CN106629639B - 硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用 - Google Patents

硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用 Download PDF

Info

Publication number
CN106629639B
CN106629639B CN201611097994.9A CN201611097994A CN106629639B CN 106629639 B CN106629639 B CN 106629639B CN 201611097994 A CN201611097994 A CN 201611097994A CN 106629639 B CN106629639 B CN 106629639B
Authority
CN
China
Prior art keywords
tmpyp
phase carbon
graphite phase
carbon nitride
sulphur codope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611097994.9A
Other languages
English (en)
Other versions
CN106629639A (zh
Inventor
梁汝萍
韦甜甜
邱建丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201611097994.9A priority Critical patent/CN106629639B/zh
Publication of CN106629639A publication Critical patent/CN106629639A/zh
Application granted granted Critical
Publication of CN106629639B publication Critical patent/CN106629639B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Luminescent Compositions (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用,属于光学传感技术领域。将硼酸、二硫化钼与三聚氰胺按一定比例在管式炉中高温煅烧,煅烧后的产物超声后离心分离,合成硼硫共掺杂的石墨相氮化碳复合材料。硼硫共掺杂的石墨相氮化碳先与Hg2+结合,再通过静电作用和π‑π共轭作用接近卟啉,Hg2+与卟啉分子作用形成平面外“Sat”复合物从而使卟啉环变形,加快了钴离子从背面进入卟啉空腔形成金属钴卟啉的速度。金属钴卟啉的形成使得卟啉的荧光减弱,随着Hg2+浓度的增加,卟啉的荧光逐渐减弱。基于此原理,可实现环境中Hg2+的快速、灵敏、选择性检测。

