CN106653627B - 一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法 - Google Patents

一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法 Download PDF

Info

Publication number
CN106653627B
CN106653627B CN201610888951.6A CN201610888951A CN106653627B CN 106653627 B CN106653627 B CN 106653627B CN 201610888951 A CN201610888951 A CN 201610888951A CN 106653627 B CN106653627 B CN 106653627B
Authority
CN
China
Prior art keywords
sintering
oxygen
temperature
formic acid
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610888951.6A
Other languages
English (en)
Other versions
CN106653627A (zh
Inventor
梅云辉
闫海东
李欣
陆国权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610888951.6A priority Critical patent/CN106653627B/zh
Publication of CN106653627A publication Critical patent/CN106653627A/zh
Application granted granted Critical
Publication of CN106653627B publication Critical patent/CN106653627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/035Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/03505Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/038Post-treatment of the bonding area
    • H01L2224/03848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/038Post-treatment of the bonding area
    • H01L2224/03848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/03849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本发明涉及一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法,包括预热阶段、干燥阶段、烧结致密化阶段和甲酸还氧烧结阶段;其中在预热阶段和干燥阶段采用非接触热传导方式实现加热板对加热托盘的加热,在烧结致密化阶段采用接触热传导方式实现加热板对加热托盘的加热。利用密闭腔体中辐射、传导和对流的热传导原理实现了可用于纳米银焊膏实现功率芯片与裸铜衬底或敷铜基板间烧结连接所需的温度曲线,并利用该真空炉量化的抽真空能力得到了可用于纳米银焊膏连接裸铜衬底或敷铜基板所需的贫氧烧结气氛。本发明借助通用真空烧结/回流焊炉平台,无需特制的烧结工艺设备,适合于电力电子领域中各种集成半导体芯片封装模块的产业化生产。

