (zh) 2020-06-05 2020-09-28 一种高效碲化镉薄膜太阳能电池及其制备方法

Country Status (3)

Country Link
EP (1) EP4163983A1 (zh)
CN (1) CN111739959B (zh)
WO (1) WO2021243896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064608A (zh) * 2022-07-05 2022-09-16 中国建材国际工程集团有限公司 一种CdTe太阳电池组件及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555458A (zh) * 2021-07-21 2021-10-26 成都中建材光电材料有限公司 薄膜太阳能电池及其制作方法
CN114014663B (zh) * 2021-11-29 2023-01-31 河南城建学院 一种碲硒砷镉化合物、靶材及其制备方法
CN113964244B (zh) * 2021-12-22 2022-03-11 成都中建材光电材料有限公司 太阳能薄膜电池及其制作方法
CN114583009B (zh) * 2022-02-18 2023-12-29 中国建材国际工程集团有限公司 碲化镉薄膜太阳能电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160308086A1 (en) * 2015-04-16 2016-10-20 China Triumph International Engineering Co., Ltd. Method of Manufacturing Thin-Film Solar Cells with a p-Type CdTe Layer
CN107112374A (zh) * 2014-11-03 2017-08-29 第阳光公司 光伏装置及制造方法
CN107742652A (zh) * 2017-08-31 2018-02-27 成都中建材光电材料有限公司 一种复合窗口层的碲化镉薄膜太阳能电池及其制备方法
CN109564947A (zh) * 2016-05-31 2019-04-02 第阳光公司 Ag掺杂的光伏器件及制造方法
CN109920866A (zh) * 2017-12-12 2019-06-21 中国南玻集团股份有限公司 彩色光伏组件、其制备方法及应用
CN110546769A (zh) * 2017-02-24 2019-12-06 第一阳光公司 经掺杂光伏半导体层及制造方法
CN110707174A (zh) * 2019-10-14 2020-01-17 成都中建材光电材料有限公司 一种掺硒碲化镉薄膜电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093863A (zh) * 2007-06-12 2007-12-26 南开大学 ZnO为电绝缘与杂质阻挡层的薄膜太阳电池及其制备方法
US20100243039A1 (en) * 2009-03-31 2010-09-30 General Electric Company Layer for thin film photovoltaics and a solar cell made therefrom
CN101699748A (zh) * 2009-11-09 2010-04-28 刘文祥 纳米光伏
US9608144B2 (en) * 2011-06-01 2017-03-28 First Solar, Inc. Photovoltaic devices and method of making
CN109638096A (zh) * 2018-11-09 2019-04-16 南开大学 一种化合物半导体薄膜太阳能电池制备方法
CN110061085B (zh) * 2019-04-30 2021-10-01 中国科学技术大学 一种太阳能电池及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112374A (zh) * 2014-11-03 2017-08-29 第阳光公司 光伏装置及制造方法
US20160308086A1 (en) * 2015-04-16 2016-10-20 China Triumph International Engineering Co., Ltd. Method of Manufacturing Thin-Film Solar Cells with a p-Type CdTe Layer
CN109564947A (zh) * 2016-05-31 2019-04-02 第阳光公司 Ag掺杂的光伏器件及制造方法
CN110546769A (zh) * 2017-02-24 2019-12-06 第一阳光公司 经掺杂光伏半导体层及制造方法
CN107742652A (zh) * 2017-08-31 2018-02-27 成都中建材光电材料有限公司 一种复合窗口层的碲化镉薄膜太阳能电池及其制备方法
CN109920866A (zh) * 2017-12-12 2019-06-21 中国南玻集团股份有限公司 彩色光伏组件、其制备方法及应用
CN110707174A (zh) * 2019-10-14 2020-01-17 成都中建材光电材料有限公司 一种掺硒碲化镉薄膜电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064608A (zh) * 2022-07-05 2022-09-16 中国建材国际工程集团有限公司 一种CdTe太阳电池组件及其制造方法
CN115064608B (zh) * 2022-07-05 2024-04-09 中国建材国际工程集团有限公司 一种CdTe太阳电池组件及其制造方法

Also Published As

Publication number Publication date
CN111739959B (zh) 2021-06-25
CN111739959A (zh) 2020-10-02
EP4163983A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
WO2021243896A1 (zh) 一种高效碲化镉薄膜太阳能电池及其制备方法
US20110240123A1 (en) Photovoltaic Cells With Improved Electrical Contact
US8044477B1 (en) Photovoltaic device and method for making
KR20180005730A (ko) 황화아연 버퍼층을 적용한 czts계 박막 태양전지 제조방법
CN217280794U (zh) 一种光伏电池
CN101816073B (zh) Cdte/cds薄膜太阳能电池中的非整流后接触的形成方法
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
CN101393942B (zh) 多晶硅-碳化硅叠层薄膜太阳能电池
CN106653946B (zh) 一种碲化镉薄膜太阳能电池吸收层的沉积方法
Dhere Recent developments in thin film solar cells
JP2014503125A (ja) 太陽電池及びその製造方法
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
US20130074921A1 (en) Low-Resistance Back Contact For Photovoltaic Cells
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
JPH0955378A (ja) 半導体薄膜形成用前駆体及び半導体薄膜の製造方法
CN217182188U (zh) 一种钙钛矿/钙钛矿/硅-锗基三结叠层太阳能电池
CN114582989A (zh) 一种硅异质结太阳电池及其制备方法
CN102856421A (zh) 一种新型三结薄膜太阳能电池及其生产方法
CN109801980B (zh) 一种碲化镉薄膜太阳能电池及其制备方法
Petti et al. Thin Films in Photovoltaics
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN114361281A (zh) 双面异质结太阳能电池及光伏组件
US20120080306A1 (en) Photovoltaic device and method for making
JP5710368B2 (ja) 光電変換素子および太陽電池
KR20110003802A (ko) 탠덤형 박막 태양전지 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020939025

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020939025

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE