CN112082978A - 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用 - Google Patents

一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用 Download PDF

Info

Publication number
CN112082978A
CN112082978A CN202010971176.7A CN202010971176A CN112082978A CN 112082978 A CN112082978 A CN 112082978A CN 202010971176 A CN202010971176 A CN 202010971176A CN 112082978 A CN112082978 A CN 112082978A
Authority
CN
China
Prior art keywords
fluorescence
cnns
sensor
concentration
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010971176.7A
Other languages
English (en)
Inventor
原弘
任萌丽
汪天阳
魏伟钦
欧阳述昕
张铁锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central China Normal University
Original Assignee
Central China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central China Normal University filed Critical Central China Normal University
Priority to CN202010971176.7A priority Critical patent/CN112082978A/zh
Publication of CN112082978A publication Critical patent/CN112082978A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用,通过将三聚氰胺和柠檬酸钠混合煅烧得到水溶性良好的黄色石墨相氮化碳纳米片(g‑CNNS)作为荧光纳米传感器。该荧光传感器对Hg2+具有很高的灵敏度和选择性;在水中Hg2+存在的条件下,g‑CNNS传感器在410nm激发波长时,在1‑20μmol/L区间内,其荧光强度作为检测信号随Hg2+浓度的变化呈线性关系;通过荧光光谱的分析,即可得到环境中Hg2+的浓度信息;本发明具有成本低廉、简单实用、检测时间短、选择性高的特点,具有重要的实用价值。

Description

一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用
技术领域
本发明涉及荧光传感领域,具体是一种用于检测Hg2+的石墨相氮化碳纳米荧光传感器及其制备方法和应用。
背景技术
汞(II)是一种能对人体健康产生巨大危害的重金属离子。其主要来源于工业废料、火山活动和化石燃料的燃烧,在自然界水环境中常以微量的游离态形式存在,难以被生物降解。Hg2+通过直接摄入以及食物链的积累和放大,会引发包括肾病、阿尔兹海默症、心脑血管疾病以及运动功能障碍等多种人体疾病。2019年,汞及汞化合物被生态环境部列入《有毒有害水污染物名录(第一批)》。因此,开发出一种可检测实际环境水样品中痕量Hg2+的方法是非常有意义的。
目前已经有一些手段和方法可以对Hg2+进行检测,主要包括紫外可见分光光度法(UV-Vis),冷蒸气原子荧光光谱法(AFS),原子吸收/发射光谱法(AAS/AES),高效液相色谱法(HPLC),电感耦合等离子体质谱法(ICP-MS)和离子色谱法(IC)等。但由于在实际环境中,Hg2+的含量非常低,且实际样品的组成复杂,在使用这些技术前通常需要先进行一些预处理,如采用固相萃取(SPE)或液-液萃取等方法分离出干扰成分,提高检测的选择性和灵敏度。但上述方法的使用耗时且容易引入新的干扰,难以做到快速、灵敏检测实际环境水样中的Hg2+含量。
为了实现更加快速高效、高灵敏度、高选择性地检测Hg2+,基于荧光探针的检测方法逐渐成为人们关注的焦点。许多材料都被开发作为荧光探针,其中石墨相氮化碳作为一种石墨烯类似物,具有卓越的稳定性、良好的生物相容性和低生物毒性,且制备原料廉价,易于制备。基于其的纳米片材料具有进一步提高的水溶性,高荧光量子产率和较大的斯托克斯位移,是一种理想的用于生物荧光探针的材料。因此,研发一种基于石墨相氮化碳的纳米片(g-CNNS)荧光传感器,并应用其于水环境中痕量Hg2+的检测具有重要的意义。
发明内容
本发明的目的在于克服传统Hg2+的检测方法中需要进行预处理所造成的低效率和易污染的问题,因而提出了一种新的用于水中Hg2+检测的纳米荧光传感器及其制备和应用方法。本发明所提出的g-CNNS荧光传感器,可以高效、准确的应用于实际复杂水环境样品中Hg2+的定量和定性检测,使用这种新方法可以大大节省检测时间成本,且传感器的制备简单、廉价,对Hg2+灵敏度高、选择性好,对于实际复杂环境水样的检测具有重要意义。
本发明解决上述技术问题所采用的方案是:
一种用于检测Hg2+的氮化碳纳米荧光传感器的制备方法,包括以下步骤:
将尿素和柠檬酸三钠在玛瑙研钵中混合并研磨均匀,再将混合物置于坩埚并在160~200℃的烘箱中保持45~90分钟,使用乙醇洗涤并离心,用透析膜对离心所得产物进行透析,最后在干燥箱中烘干,所得棕黄色固体即为g-CNNS(纳米氮化碳),将所得g-CNNS研磨后溶解于超纯水中,得到g-CNNS溶液。
优选地,尿素和柠檬酸三钠的物质的量之比为(3~4):1。
优选地,所述g-CNNS为纳米片状结构。
优选地,所述g-CNNS溶液的浓度为0.3~2mg/mL,可根据实际效果调整该浓度。
本发明的另一目的是提供一种用于检测Hg2+浓度的纳米荧光传感器,采用上述制备方法得到。
优选地,所述纳米荧光传感器在Hg2+存在的情况下,最佳激发波长条件下的荧光强度降低可达90%,在其它常见金属离子存在条件下,荧光强度降低不超过20%。
本发明的另一目的是提供上述纳米荧光传感器的应用,用于对Hg2+进行定量检测,检测过程包括以下步骤:
(1)荧光传感器对标准溶液中Hg2+的检测
采用g-CNNS溶液分别与不同浓度的Hg2+标准样品进行反应,然后在410nm激发波长下,使用荧光分光光度计测定所有标准样品的荧光光谱,建立荧光强度与不同Hg2+浓度样品的标准线性关系;
(2)荧光传感器对实际环境水样品中Hg2+浓度的检测
将待测样品与g-CNNS溶液反应,在410nm激发波长下,使用荧光分光光度计测定所述待测样品的荧光光谱,根据步骤(1)中所得的Hg2+浓度与荧光强度的标准线性关系计算实际环境水样品中的Hg2+浓度。
本发明设计了一种廉价易制备的棕黄色g-CNNS荧光传感器,其具有较大的斯托克斯位移和较高的荧光量子产率。g-CNNS的荧光(λem=520nm)可以被Hg2+特异性猝灭,其作为Hg2+的荧光探针,具有选择性好、检测下限低的优点。
附图说明
图1是本发明的石墨相氮化碳荧光材料的合成反应过程图;
图2是实施例1制备的石墨相氮化碳荧光材料的TEM图;
图3是实施例1制备的石墨相氮化碳荧光材料的FT-IR图;
图4是Hg2+使本申请所得石墨相氮化碳传感器荧光猝灭检测的示意图。
图5是实施例1中制备的石墨相氮化碳荧光材料水溶液加入不同浓度Hg2+的荧光光谱图,其发射波长为520nm,激发波长为410nm,各谱线上的数字代表Hg2+浓度,单位为μmol;
图6是实施例1中制备的石墨相氮化碳荧光材料在1-20μmol/L范围内的520nm处的荧光强度对Hg2+浓度的线性回归曲线图;
图7是实施例1中制备的石墨相氮化碳荧光材料及其与不同常见金属离子(Fe3+、Cu2+、Al3+、Co2+、Cr2+、Pb2+、Ca2+、Na+、Mg2+、K+、Zn2+、Ba2+)共存时的荧光强度图;
图8是实施例1中制备的石墨相氮化碳荧光材料的水分散液(8.33μg/mL)加入Hg2+(50μmol/L)荧光强度随时间的变化曲线。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
本实施例是一种用于痕量Hg2+检测的荧光传感器的制备过程,其合成方式如图1,包括以下详细步骤:
准确称取5.05g尿素和8.25g柠檬酸三钠,倒入玛瑙研钵中充分混合,并充分研磨均匀,将研磨后所得的混合物置于坩埚,在烘箱中以180℃保持1h,加入适量的乙醇对前一步所得产物进行洗涤,并在9000rpm条件下离心3次,随后选择3500D的透析膜,对上述所得产物透析24h,最后在干燥箱中烘干,所得棕黄色固体就是石墨相氮化碳g-CNNS,研磨处理后溶解于超纯水中,超声处理1h后,加超纯水定容配置得到1mg/mL g-CNNS。
本实施例所得石墨相氮化碳荧光材料的透射电镜照片如图2所示,从图2可以看出,所得g-CNNS荧光材料为二维片状结构,大多数横向尺寸低于100nm。
本实施例所得石墨相氮化碳荧光材料的FT-IR图如图3所示,从图3中可以看出,g-CNNS中含有-OH、-COOH、-C-N-和-C=N-等结构的特征峰。
本实施例所得石墨相氮化碳荧光材料与Hg2+结合发生猝灭的机理如图4。
本实施例所得石墨相氮化碳荧光材料与Hg2+发生特异性猝灭,其对Hg2+的选择性测试如下:在g-CNNS的水分散液(8.33μg/mL)中,分别加入Hg2+、Fe3+、Cu2+、Al3+、Co2+、Cr2+、Pb2+、Ca2+、Na+、Mg2+、K+、Zn2+、Ba2+金属离子盐,使用超纯水定容使得金属离子的最终浓度为10mmol/L。在410nm激发波长下,进行荧光发射光谱测试。结果如图7所示,Hg2+的实验组中,其荧光强度相比控制组下降了约90%,而其它对照金属离子实验组荧光强度相比下降最多不超过20%,这说明g-CNNS对Hg2+的荧光检测具有较好的选择性。
本实施例所得石墨相氮化碳荧光材料检测Hg2+存在下的荧光寿命的测试如下:测定加入和未加入浓度50μmol/L的Hg2+条件下,激发波长410nm,发射波长520nm时,g-CNNS的水分散液(8.33μg/mL)的荧光寿命,结果如图8所示。
实施例2
本实施例是一种用于检测Hg2+的传感器对Hg2+定量检测应用,包括以下步骤:
(1)荧光传感器对标准溶液中Hg2+的检测
分别在10个容量瓶中依次加入5μL经超声处理后的1mg/mL g-CNNS溶液,再加入不同浓度的Hg2+,加入超纯水定容至最终体积为600μL,使得最终Hg2+浓度分别是1、2、3、4、5、6、8、12、16、20μmol/L,反应10min后,在410nm激发波长下,使用荧光分光光度计测定所有标准样品的荧光光谱,荧光强度与Hg2+浓度的关系如图5,建立荧光强度与不同Hg2+浓度样品的标准线性工作曲线如图6,其结果如下表1。
表1 Hg2+标准溶液的工作曲线
检测物 线性范围(μmol/L) 线性相关系数 检测限(μmol/L)
Hg<sup>2+</sup> 1-20 0.999 0.15
(2)荧光传感器对实际环境水样品中Hg2+浓度的检测
从实际环境中取得的湖水样品,在9000rpm条件下离心10min,取上清液过滤,滤液待用;取适量所得滤液与5μL超声处理后的1mg/mL g-CNNS溶液混合,并定容至600μL,反应10min后,在410nm激发波长下,使用荧光分光光度计测定所述混合样品的荧光光谱,根据步骤(1)中所得的Hg2+浓度与荧光强度的标准线性关系计算实际环境水样品中的Hg2+浓度。经检测,本实施方案中所收集的湖水未检测出Hg2+
(3)实际检测样品加标回收实验
为了进一步验证本发明中荧光传感器对湖水中Hg2+浓度检测的准确度,将上述(2)中湖水样品进行了加标回收实验,实验结果如下表2。
表2 加标回收实验结果
Figure BDA0002684103520000041
表2的结果表明,Hg2+的回收率为92.7-102.4%,实验结果具有较好的准确度。基于该结果,说明g-CNNS荧光传感器非常适用于实际环境样品中Hg2+浓度的检测。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (7)

1.一种用于检测Hg2+的氮化碳纳米荧光传感器的制备方法,其特征在于,包括以下步骤:
将尿素和柠檬酸三钠在玛瑙研钵中混合并研磨均匀,再将混合物置于坩埚,并在160~200℃左右烘箱中保持45~90min时间,使用乙醇洗涤并离心,用透析膜对离心所得产物进行透析,最后在干燥箱中烘干,所得棕黄色固体即为g-CNNS,将所得g-CNNS研磨后溶解于超纯水中,得到g-CNNS溶液。
2.根据权利要求1所述的制备方法,其特征在于,尿素和柠檬酸三钠的物质的量之比为(3~4):1。
3.根据权利要求1所述的制备方法,其特征在于,所述g-CNNS为纳米片状结构。
4.根据权利要求1所述的制备方法,其特征在于,所述g-CNNS溶液的浓度为0.3~2mg/mL,可根据实际效果调整该浓度。
5.一种用于检测Hg2+浓度的纳米荧光传感器,其特征在于,所述纳米荧光传感器采用权利要求1~4任一项所述制备方法得到。
6.根据权利要求5所述的纳米荧光传感器,其特征在于,所述纳米荧光传感器在Hg2+存在的情况下,最佳激发波长条件下的荧光强度降低可达90%,在其它常见金属离子存在条件下,荧光强度降低不超过20%。
7.权利要求5~6任一项所述纳米荧光传感器的应用,其特征在于,用于对Hg2+进行定量检测,检测过程包括以下步骤:
(1)荧光传感器对标准溶液中Hg2+的检测
采用g-CNNS溶液分别与不同浓度的Hg2+标准样品进行反应,然后在410nm激发波长下,使用荧光分光光度计测定所有标准样品的荧光光谱,建立荧光强度与不同Hg2+浓度样品的标准线性关系;
(2)荧光传感器对实际环境水样品中Hg2+浓度的检测
将待测样品与g-CNNS溶液反应,在410nm激发波长下,使用荧光分光光度计测定所述待测样品的荧光光谱,根据步骤(1)中所得的Hg2+浓度与荧光强度的标准线性关系计算实际环境水样品中的Hg2+浓度。
CN202010971176.7A 2020-09-16 2020-09-16 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用 Pending CN112082978A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010971176.7A CN112082978A (zh) 2020-09-16 2020-09-16 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010971176.7A CN112082978A (zh) 2020-09-16 2020-09-16 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112082978A true CN112082978A (zh) 2020-12-15