Description

一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法
技术领域
本发明涉及一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法,属于纳米材料互连工艺及电子封装制造领域。
背景技术
作为有前景的热界面材料,纳米银焊膏特别适用于高温功率模块在高温极端恶劣环境条件下的应用。因其高的导热率(240W/m K),高的电导率(2.6×105Ω·cm-1),低的杨氏模量(约9~20GPa),高的熔点(961℃),以及高温环境条件下优异的力学可靠性。随着电子焊接材料无铅化制程的不断推进,无铅化是必然趋势。纳米银焊膏有望成为高铅高温焊料的代替材料。
铜和金银是电子工业领域应用最为广泛的金属材料,目前纳米银焊膏连接镀银和镀金基板的烧结工艺已趋于成熟,烧结气氛为空气条件。在空气气氛烧结条件下,纳米银焊膏利用空气中充足的氧会将烧掉纳米银焊膏中有机物,完成纳米银颗粒致密化的同时实现与金银镀层的扩散连接。而然,对于纳米银连接裸铜衬底或敷铜基板而言,空气气氛中过多的氧将严重氧化裸铜衬底或敷铜基板,最终不能实现很好的扩散连接。因此开发适合纳米银连接裸铜衬底或敷铜基板间的烧结方法极其重要。
发明内容
为了解决现有技术的问题,本发明研究开发了一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法;借助通用真空烧结/回流焊炉平台,无需特制的烧结工艺设备,避免了衬底或基板材料表面金属化后道处理工序,工艺简单,适用于纳米银焊膏实现功率芯片与裸铜衬底或敷铜基板的烧结连接的批量化生产,特别适合于电力电子领域中各种集成半导体芯片模块(例如硅基IGBT模块和宽禁带半导体器件模块)的产业化生产。
本发明的技术方案如下:
一种纳米银焊膏连接裸铜衬底或敷铜基板的低温烧结方法;包括预热阶段、干燥阶段、烧结致密化阶段和甲酸还氧烧结阶段;其中在预热阶段和干燥阶段采用非接触热传导方式实现加热板对加热托盘的加热,在烧结致密化阶段采用接触热传导方式实现加热板对加热托盘的加热。
所述预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度65-120℃,预热时间1-30min。
所述干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5-10℃/min,干燥温度120-200℃,干燥时间5-30min。
所述烧结致密化阶段,烧结温度250-320℃,烧结时间5-30min,贫氧气氛控制,两次抽真空压力值至5-500mbar,回填氮气保护气至1000mbar。
所述甲酸还氧烧结阶段,抽真空至5mbar,注入甲酸至50-500mbar,回填氮气至1000mbar,还氧温度250-320℃,还氧时间5-30min。
本发明利用通用真空烧结/回流炉密闭腔体中辐射、传导和对流的热传导原理,实现了可用于纳米银焊膏实现功率芯片与裸铜衬底或敷铜基板间烧结连接所需的温度曲线。本烧结工艺包括预热、干燥、烧结致密化和甲酸还氧四个阶段。在烧结的预热和干燥阶段,利用辐射和对流热传导原理,通过加热板和加热托盘的非接触式热传导方式,实现了烧结温度曲线在该阶段的缓慢升温,避免了因传统接触式热传导方法带来的快速升温而导致的焊料连接层的严重空洞问题。在烧结致密化阶段,利用加热板和加热托盘的接触式热传导方式,实现了纳米银焊膏的烧结致密化和扩散连接所需的烧结温度。在烧结气氛的控制方面,在烧结致密化阶段,利用该真空炉量化的抽真空和回填氮气的能力,通过不同的抽真空压力值稀释密闭腔体中的氧含量,得到了可用于纳米银焊膏连接裸铜衬底或敷铜基板所需的贫氧气氛条件,在甲酸还氧阶段,利用甲酸还原基板,并进一步促进扩散连接。并回填氮气至常压状态,得到了可用于纳米银焊膏连接裸铜衬底或敷铜基板所需的贫氧气氛条件。本发明借助通用真空烧结/回流焊炉平台,无需特制的烧结工艺设备,适合于电力电子领域中各种集成半导体芯片封装模块的产业化生产。
附图说明
图1:PINK-VADU300XL真空烧结/回流炉腔体构造描述;
图2:烧结温度曲线;
图3:烧结气氛控制示意图;
图4:第三腔甲酸还氧示意图;
图5:不同烧结气氛条件下纳米银焊膏烧结后SEM微观形貌;
图6:预热与未预热处理烧结后的空洞X-ray图;
图7:不同烧结气氛条件下的剪切强度;
图8:纳米银焊膏连接裸铜DBC基板的高功率半导体电源模块;
图9:纳米银焊膏连接裸铜DBC基板的高功率半导体电源模块开关性能。
具体实施方式
实施例1
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度65℃,预热时间1min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度180℃,干燥时间10分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例2
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度180℃,干燥时间10分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例3
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度120℃,预热时间30min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度180℃,干燥时间10分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例4
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例5
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率7℃/min,干燥温度180℃,干燥时间10分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例6
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率10℃/min,干燥温度200℃,干燥时间30分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例7
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度250℃,烧结时间5min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例8
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例9
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度320℃,烧结时间30min,贫氧气氛控制,两次抽真空压力值至5mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例10
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至10mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例11
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至30mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例12
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至100mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例13
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至250mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例13
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至500mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间10min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例14
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至10mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至50mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间5min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例15
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至10mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至250mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间15min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
实施例16
(1)以PINK-VADU300XL真空烧结/回流炉为例,腔体构造如图1所示,其中第一腔用做预热和干燥,第二腔用于烧结致密化和甲酸还氧,第三腔用于产品冷却。
(2)预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度85℃,预热时间10min。预热阶段见附图2烧结温度曲线,预热和未预热烧结后焊料层空洞见附图6;
(3)干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5℃/min,干燥温度120℃,干燥时间5分钟。干燥阶段见附图2烧结温度曲线;
(4)烧结致密化,烧结温度280℃,烧结时间15min,贫氧气氛控制,两次抽真空压力值至10mbar护气至1000mbar。在贫氧气氛条件下的烧结后纳米银SEM微观图片和连接强度分别见附图4、图7,贫氧气氛控制(不同抽真空压力值和回填氮气)见附图3;
(5)甲酸还氧,抽真空至5mbar,注入甲酸至500mbar,回填氮气至1000mbar,还氧温度280℃,还氧时间30min。甲酸注入量见图5;
(6)抽真空值至100mbar条件下烧结的1200V/50A IGBT模块实物及电性能表征见图8,图9。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (1)

1.一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法;其特征包括预热阶段、干燥阶段、烧结致密化阶段和甲酸还氧烧结阶段;其中在预热阶段和干燥阶段采用非接触热传导方式实现加热板对加热托盘的加热,在烧结致密化阶段采用接触热传导方式实现加热板对加热托盘的加热;所述预热阶段,在氮气保护气氛下预热贴片后的试样,预热温度65-120℃,预热时间1-30min;所述干燥阶段,将预热好的试样放入真空烧结/回流焊炉,温升速率5-10℃/min,干燥温度120-200℃,干燥时间5-30min;所述烧结致密化阶段,烧结温度250-320℃,烧结时间5-30min,贫氧气氛控制,两次抽真空压力值至5-500mbar,回填氮气保护气至1000mbar;所述甲酸还氧烧结阶段,抽真空至5mbar,注入甲酸至50-500mbar,回填氮气至1000mbar,还氧温度250-320℃,还氧时间5-30min。
CN201610888951.6A 2016-10-11 2016-10-11 一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法 Active CN106653627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610888951.6A CN106653627B (zh) 2016-10-11 2016-10-11 一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610888951.6A CN106653627B (zh) 2016-10-11 2016-10-11 一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法