Description

硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用
技术领域
本发明公开了一种硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用,属于荧光学传感技术领域。
背景技术
近年来,随着工业的发展,重金属污染成为环境的主要污染,而Hg2+则是重金属污染物中危害最为严重的一种。水生生物会吸收和富集水中的Hg2+,最后经食物链传递到人体中,汞在人体内累积到一定程度会引起大脑损伤、肾脏衰竭、神经系统及免疫系统损伤等一系列危害。传统的Hg2+检测方法如气相色谱法、原子发射光谱法、原子吸收法等使用的仪器设备昂贵、样品制备复杂,很大程度上限制了它们的普遍应用。因此,构建一种简单、快速、高选择性、高灵敏度的Hg2+检测方法尤为重要。荧光传感方法恰恰因为检测直观、简便、灵敏度高等优点而备受广大科研工作者的青睐。
卟啉分子具有优良的光学性质,是一种理想的荧光物质,其Stokes位移大、荧光量子产率高、有相对长的激发(>400nm)和发射(>600nm)波长以及较低的背景荧光干扰,因而被广泛用作优良的金属离子分析试剂。但是,由于金属卟啉的形成过程较缓慢,因此须使用氨基酸、大半径金属离子或者碳基纳米材料作为催化剂来加速金属卟啉的形成,以实现金属离子快速检测的目的。
目前,二维纳米材料被认为是一种可能广泛应用于污染物传感领域的新型非金属材料。二维纳米材料具有吸附能力强、比表面积大等优点,常被用作金属催化材料的载体,其中类石墨相氮化碳是室温下最稳定的相,具有无毒和光响应等性质。此外,金属掺杂或者非金属掺杂、单掺杂或者双掺杂都会影响材料的某些性能,通过掺杂硫、铁、氧、硼、氟、锌等元素可合成高效的功能型g-CN材料,但是,对石墨相氮化碳的研究大多集中在光催化领域,拓展g-CN的应用范围十分必要。
发明内容
本发明的目的在于提供一种硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用,该方法对环境中Hg2+的灵敏性和选择性检测具有良好的应用前景。
本发明是这样实现的,硼硫共掺杂石墨相氮化碳的制备,其特征在于包括以下步骤:
(1)将2g硼酸、2g三聚氰胺、0.5g二硫化钼溶解于100mL无水乙醇中,超声1h,在80℃充分干燥,将得到固体粉末研磨后置于管式炉中,在氩气保护下以5℃/min的速率升温至500℃并维持2h,随后自然冷却到室温,将得到的产物取出研磨粉碎;
(2)将步骤(1)所得产物50mg溶解在50mL超纯水中,用70%功率超声震荡2.5h,将产物置于离心管中在12000rpm转速下离心10min,取上清液,制成硼硫共掺杂的石墨相氮化碳。
本发明还涉及硼硫共掺杂石墨相氮化碳的Hg2+检测应用:其特征在于:
(1)将50μM Co2+、12.5μM TMPyP、15μg/mL硼硫共掺杂石墨相氮化碳、2mM pH7.0 的磷酸盐缓冲液与不同浓度的Hg2+溶液混合,振荡摇匀后在37℃反应30min;
(2)硼硫共掺杂石墨相氮化碳和Hg2+协同催化Co2+与TMPyP快速结合而形成金属钴卟啉,硼硫共掺杂石墨相氮化碳先与Hg2+结合,再通过静电作用和π-π共轭作用接近TMPyP,Hg2+与TMPyP分子之间的作用使得TMPyP环变形,使得Co2+更容易从 TMPyP环的背面进入卟啉空腔形成钴卟啉,大大加快了Co2+与TMPyP结合形成钴卟啉的速度;
(3)钴卟啉的形成使得TMPyP的荧光减弱,使用荧光分光光度计测量激发波长为420nm时TMPyP的荧光,随着Hg2+浓度的增加,形成的钴卟啉越来越多,导致TMPyP 的荧光逐渐减弱,TMPyP的荧光强度与Hg2+浓度呈线性关系,可用于对环境中微量Hg2+的高灵敏检测。
本发明的技术效果是:本发明将硼酸、二硫化钼与三聚氰胺高温煅烧即可制备硼硫共掺杂的石墨相氮化碳。当溶液中不存在硼硫共掺杂石墨相氮化碳和Hg2+或只存在其中一种时,Co2+与TMPyP结合形成钴卟啉的速度很慢;而当溶液中同时存在硼硫共掺杂石墨相氮化碳和Hg2+时,Co2+与TMPyP结合形成钴卟啉的速度大大加快,表明硼硫共掺杂石墨相氮化碳和Hg2+对金属钴卟啉的形成具有协同催化作用;钴卟啉的形成使得TMPyP的荧光减弱,随着Hg2+浓度的增加,形成的钴卟啉越来越多,导致TMPyP 的荧光逐渐减弱,根据TMPyP的荧光强度可判断Hg2+的浓度,该方法具有快速、灵敏度高及选择性好的优点。
附图说明
图1是硼硫共掺杂石墨相氮化碳的(a)扫描电镜图,(b)透射电镜图,(c) 原子力显微镜图和(d)高度分布图。
图2是硼硫共掺杂石墨相氮化碳的(a)XRD图和(b)红外光谱图。
图3是卟啉的荧光光谱图:(a)TMPyP,(b)TMPyP+Co2+,(c)TMPyP+Hg2+, (d)TMPyP+CNBS,(e)TMPyP+Co2++Hg2+,(f)TMPyP+CNBS+Co2+,(g)TMPyP+ CNBS+Hg2+,(h)TMPyP+CNBS+Co2 ++Hg2+
图4是(a)TMPyP和(b)TMPyP+CNBS的原子力显微镜图,内插图为高度分布曲线。
图5是(a)TMPyP+CNBS+Co2+与不同浓度Hg2+(0~140nM)反应后TMPyP 的荧光光谱图;(b)TMPyP的荧光强度与Hg2+浓度的线性关系图。
图6是对Hg2+检测的选择性图,内插图为紫外光照下TMPyP的照片图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此;
实施例1
硼硫共掺杂石墨相氮化碳的制备
(1)将2g硼酸、2g三聚氰胺、0.5g二硫化钼溶解于100mL无水乙醇中,超声1h,在80℃充分干燥,将得到固体粉末研磨后置于管式炉中,在氩气保护下以5℃/min的速率升温至500℃并维持2h,随后自然冷却到室温,将得到的产物取出研磨粉碎;
(2)将步骤(1)所得产物50mg溶解在50mL超纯水中,用70%功率超声震荡2.5h,将产物置于离心管中在12000rpm转速下离心10min,取上清液,制成硼硫共掺杂的石墨相氮化碳(CNBS)。
采用扫描电镜、透射电镜和原子力显微镜对CNBS的形貌进行表征,由图1 可见,CNBS是一种超薄、类似蚕丝状、片状的纳米材料,其平均高度为1.15nm,厚度约为3-4层。采用XRD和红外光谱对CNBS进行表征。由图2(a)可见,块状类石墨相氮化碳的两个典型的XRD衍射峰13.09°和27.43°分别对应于(100)面和(002)面,晶格间距分别为d1=0.676nm,d2=0.325nm。而掺杂硫和硼后得到的产物CNBS的(002) 晶面衍射峰为27.82°,晶格间距d2=0.321nm。衍射峰的移动和晶格间距的变化表明硼和硫嵌入到类石墨相氮化碳结构中,导致衍射峰移动和宽泛。图2(b)为CNBS在 400-4000cm-1范围内的红外光谱图,807cm-1处的强吸收峰对应于三嗪环的特征呼吸振动,1000-1600cm-1之间的吸收峰对应于C-N杂环的伸缩振动,1300-1500cm-1之间的吸收峰由B-O、B-N以及C-N的伸缩振动引起,3000-3600cm-1范围内的吸收峰属于N-H 和O-H的伸缩振动,470-750cm-1之间的吸收峰对应于C-S的伸缩振动,830-1220cm-1之间的弱吸收峰由C=S的伸缩振动引起。以上结果表明,CNBS不仅保持着类石墨相氮化碳的骨架结抅,还成功掺杂了硼和硫。
实施例2
CNBS与Hg2+对钴卟啉形成的协同催化作用
用磷酸盐缓冲溶液分别配置下列溶液:(a)TMPyP,(b)TMPyP+Co2+,(c)TMPyP+ Hg2 +,(d)TMPyP+CNBS,(e)TMPyP+Co2++Hg2+,(f)TMPyP+CNBS+Hg2+,(g)TMPyP +CNBS+Hg2+,(h)TMPyP+CNBS+Co2++Hg2+。以上各溶液中,磷酸盐缓冲液的浓度为2mMpH为7.0,CNBS的浓度为15μg/mL,TMPyP的浓度为12.5μM,Co2+的浓度为 50μM。以上各溶液分别振荡摇匀后均于37℃反应30min,在紫外光照下观察各反应溶液颜色的变化,通过荧光分光光度计测量TMPyP的发射光谱。
由图3可见,TMPyP在658nm有较强的特征发射峰(曲线a);当在TMPyP 溶液中分别加入CNBS、Co2+、Hg2+或者加入它们三者的其中两个后,在一定的反应时间内,CNBS、Co2+或Hg2+都不能有效催化金属钴卟啉的形成,使得TMPyP在658nm 处的荧光强度无明显变化(曲线b,c,d,e,f,g);当在TMPyP溶液中同时加入CNBS、 Co2+和Hg2+时,在相同的反应条件下,TMPyP的荧光明显减弱,降低了80%(曲线h)。采用原子力显微镜对CNBS与TMPyP之间的作用进行表征,由图4可见,TMPyP的平均高度为1.05nm,而当TMPyP与CNBS反应后,复合物的高度增加为2.26nm,相当于TMPyP分子与CNBS的高度之和,表明TMPyP与CNBS之间相互叠加组装在一起。由以上结果可见,TMPyP与CNBS可以进行组装,且只有在CNBS和Hg2+同时存在的条件下,才能催化Co2+快速进入TMPyP空腔形成钴卟啉,CNBS和Hg2+对钴卟啉的形成具有良好的协同催化作用。这是由于CNBS中含有的S和B原子,使得CNBS可先结合微量Hg2+,再通过静电作用和π-π共轭作用接近TMPyP,Hg2+与TMPyP分子之间的作用使得TMPyP环发生变形,Co2+更容易从TMPyP环的背面进入卟啉空腔形成钴卟啉,加快了Co2+与TMPyP结合形成钴卟啉的速度,钴卟啉的形成导致TMPyP荧光减弱,可用于微量Hg2+的检测。
实施例3
基于CNBS和Hg2+对钴卟啉形成的协同催化作用检测Hg2+
将100μL 50μΜ的TMPyP水溶液、30μL 0.2mg/mL的CNBS溶液、20μL 1mΜCo2+、 40μL20mΜpH7.0的磷酸盐缓冲液和不同浓度的Hg2+溶液混合,加入超纯水使测试溶液总体积至400μL,并在37℃反应30min,测量激发波长为420nm时TMPyP在658nm处的荧光变化。由图5可见,随着Hg2+浓度的增大,TMPyP的荧光逐渐减弱,TMPyP的荧光强度与Hg2+浓度在0-80nM范围内呈良好的线性关系,线性相关系数R2=0.994,检测限为0.37nM。
考查了本方法对Hg2+检测的选择性(图6)。由图6可见,干扰离子包括Na+、Pb2+、 Ag+、Mg2+、Fe2+、Fe3+、Cd2+、Sn2+、Mn2+、Ni2+、Cr3+、Cu2+、Ba2+、Ca2+、K+、Zn2+、 Co2+和Al3+等均不影响TMPyP的荧光强度,只有在加入Hg2+时,才使TMPyP的荧光下降。内插图为紫外灯照射下,TMPyP溶液颜色变化的照片,只有加入Hg2+时溶液在紫外灯下为无色。以上结果表明,本发明构建的基于CNBS和Hg2+协同催化钴卟啉形成的Hg2+检测方法对Hg2+检测具有良好的选择性。