Family

ID=73736395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010971176.7A Pending CN112082978A (zh) 2020-09-16 2020-09-16 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112082978A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218920A (zh) * 2021-02-04 2021-08-06 安徽师范大学 一种基于菊花的荧光碳纳米微球的制备方法及对Hg2+和卡托普利的检测
CN114956049A (zh) * 2022-06-17 2022-08-30 山西大学 一种长波长比率荧光碳点及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229789A (zh) * 2014-09-25 2014-12-24 上海交通大学 一种氮掺杂石墨烯的制备方法
CN105588823A (zh) * 2016-01-19 2016-05-18 济南大学 一种检测生物硫醇类荧光开关型传感器的制备及应用
CN105618102A (zh) * 2015-09-21 2016-06-01 江苏华天通纳米科技有限公司 片状结构上嵌碳纳米粒子的氮化碳光催化剂
CN106185846A (zh) * 2015-05-08 2016-12-07 香港中文大学深圳研究院 石墨相氮化碳纳米片、纳米带和量子点的制备方法
CN106629639A (zh) * 2016-12-03 2017-05-10 南昌大学 硼硫共掺杂石墨烯氮化碳的制备方法及对Hg2+的检测应用
CN107008484A (zh) * 2017-04-17 2017-08-04 武汉理工大学 一种二元金属硫化物/氮化碳复合光催化材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229789A (zh) * 2014-09-25 2014-12-24 上海交通大学 一种氮掺杂石墨烯的制备方法
CN106185846A (zh) * 2015-05-08 2016-12-07 香港中文大学深圳研究院 石墨相氮化碳纳米片、纳米带和量子点的制备方法
CN105618102A (zh) * 2015-09-21 2016-06-01 江苏华天通纳米科技有限公司 片状结构上嵌碳纳米粒子的氮化碳光催化剂
CN105588823A (zh) * 2016-01-19 2016-05-18 济南大学 一种检测生物硫醇类荧光开关型传感器的制备及应用
CN106629639A (zh) * 2016-12-03 2017-05-10 南昌大学 硼硫共掺杂石墨烯氮化碳的制备方法及对Hg2+的检测应用
CN107008484A (zh) * 2017-04-17 2017-08-04 武汉理工大学 一种二元金属硫化物/氮化碳复合光催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIANFEN ZHUANG等: "One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions", 《TALANTA》 *
李蔡伟: "石墨相氮化碳基化学传感器的制备及其性能研究", 《硕士电子期刊》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218920A (zh) * 2021-02-04 2021-08-06 安徽师范大学 一种基于菊花的荧光碳纳米微球的制备方法及对Hg2+和卡托普利的检测
CN113218920B (zh) * 2021-02-04 2022-12-23 安徽师范大学 一种基于菊花的荧光碳纳米微球的制备方法及对Hg2+和卡托普利的检测
CN114956049A (zh) * 2022-06-17 2022-08-30 山西大学 一种长波长比率荧光碳点及其制备方法和应用
CN114956049B (zh) * 2022-06-17 2023-07-18 山西大学 一种长波长比率荧光碳点及其制备方法和应用