Publications (2)

Publication Number Publication Date
CN106653627A CN106653627A (zh) 2017-05-10
CN106653627B true CN106653627B (zh) 2019-02-05

Family

ID=58855271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610888951.6A Active CN106653627B (zh) 2016-10-11 2016-10-11 一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法

Country Status (1)

Country Link
CN (1) CN106653627B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731701A (zh) * 2017-09-18 2018-02-23 全球能源互联网研究院有限公司 一种半导体器件的烧结方法及半导体器件的制造方法
CN107910324A (zh) * 2017-10-13 2018-04-13 天津大学 一种基于纳米银焊膏双面互连碳化硅mos器件的模块化封装方法
CN107871675B (zh) * 2017-10-13 2019-09-20 天津大学 一种纳米银焊膏连接裸铜dbc的功率模块制作方法
CN107887368A (zh) * 2017-10-13 2018-04-06 天津大学 采用低温烧结纳米银的双面互连硅基igbt模块的方法
CN108520855B (zh) * 2018-05-11 2020-09-11 北京科技大学 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN109378309A (zh) * 2018-09-17 2019-02-22 天津大学 一种纳米银焊膏低压烧结混合功率模块方法
CN109545696B (zh) * 2018-11-28 2023-01-06 哈尔滨工业大学 一种采用单相纳米银铜合金焊膏制备低温连接高温服役接头的方法
CN110571204A (zh) * 2019-08-28 2019-12-13 天津大学 具有双面散热能力的双向开关功率器件及制作方法
CN110690120B (zh) * 2019-09-27 2021-08-03 天津大学 烧结封装mos芯片双向开关电子模块及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489507A (zh) * 2015-12-09 2016-04-13 天津大学 一种igbt芯片与直接覆铜基板的快速烧结连接方法及装置
CN105479026A (zh) * 2015-12-09 2016-04-13 天津大学 一种提高纳米银浆与化学镀镍金基板连接强度的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816303B2 (en) * 2004-10-01 2010-10-19 American Superconductor Corporation Architecture for high temperature superconductor wire
US7704866B2 (en) * 2008-03-18 2010-04-27 Innovalight, Inc. Methods for forming composite nanoparticle-metal metallization contacts on a substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489507A (zh) * 2015-12-09 2016-04-13 天津大学 一种igbt芯片与直接覆铜基板的快速烧结连接方法及装置
CN105479026A (zh) * 2015-12-09 2016-04-13 天津大学 一种提高纳米银浆与化学镀镍金基板连接强度的方法

Also Published As

Publication number Publication date
CN106653627A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106653627B (zh) 一种纳米银焊膏连接裸铜衬底或敷铜基板的烧结方法
JP5156566B2 (ja) 金属面の接続方法及びそのためのペースト
US8555491B2 (en) Methods of attaching a die to a substrate
CN101431038A (zh) 用于多个金属面触点接通的方法和膏体
JP6024750B2 (ja) 半導体モジュール
CN107871675B (zh) 一种纳米银焊膏连接裸铜dbc的功率模块制作方法
CN105514059B (zh) 一种石墨烯复合材料/氮化硅/硅芯片高效散热系统
CN108520855A (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
US20150123263A1 (en) Two-step method for joining a semiconductor to a substrate with connecting material based on silver
US20240067577A1 (en) Preparation method for copper plate-covered silicon nitride ceramic substrate
CN111627823A (zh) 一种低温快速生成高强度高熔点接头的芯片连接方法
Yan et al. A multichip phase-leg IGBT module using nanosilver paste by pressureless sintering in formic acid atmosphere
CN107516639B (zh) 基于铜粒子的低温氧化还原烧结方法
CN104319241B (zh) 一种无压烧结连接大功率gto模块的方法
CN104498766A (zh) 热膨胀系数可调的Cu热沉及其制备方法
Yan et al. Pressureless sintering multi-scale Ag paste by a commercial vacuum reflowing furnace for massive production of power modules
CN208087501U (zh) 一种AlN陶瓷金属化敷铜基板
CN107819066B (zh) 一种低氧铜烧结dbc半导体热电基片的生产方法
CN103715101A (zh) 直接覆铜陶瓷基板的热压方法
JP2014157858A (ja) 半導体装置の製造方法
CN109378309A (zh) 一种纳米银焊膏低压烧结混合功率模块方法
WO2018201837A1 (zh) 一种半导体封装结构
CN108640701A (zh) 一种氮化硅陶瓷散热翅覆铜板及其制备方法
WO2022061834A1 (zh) 一种铜颗粒焊膏及其制备方法以及烧结方法
Yang et al. Pressure sintering of micro-silver joints in SiC power devices: Optimization of processing parameters and FEM analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant