CN106633147B - 一种具有杀菌功能的柔性复合薄膜的制备及应用方法 - Google Patents

一种具有杀菌功能的柔性复合薄膜的制备及应用方法 Download PDF

Info

Publication number
CN106633147B
CN106633147B CN201611183232.0A CN201611183232A CN106633147B CN 106633147 B CN106633147 B CN 106633147B CN 201611183232 A CN201611183232 A CN 201611183232A CN 106633147 B CN106633147 B CN 106633147B
Authority
CN
China
Prior art keywords
preparation
film
flexible composite
composite film
sterilizing function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611183232.0A
Other languages
English (en)
Other versions
CN106633147A (zh
Inventor
李立东
王晓瑜
朱书贤
刘录
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201611183232.0A priority Critical patent/CN106633147B/zh
Publication of CN106633147A publication Critical patent/CN106633147A/zh
Application granted granted Critical
Publication of CN106633147B publication Critical patent/CN106633147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/04Polyamides derived from alpha-amino carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

本发明属于功能高分子薄膜材料领域,涉及一种具有杀菌功能的柔性复合薄膜的制备及应用方法。该柔性复合薄膜采用静电自组装技术制备而成,首先制备出柔性的聚二甲基硅氧烷薄膜,利用银镜反应在柔性薄膜中制备银纳米粒子,随后吸附聚电解质层和荧光共轭聚电解质用于杀菌。本发明的有益效果为:制备过程简便,无需复杂设备;薄膜中银纳米粒子的表面等离子体效应增强荧光共轭聚电解质产生活性氧物种的能力,使薄膜具有非常好的杀菌能力;薄膜具有很好的柔性;在食品安全和医药卫生等领域具有很好的应用前景。

Description

一种具有杀菌功能的柔性复合薄膜的制备及应用方法
技术领域
本发明涉及功能高分子薄膜材料领域,特别涉及一种具有优异杀菌功能的柔性复合薄膜的制备及应用方法。
背景技术
细菌等微生物的存在会导致食品变质,污染医疗卫生和实验室环境,给人们的生命和财产安全带来损失。因此,提供无菌环境和灭菌器械对食品生产,医疗卫生用品的安全和无菌实验环境的维持有着重要意义。荧光共轭聚电解质在光照作用下能够产生多种活性氧分子,活性氧分子能够与细胞进行相互作用,导致细胞的不可逆转的死亡,因此在杀菌领域具有良好的应用前景。目前,荧光共轭聚电解质仅被用于溶液体系杀菌,不易分离回收,导致溶液体系二次污染,大大限制了其在杀菌领域的运用。
近年来,随着对金属表面等离子体的研究和发展,利用金属增强荧光效应可以有效提高光敏剂产生活性氧的效率。通过静电自组装方法将荧光共轭聚电解质固定在柔性金属基底表面,可以制备成功能薄膜。具有柔性的薄膜可以很好地与细菌接触提高杀菌效果。此外,薄膜利于回收和重复使用,有效避免二次污染。因此,制备一种快捷、便于使用并且具有优异杀菌功能的柔性复合薄膜具有重要意义。
发明内容
本发明的目的是克服现有荧光共轭聚电解质杀菌效率低,回收不便,仅能够应用于溶液体系灭菌等缺陷,提供一种制备简单、成本低廉以及利于回收和重复利用的柔性复合薄膜的制备及应用方法,薄膜具有高效杀菌性能。
本发明的技术方案是利用银镜反应在柔性聚二甲基硅氧烷薄膜上制备银纳米颗粒,随后通过静电自组装技术在基底上制备聚电解质多层膜,最后吸附荧光共轭聚电解质制备柔性复合薄膜。利用银纳米颗粒的表面等离子体效应增强荧光共轭聚电解质产生活性氧的能力,使柔性复合薄膜具有高效杀菌性能。如图1所示。
本发明的具体步骤如下:
步骤一、将聚二甲基硅氧烷原液与固化剂,按照体积比为8:1~12:1的比例混合后,搅拌均匀倒入平面基底上;随后放入真空干燥箱中静置0.5~3小时;再升温至30~80℃温度范围内,保温0.5~4小时,制得柔性的聚二甲基硅氧烷薄膜;
步骤二、将制备的聚二甲基硅氧烷薄膜放入紫外臭氧光清洗机照射3~20分钟;随后快速浸入浓度为0.05~1M的银氨溶液中浸泡并搅拌5~60分钟;之后浸入浓度为0.05~1M的葡萄糖溶液中,升温至30~70℃温度范围内,保温并搅拌10~240分钟;冲洗干燥得到柔性银纳米薄膜;
步骤三、将制备的银纳米薄膜浸入浓度为0.1~5mg/mL阳离子型聚电解质溶液中保持10~30分钟,冲洗干燥后浸入0.1~5mg/mL阴离子型聚电解质溶液中保持10~30分钟冲洗干燥,重复以上过程制备聚电解质多层膜;
步骤四、将制备的聚电解质多层膜浸入浓度为10-5~10-3M荧光共轭聚电解质溶液中保持10~60分钟,冲洗干燥得到具有杀菌功能的柔性复合薄膜;
步骤五、将制备的柔性复合薄膜放入待杀菌的液体中,采用辐照强度为20~100mW/cm2的白光光源照射杀伤细菌。
进一步的,所述的平面基底为聚四氟乙烯板、聚苯乙烯培养皿、石英片、硅片中的一种。
进一步的,所述的聚二甲基硅氧烷薄膜的厚度为0.2~3mm。
进一步的,所述的柔性银纳米薄膜中银纳米粒子的粒径为30~60nm。
进一步的,所述的阳离子型聚电解质为聚赖氨酸、壳聚糖、精蛋白、聚L-精氨酸中的一种或几种。
进一步的,所述的阴离子型聚电解质为海藻酸钠、聚谷氨酸、硫酸软骨素、硫酸葡聚糖钠中的一种或几种。
进一步的,所述的聚电解质多层膜为双层、四层或六层的结构。
进一步的,所述的荧光共轭聚电解质为具有结构式(1)~(4)的聚合物中的一种或几种:
其中结构式(1)为
结构式(2)为
结构式(3)为
结构式(4)为
与现有技术相比,本发明的优点和有益效果有:采用静电自组装制备柔性复合薄膜,操作简单,制备时间短,成本低;薄膜具有很好的柔性利于与细菌接触;利用银纳米粒子的表面等离子体效应,增强荧光共轭聚电解质产生活性氧的能力,使薄膜具有高效杀菌性能。该方法制备所得到的薄膜将在食品安全、医药卫生、实验安全等实际应用领域中得到广泛应用。
附图说明
图1为柔性复合薄膜的组织结构示意图。
具体实施方式
下文将详细描述本发明具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。
本发明实施例一种具有杀菌功能的柔性复合薄膜的制备及应用方法,包括以下步骤:
步骤一、将聚二甲基硅氧烷原液与固化剂,按照体积比为8:1~12:1的比例混合后,搅拌均匀倒入平面基底上;随后放入真空干燥箱中静置0.5~3小时;再升温至30~80℃温度范围内,保温0.5~4小时,制得柔性的聚二甲基硅氧烷薄膜;
步骤二、将制备的聚二甲基硅氧烷薄膜放入紫外臭氧光清洗机照射3~20分钟;随后快速浸入浓度为0.05~1M的银氨溶液中浸泡并搅拌5~60分钟;之后浸入浓度为0.05~1M的葡萄糖溶液中,升温至30~70℃温度范围内,保温并搅拌10~240分钟;冲洗干燥得到柔性银纳米薄膜;