Similar Documents

Publication Publication Date Title
Firdaus et al. Colorimetric detection of mercury (II) ion in aqueous solution using silver nanoparticles
Han et al. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles
Hajizadeh et al. Silver nanoparticles as a cyanide colorimetric sensor in aqueous media
Zhang et al. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples
Wang et al. Sensitive and selective colorimetric detection of cadmium (II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole
Liu et al. Colorimetric speciation of Cr (III) and Cr (VI) with a gold nanoparticle probe
CN109342385B (zh) 一种用于快速检测食品和环境中亚硝酸盐含量的碳量子点及其应用方法
Jin et al. Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications
Qi et al. Terbium (III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury (II) and a paper-based visual sensor
Zhou et al. A pyrene-involved luminescent MOF for monitoring 1-hydroxypyrene, a biomarker for human intoxication of PAH carcinogens
JP2011158425A (ja) 目視蛍光分析用具及びそれを用いる微量重金属の分析方法
CN112082978A (zh) 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用
Bi et al. Room-temperature phosphorescence sensor based on manganese doped zinc sulfide quantum dots for detection of urea
Li et al. A turn-on fluorescent sensor for highly sensitive mercury (II) detection based on a carbon dot-labeled oligodeoxyribonucleotide and MnO 2 nanosheets
Chen et al. A nanosystem composed of upconversion nanoparticles and N, N-diethyl-p-phenylenediamine for fluorimetric determination of ferric ion
CN110865061A (zh) 同时检测亚硝酸根离子与Hg2+的双发射荧光探针及其方法
Luo et al. Preparation of nitrogen-doped carbon quantum dots and its application as a fluorescent probe for Cr (VI) ion detection
CN111826155B (zh) 一种CdS量子点-荧光素FRET荧光探针及其制备方法和用途
Liu et al. Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn (vii) and Cr (vi)
Chen et al. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban
Liu et al. A simple and feasible fluorescent approach for rapid detection of hexavalent chromium based on gold nanoclusters
CN113788788B (zh) 一种荧光离子液体及其合成方法与应用
Li et al. Rational design of a functionalized metal–organic framework for ratiometric fluorimetric sensing of Hg 2+ in environmental water
Zhang et al. Capsulation of red emission chromophore into the CoZn ZIF as nanozymes for on-site visual cascade detection of phosphate ions, o-phenylenediamine, and benzaldehyde
Liu et al. Construction of eco-friendly dual carbon dots ratiometric fluorescence probe for highly selective and efficient sensing mercury ion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201215

RJ01 Rejection of invention patent application after publication