Claims (1)

1.一种硼硫共掺杂石墨相氮化碳的Hg2+检测应用,其特征在于方法步骤如下:
(1)将50μMCo2+、12.5μMTMPyP、15μg/mL硼硫共掺杂石墨相氮化碳、2mMpH7.0的磷酸盐缓冲液与不同浓度的Hg2+溶液混合,振荡摇匀后在37℃反应30min;
(2)硼硫共掺杂石墨相氮化碳和Hg2+协同催化Co2+与TMPyP快速结合而形成金属钴卟啉,硼硫共掺杂石墨相氮化碳先与Hg2+结合,再通过静电作用和π-π共轭作用接近TMPyP,Hg2+与TMPyP分子之间的作用使得TMPyP环变形,使得Co2+更容易从TMPyP环的背面进入卟啉空腔形成钴卟啉,大大加快了Co2+与TMPyP结合形成钴卟啉的速度;
(3)钴卟啉的形成使得TMPyP的荧光减弱,使用荧光分光光度计测量激发波长为420nm时TMPyP的荧光,随着Hg2+浓度的增加,形成的钴卟啉越来越多,导致TMPyP的荧光逐渐减弱,TMPyP的荧光强度与Hg2+浓度呈线性关系,可用于对环境中微量Hg2+的高灵敏检测;
制备所述硼硫共掺杂石墨相氮化碳包括以下步骤:
(1)将2g硼酸、2g三聚氰胺、0.5g二硫化钼溶解于100mL无水乙醇中,超声1h,在80℃充分干燥,将得到固体粉末研磨后置于管式炉中,在氩气保护下以5℃/min的速率升温至500℃并维持2h,随后自然冷却到室温,将得到的产物取出研磨粉碎;
(2)将步骤(1)所得产物50mg溶解在50mL超纯水中,用70%功率超声震荡2.5h,将产物置于离心管中在12000rpm转速下离心10min,取上清液,制成硼硫共掺杂的石墨相氮化碳。
CN201611097994.9A 2016-12-03 2016-12-03 硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用 Expired - Fee Related CN106629639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611097994.9A CN106629639B (zh) 2016-12-03 2016-12-03 硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611097994.9A CN106629639B (zh) 2016-12-03 2016-12-03 硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用

Publications (2)

Publication Number Publication Date
CN106629639A CN106629639A (zh) 2017-05-10
CN106629639B true CN106629639B (zh) 2018-12-25

Family

ID=58818301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611097994.9A Expired - Fee Related CN106629639B (zh) 2016-12-03 2016-12-03 硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用

Country Status (1)

Country Link
CN (1) CN106629639B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318553B (zh) * 2018-02-06 2019-11-12 红河学院 Afb1电化学免疫传感器及其制备方法及其用于黄曲霉素b1的检测
CN108610488B (zh) * 2018-05-29 2020-09-22 南昌大学 席夫碱稀土配位聚合物荧光探针的制备方法及其汞离子检测应用
CN108704662A (zh) * 2018-06-22 2018-10-26 南京白云环境科技集团股份有限公司 一种金属卟啉/石墨相氮化碳复合光催化剂
CN109772409B (zh) * 2019-02-15 2022-04-26 江苏大学 B,s共掺杂氮化碳纳米管光催化剂及制备方法和应用
CN109772423B (zh) * 2019-03-30 2021-12-31 湖北文理学院 一种磷、铋共掺杂的多孔石墨相氮化碳光催化剂及其用途
CN111250042A (zh) * 2020-02-18 2020-06-09 上海电力大学 一种脱汞用碳基吸附剂及其制备方法和应用
CN111450869B (zh) * 2020-05-10 2023-06-09 宁波费尔诺生物科技有限公司 一种超薄S,B共掺杂g-C3N4光催化剂及其制备方法
CN111938919A (zh) * 2020-06-24 2020-11-17 杭州可靠护理用品股份有限公司 散热性能优良的纸尿裤及其加工方法
CN112082978A (zh) * 2020-09-16 2020-12-15 华中师范大学 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861632A (zh) * 2014-04-07 2014-06-18 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN104549500A (zh) * 2014-12-28 2015-04-29 北京工业大学 一种非金属液相掺杂制备B掺杂g-C3N4光催化剂的方法
CN104891997A (zh) * 2015-05-27 2015-09-09 青岛大学 一种石墨相氮化碳/硫化钼复合材料的制备方法
CN105670620A (zh) * 2016-03-14 2016-06-15 山东农业大学 一种掺杂氮化碳荧光量子点的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861632A (zh) * 2014-04-07 2014-06-18 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN104549500A (zh) * 2014-12-28 2015-04-29 北京工业大学 一种非金属液相掺杂制备B掺杂g-C3N4光催化剂的方法
CN104891997A (zh) * 2015-05-27 2015-09-09 青岛大学 一种石墨相氮化碳/硫化钼复合材料的制备方法
CN105670620A (zh) * 2016-03-14 2016-06-15 山东农业大学 一种掺杂氮化碳荧光量子点的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions";Yuxi Xu et al;《J. AM. CHEM. SOC》;20090827;第131卷;第13490–13497页 *
"Facile synthesis of boron-and nitride-doped MoS2 nanosheets as fluorescent probes for the ultrafast,sensitive,and label-free detection of Hg2+";Xiaojia Liu et al;《Analyst》;20150501;第140卷;第4654-4661页 *

Also Published As

Publication number Publication date
CN106629639A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106629639B (zh) 硼硫共掺杂石墨相氮化碳的制备方法及对Hg2+的检测应用
Arularasu et al. Structural, optical, morphological and microbial studies on SnO2 nanoparticles prepared by co-precipitation method
EP2419373B1 (en) Improved fluorescent silica nanoparticles through silica densification
Sung et al. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection
Liao et al. Controlled stepwise-synthesis of core–shell Au@ MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection
CN105060262B (zh) 一种水溶性氮化硼量子点及其制备方法
CN106006581A (zh) 一种溶剂热制备荧光氮化碳量子点的方法
Han et al. Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks
Luo et al. Controllable assembly of single/double-thin-shell gC 3 N 4 vesicles via a shape-selective solid-state templating method for efficient photocatalysis
Lu et al. Core-shell mesoporous silica nanospheres used as Zn 2+ ratiometric fluorescent sensor and adsorbent
Wang et al. Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas
CN104671286B (zh) 一种在液氮或干冰保护下制备高分散性纳米二硫化钼分散液的方法
Dong et al. Graphitic carbon nitride with thermally-induced nitrogen defects: an efficient process to enhance photocatalytic H 2 production performance
Luo et al. Facile fabrication of metal-free urchin-like gC 3 N 4 with superior photocatalytic activity
CN106744736A (zh) 一种用于水处理的活性多孔氮化硼纳米片的合成方法
Yi et al. Surface-plasmon-enhanced band emission and enhanced photocatalytic activity of Au nanoparticles-decorated ZnO nanorods
Masar et al. Preparation and characterization of expanded g-C3N4 via rapid microwave-assisted synthesis
CN103030137B (zh) 分级结构超长五氧化二钒纳米线线束及其制备方法
Zhao et al. Recent progress of carbon dots for air pollutants detection and photocatalytic removal: synthesis, modifications, and applications
CN103468254A (zh) 微波辅助法制备荧光AgInS2及AgInS2/ZnS纳米晶
Stan et al. A general, eco-friendly synthesis procedure of self-assembled ZnO-based materials with multifunctional properties
Remani et al. Fluorescence sensing of picric acid by ceria nanostructures prepared using fenugreek extract
CN108927201B (zh) 一种AgBr/g-C3N4复合粉体的制备方法及应用
Yuan et al. Green synthesis of graphitic carbon nitride nanodots using sodium chloride template
Dong-sheng et al. Preparation, characterization and Hg (II)-sensing behavior of an up-conversion nanocomposite grafted by a rhodamine derived probe: A potential application for eco-industrial park

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181225