步骤三、将制备的银纳米薄膜浸入浓度为0.1~5mg/mL阳离子型聚电解质溶液中保持10~30分钟,冲洗干燥后浸入0.1~5mg/mL阴离子型聚电解质溶液中保持10~30分钟冲洗干燥,重复以上过程制备聚电解质多层膜;
步骤四、将制备的聚电解质多层膜浸入浓度为10-5~10-3M荧光共轭聚电解质溶液中保持10~60分钟,冲洗干燥得到具有杀菌功能的柔性复合薄膜;
步骤五、将制备的柔性复合薄膜放入待杀菌的液体中,采用辐照强度为20~100mW/cm2的白光光源照射杀伤细菌。
所述的平面基底为聚四氟乙烯板、聚苯乙烯培养皿、石英片、硅片中的一种。
所述的聚二甲基硅氧烷薄膜的厚度为0.2~3mm。
所述的柔性银纳米薄膜中银纳米粒子的粒径为30~60nm。
所述的阳离子型聚电解质为聚赖氨酸、壳聚糖、精蛋白、聚L-精氨酸中的一种或几种。
所述的阴离子型聚电解质为海藻酸钠、聚谷氨酸、硫酸软骨素、硫酸葡聚糖钠中的一种或几种。
所述的聚电解质多层膜为双层、四层或六层的结构。
所述的荧光共轭聚电解质为具有结构式(1)~(4)的聚合物中的一种或几种:
其中结构式(1)为
结构式(2)为
结构式(3)为
结构式(4)为
实施例1
一种具有杀菌功能的柔性复合薄膜的制备及应用方法,包括以下步骤:
步骤一、将聚二甲基硅氧烷原液与固化剂,按照体积比为8:1的比例混合后,搅拌均匀倒入石英片上;随后放入真空干燥箱中静置0.5小时;再升温至50℃温度范围内,保温0.5小时,制得柔性的聚二甲基硅氧烷薄膜;
步骤二、将制备的聚二甲基硅氧烷薄膜放入紫外臭氧光清洗机照射15分钟;随后快速浸入浓度为0.05M的银氨溶液中浸泡并搅拌30分钟;之后浸入浓度为0.05M的葡萄糖溶液中,升温至30℃温度范围内,保温并搅拌60分钟;冲洗干燥得到柔性银纳米薄膜;
步骤三、将制备的银纳米薄膜浸入浓度为0.5mg/mL聚赖氨酸溶液中保持20分钟,冲洗干燥后浸入0.5mg/mL海藻酸钠溶液中保持20分钟冲洗干燥,重复以上过程制备聚电解质多层膜;
步骤四、将制备的聚电解质多层膜浸入浓度为10-5M荧光共轭聚电解质(1)溶液中保持60分钟,冲洗干燥得到具有杀菌功能的柔性复合薄膜;
步骤五、将制备的柔性复合薄膜放入待杀菌的液体中,采用辐照强度为20mW/cm2的白光光源照射杀伤细菌。
实施例2
一种具有杀菌功能的柔性复合薄膜的制备及应用方法,包括以下步骤:
步骤一、将聚二甲基硅氧烷原液与固化剂,按照体积比为10:1的比例混合后,搅拌均匀倒入聚苯乙烯培养皿上;随后放入真空干燥箱中静置0.5小时;再升温至50℃温度范围内,保温0.5小时,制得柔性的聚二甲基硅氧烷薄膜;
步骤二、将制备的聚二甲基硅氧烷薄膜放入紫外臭氧光清洗机照射15分钟;随后快速浸入浓度为0.05M的银氨溶液中浸泡并搅拌30分钟;之后浸入浓度为0.05M的葡萄糖溶液中,升温至50℃温度范围内,保温并搅拌60分钟;冲洗干燥得到柔性银纳米薄膜;
步骤三、将制备的银纳米薄膜浸入浓度为1mg/mL聚赖氨酸溶液中保持20分钟,冲洗干燥后浸入1mg/mL聚谷氨酸溶液中保持15分钟冲洗干燥,重复以上过程制备聚电解质多层膜;
步骤四、将制备的聚电解质多层膜浸入浓度为10-5M荧光共轭聚电解质(2)溶液中保持30分钟,冲洗干燥得到具有杀菌功能的柔性复合薄膜;
步骤五、将制备的柔性复合薄膜放入待杀菌的液体中,采用辐照强度为50mW/cm2的白光光源照射杀伤细菌。
实施例3
一种具有杀菌功能的柔性复合薄膜的制备及应用方法,包括以下步骤:
步骤一、将聚二甲基硅氧烷原液与固化剂,按照体积比为10:1的比例混合后,搅拌均匀倒入聚苯乙烯培养皿上;随后放入真空干燥箱中静置0.5小时;再升温至60℃温度范围内,保温2小时,制得柔性的聚二甲基硅氧烷薄膜;
步骤二、将制备的聚二甲基硅氧烷薄膜放入紫外臭氧光清洗机照射15分钟;随后快速浸入浓度为0.1M的银氨溶液中浸泡并搅拌30分钟;之后浸入浓度为0.1M的葡萄糖溶液中,升温至50℃温度范围内,保温并搅拌60分钟;冲洗干燥得到柔性银纳米薄膜;
步骤三、将制备的银纳米薄膜浸入浓度为1mg/mL聚赖氨酸溶液中保持20分钟,冲洗干燥后浸入1mg/mL聚谷氨酸溶液中保持15分钟冲洗干燥,重复以上过程制备聚电解质多层膜;
步骤四、将制备的聚电解质多层膜浸入浓度为10-5M荧光共轭聚电解质(3)溶液中保持60分钟,冲洗干燥得到具有杀菌功能的柔性复合薄膜;
步骤五、将制备的柔性复合薄膜放入待杀菌的液体中,采用辐照强度为90mW/cm2的白光光源照射杀伤细菌。
采用静电自组装制备柔性复合薄膜,操作简单,制备时间短,成本低;薄膜具有很好的柔性利于与细菌接触;利用银纳米粒子的表面等离子体效应,增强荧光共轭聚电解质产生活性氧能力,对大肠杆菌的抑菌率达99%。该方法制备所得到的薄膜将在食品安全、医药卫生、实验安全等实际应用领域中得到广泛应用。

Claims (9)

1.一种具有杀菌功能的柔性复合薄膜的制备方法,其特征在于包括以下步骤:
步骤一、将聚二甲基硅氧烷原液与固化剂,按照体积比为8:1~12:1的比例混合后,搅拌均匀倒入平面基底上;随后放入真空干燥箱中静置0.5~3小时;再升温至30~80℃温度范围内,保温0.5~4小时,制得柔性的聚二甲基硅氧烷薄膜;
步骤二、将制备的聚二甲基硅氧烷薄膜放入紫外臭氧光清洗机照射3~20分钟;随后快速浸入浓度为0.05~1M的银氨溶液中浸泡并搅拌5~60分钟;之后浸入浓度为0.05~1M的葡萄糖溶液中,升温至30~70℃温度范围内,保温并搅拌10~240分钟;冲洗干燥得到柔性银纳米薄膜;
步骤三、将制备的银纳米薄膜浸入浓度为0.1~5mg/mL阳离子型聚电解质溶液中保持10~30分钟,冲洗干燥后浸入0.1~5mg/mL阴离子型聚电解质溶液中保持10~30分钟冲洗干燥,重复以上过程制备聚电解质多层膜;
步骤四、将制备的聚电解质多层膜浸入浓度为10-5~10-3M荧光共轭聚电解质溶液中保持10~60分钟,冲洗干燥得到具有杀菌功能的柔性复合薄膜。
2.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤一所述的平面基底为聚四氟乙烯板、聚苯乙烯培养皿、石英片、硅片中的一种。
3.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤二所述的聚二甲基硅氧烷薄膜的厚度为0.2~3mm。
4.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤二所述的柔性银纳米薄膜中银纳米粒子的粒径为30~60nm。
5.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤三所述的阳离子型聚电解质为聚赖氨酸、壳聚糖、精蛋白、聚L-精氨酸中的一种或几种。
6.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤三所述的阴离子型聚电解质为海藻酸钠、聚谷氨酸、硫酸软骨素、硫酸葡聚糖钠中的一种或几种。
7.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤四所述的聚电解质多层膜为双层、四层或六层的结构。
8.根据权利要求1所述的具有杀菌功能的柔性复合薄膜的制备方法,其特征在于:步骤四所述的荧光共轭聚电解质为具有结构式(1)~(4)的聚合物中的一种或几种;
其中结构式(1)为
结构式(2)为
结构式(3)为
结构式(4)为
9.根据权利要求1所述的制备方法制备的具有杀菌功能的柔性复合薄膜的应用方法,其特征在于:将制备的柔性复合薄膜放入待杀菌的液体中,采用辐照强度为20~100mW/cm2的白光光源照射杀伤细菌。
CN201611183232.0A 2016-12-20 2016-12-20 一种具有杀菌功能的柔性复合薄膜的制备及应用方法 Active CN106633147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611183232.0A CN106633147B (zh) 2016-12-20 2016-12-20 一种具有杀菌功能的柔性复合薄膜的制备及应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611183232.0A CN106633147B (zh) 2016-12-20 2016-12-20 一种具有杀菌功能的柔性复合薄膜的制备及应用方法

Publications (2)

Publication Number Publication Date
CN106633147A CN106633147A (zh) 2017-05-10
CN106633147B true CN106633147B (zh) 2019-03-29

Family

ID=58834001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611183232.0A Active CN106633147B (zh) 2016-12-20 2016-12-20 一种具有杀菌功能的柔性复合薄膜的制备及应用方法

Country Status (1)

Country Link
CN (1) CN106633147B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107486026B (zh) * 2017-08-18 2021-04-02 清华大学 抗生物污染的分离膜及其制备方法
CN108641084B (zh) * 2018-03-30 2021-05-11 江南大学 一种基于非连续性润湿性改良的聚二甲基硅氧烷制备方法及产品
CN111704856B (zh) * 2020-07-07 2021-06-15 南京工业大学 一种γ-聚谷氨酸-聚阳离子复合物及其制备方法与应用
CN113024777B (zh) * 2021-02-22 2022-05-17 苏州大学 一种两亲性荧光共轭高分子、制备方法及应用
CN115155336B (zh) * 2022-07-15 2023-06-23 南昌航空大学 光还原沉积纳米银抗菌聚偏氟乙烯超滤膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056404A2 (en) * 2002-12-19 2004-07-08 Novartis Ag Medical devices having antimicrobial coatings thereon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056404A2 (en) * 2002-12-19 2004-07-08 Novartis Ag Medical devices having antimicrobial coatings thereon
CN1726052A (zh) * 2002-12-19 2006-01-25 诺瓦提斯公司 制备在其上具有抗微生物涂层的医疗装置的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An Optical Nanoruler Based on a Conjugated Polymer-Silver Nanoprism Pair for Label-Free Protein Detection;Xiaoyu Wang, et al.;《Adv.Mater.》;20150828;第27卷;第6040-6045页
Controllable metal-enhanced fluorescence in organized films and colloidal system;Qianling Cui, et al.;《Advances in Colloid and Interface Science》;20131018;第207卷;第164-177页

Also Published As

Publication number Publication date
CN106633147A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106633147B (zh) 一种具有杀菌功能的柔性复合薄膜的制备及应用方法
Li et al. Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@ Bi2WO6 coating for rapid bacterial killing
Kumar et al. TiO 2 and its composites as promising biomaterials: a review
Cierech et al. Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation
Li et al. Adaptive hydrogels based on nanozyme with dual‐enhanced triple enzyme‐like activities for wound disinfection and mimicking antioxidant defense system
Xiong et al. Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems
Cheng et al. Dual‐responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria‐infected wound healing
Zhang et al. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus
Some et al. Dual functions of highly potent graphene derivative–poly-l-lysine composites to inhibit bacteria and support human cells
Zhu et al. Rapid bacterial elimination achieved by sonodynamic Au@ Cu 2 O hybrid nanocubes
Bai et al. A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline
Wu et al. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light
Ge et al. Bandgap‐engineered germanene nanosheets as an efficient photodynamic agent for cancer therapy
CN111110846B (zh) 一种金属-核酸纳米颗粒及其制备方法和用途
Piwoński et al. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings
CN108619512A (zh) 金纳米簇在制备治疗肿瘤药物中的应用
Kim et al. Performance of NIR-mediated antibacterial continuous flow microreactors prepared by mussel-inspired immobilization of Cs0. 33WO3 photothermal agents
CN113016823B (zh) 一种光热抗菌近红外双金属纳米粒子的制备方法
CN101829555A (zh) 电子束辐照制备二氧化钛/介孔碳复合光催化剂的方法
Shi et al. Full spectrum visible LED light activated antibacterial system realized by optimized Cu2O crystals
Wang et al. Peroxidase-and UV-triggered oxidase mimetic activities of the UiO-66-NH 2/chitosan composite membrane for antibacterial properties
Xi et al. Engineering of Schottky heterojunction in Ru@ Bi2S3/Nb2C MXene based on work function with enhanced carrier separation for promoted sterilization
Deng et al. Rapid sterilisation and diabetic cutaneous regeneration using cascade bio-heterojunctions through glucose oxidase-primed therapy
Ball et al. Experimental methods to get polydopamine films: A comparative review on the synthesis methods, the films’ composition and properties
Chen et al. 3D‐Printed Light‐Driven Microswimmer with Built‐In Micromotors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant