CN106623745A - 一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法 - Google Patents

一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法 Download PDF

Info

Publication number
CN106623745A
CN106623745A CN201611215075.7A CN201611215075A CN106623745A CN 106623745 A CN106623745 A CN 106623745A CN 201611215075 A CN201611215075 A CN 201611215075A CN 106623745 A CN106623745 A CN 106623745A
Authority
CN
China
Prior art keywords
thickness ratio
heat
radius
blank
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611215075.7A
Other languages
English (en)
Inventor
王章忠
朱帅帅
胡谦
张保森
巴志新
毛向阳
费炜杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAJING ZHONGSHENG RAIL VEHICLES ACCESSORIES CO Ltd
Nanjing Institute of Technology
Original Assignee
NAJING ZHONGSHENG RAIL VEHICLES ACCESSORIES CO Ltd
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAJING ZHONGSHENG RAIL VEHICLES ACCESSORIES CO Ltd, Nanjing Institute of Technology filed Critical NAJING ZHONGSHENG RAIL VEHICLES ACCESSORIES CO Ltd
Priority to CN201611215075.7A priority Critical patent/CN106623745A/zh
Publication of CN106623745A publication Critical patent/CN106623745A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/32Making machine elements wheels; discs discs, e.g. disc wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明公开了一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,包括:S01,将耐热钢棒料毛坯使用中频感应加热至1100℃~1200℃,采用自由敦粗与冲孔相复合的工艺进行制坯,坯料径厚比为(5.0~6.0):1;S02,对S01获得的坯料进行径‑轴向辗环扩孔,辗环终止温度750~850℃,扩孔后坯料径厚比为(20.0~50.0):1;S03,对S02获得的坯料补温加热至1100℃~1150℃,采用开式模锻进行近净成形。该法能够确保耐热钢模锻过程发生动态再结晶细化晶粒,锻件晶粒度可达7~8级,促进微纳米碳氮化合物弥散析出,析出物尺寸为30~100nm,显著提升锻件强韧性匹配及高温力学性能。

Description

一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法
技术领域
本发明涉及一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,属于锻造加工技术领域。
背景技术
目前,对于大径厚比空心盘形锻件,传统的制造方法往往是采用分段锻造,最后拼焊成整环,但是,该方法容易导致盘坯变形并带有焊接缺陷,在交变应力或苛刻工况下容易发生断裂等时效行为,影响设备寿命及使用安全。
目前也出现了一些一体成型的大径厚比空心盘形锻件,但是仍然存在制坯完成后需要二次加热锻造,增加生产成本和能源消耗,同时二次加热过程难以有效消除辗环制坯过程产生的组织粗大及混晶现象,盘体性能稳定性较差。
发明内容
本发明所要解决的技术问题是,提供一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,该法锻件的应力得以均匀缓慢释放,有效抑制盘体翘曲变形,同时能够确保耐热钢模锻过程发生动态再结晶细化晶粒,促进微纳米碳氮化合物弥散析出,提升锻件强韧性匹配及高温力学性能。
为解决上述技术问题,本发明采用的技术方案为:
一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,包括以下步骤:
S01,将耐热钢棒料毛坯使用中频感应加热至1100℃~1200℃,采用自由敦粗与冲孔相复合的工艺进行制坯,坯料径厚比为(5.0~6.0):1;
S02,对S01获得的坯料进行径-轴向辗环扩孔,辗环终止温度750~850℃,扩孔后坯料径厚比为(20.0~50.0):1;
S03,对S02获得的坯料补温加热至1100℃~1150℃,采用开式模锻进行近净成形,获得大径厚比盘形锻件;
S04,对S03获得的锻件置于保温罩内缓冷,抑制模锻过程中非对称应变造成的盘体翘曲变形。
所述耐热钢为低碳合金耐热钢,包含有Cr、Ni、Mo、Ti合金元素,还包括V、Nb中的任意一种或两种。
所述大径厚比盘形锻件的外径尺寸是Φ500~2000mm,内径尺寸是Φ200~1000mm,轴向厚度尺寸是20~50mm。
所述大径厚比盘形锻件为空心结构,盘面一侧或两侧带有凸起筋;所述凸起筋长120~140mm,高30~35mm,厚10~15mm。
S03的补温加热和S01的中频感应加热的加热速率均为15~20℃/s。
S04中缓冷的速率为0.05℃/s~0.15℃/s。
S02的辗环终止温度750~850℃,此时大量Ti、Nb、V等的合金碳、氮化合物在亚晶界、位错及畸变带处析出,有效阻止奥氏体晶粒进一步长大,提升锻件强韧性匹配及高温力学性能。
S03的补温过程为使用圆环中频感应炉进行快速加热,加热速度为15~20℃/s,坯料烧损量小于0.5%,实现低氧化补温。补温过程具有以下作用效果,使得坯料完全奥氏体化,Cr、Ni、Mo等合金元素完全固溶于奥氏体中,快速升温及析出的Ti、Nb、V等的合金化合物有效阻止奥氏体晶粒进一步长大,确保锻件具有较细晶粒度,获得较高强韧性。
S04的保温罩能够实现盘体缓冷进而使得模锻过程中非对称应变造成的内应力均匀缓慢释放,冷却速度为0.05~0.15℃/s,有效抑制盘体翘曲变形。
本发明原理如下:
原料敦粗制坯及辗环扩孔过程中的高温及大变形导致奥氏体晶粒异常粗大,辗环终了温度为750℃~850℃,此时大量Ti、Nb、V等的合金碳、氮化合物在亚晶界、位错及畸变带处析出,采用中频感应炉快速补温加热至1100℃~1150℃,Cr、Ni、Mo等合金元素充分溶解至奥氏体中,快速升温及析出的Ti、Nb、V等的合金化合物有效阻止奥氏体晶粒进一步长大。盘体表面具有复杂凸起筋结构,开式模锻过程中产生足够的形变储能加之补温带来的热力学条件,促使耐热钢发生动态再结晶,动态再结晶反复成核及有限长大的特点使得奥氏体晶粒得以细化,同时溶解至奥氏体中的合金元素能够有效抑制模锻后的静态再结晶,进一步细化晶粒。锻后冷却过程中,Ti、Nb、V的合金化合物作为相变核心,大量弥散分布的纳米尺度Ti、Nb、V的析出物并促使微纳米级Fe、Cr、Mo的碳氮化合物在相间或晶界形成,使得组织细化,提高锻件强韧性及高温力学性能与稳定性。
与现有技术相比,本发明所达到的有益效果:(1)本发明补温加热促进模锻过程金属填充完整,锻件尺寸结构精度大幅提升,能够实现近净成形;(2)辗环终止温度和补温过程有利于促进锻件晶粒细化及微纳米级碳氮化合物的弥散析出,充分挖掘耐热合金刚潜力,显著提升锻件强韧性及高温力学性能;(3)保温罩的缓冷作用能够确保盘体模锻过程中非对称应变产生的内应力缓慢均匀释放,有效抑制盘体冷却后翘曲变形现象。
附图说明
图1为本发明的实施例1获得的大径厚比盘形锻件的晶粒度图;
图2为本发明的实施例1获得的大径厚比盘形锻件组织的透射电镜图。
具体实施方式
下面结合附图对本发明作更进一步的说明,以下实施例所采用的耐热钢为Cr-Mo-Ni-V系热强钢,其成分如表1所示。
表1锻造用Cr-Mo-Ni-V系热强钢主要化学成分表(单位wt%)
实施例1:
如图1~图2所示,一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,包括以下步骤:
S01,将棒料毛坯使用中频感应加热至1100℃~1120℃,利用单臂自由锻电液锤根据自由敦粗与冲孔相复合的工艺进行制坯,过程中使用冲孔模进行冲孔,终锻温度为1050℃~1100℃,坯料径厚比为5.6:1;
S02,将上述坯料直接安装至数控辗环机上并定位,无需二次加热,辗环终止温度为750℃~850℃,坯料径厚比为36.1:1;
S03,将上述坯料直接移入环形中频感应加热炉加热至1100~1120℃,加热速度为15℃/s,采用开式模锻的方式进行近净成形,终锻温度为920~950℃;
S04,将上述模锻产品移入保温罩内缓慢冷却至室温,冷却速度为0.1℃/s。
实施例2:
如图1~图2所示,一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,包括以下步骤:
S01,将棒料毛坯使用中频感应加热至1180℃~1200℃,利用单臂自由锻电液锤根据自由敦粗与冲孔相复合的工艺进行制坯,过程中使用冲孔模进行冲孔,终锻温度为1050℃~1080℃,坯料径厚比为5.1:1;
S02,将上述坯料直接安装至数控辗环机上并定位,无需二次加热,辗环终止温度为750℃~780℃,坯料径厚比为42.1:1;
S03,将上述坯料直接移入环形中频感应加热炉加热至1130~1140℃,加热速度为15℃/s,采用开式模锻的方式进行近净成形,终锻温度为900℃~1050℃;
S04,将上述模锻产品移入保温罩内缓慢冷却至室温,冷却速度为0.05℃/s。
实施例3:
如图1~图2所示,一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,包括以下步骤:
S01,将棒料毛坯使用中频感应加热至1170℃~1190℃,利用单臂自由锻电液锤根据自由敦粗与冲孔相复合的工艺进行制坯,过程中使用冲孔模进行冲孔,终锻温度为1090℃~1100℃,坯料径厚比为5.8:1;
S02,将上述坯料直接安装至数控辗环机上并定位,无需二次加热,辗环终止温度为790℃~800℃,坯料径厚比为27.3:1;
S03,将上述坯料直接移入环形中频感应加热炉加热至1140~1150℃,加热速度为20℃/s,采用开式模锻的方式进行近净成形,终锻温度为980~990℃;
S04,将上述模锻产品移入保温罩内缓慢冷却至室温,冷却速度为0.15℃/s。
实施例4:
如图1~图2所示,一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,包括以下步骤:
S01,将棒料毛坯使用中频感应加热至1200℃,利用单臂自由锻电液锤根据自由敦粗与冲孔相复合的工艺进行制坯,过程中使用冲孔模进行冲孔,终锻温度为1140℃,坯料径厚比为5.4:1;
S02,将上述坯料直接安装至数控辗环机上并定位,无需二次加热,辗环终止温度为750℃,坯料径厚比为38.5:1;
S03,将上述坯料直接移入环形中频感应加热炉加热至1150℃,加热速度为18℃/s,采用开式模锻的方式进行近净成形,终锻温度为1000℃;
S04,将上述模锻产品移入保温罩内缓慢冷却至室温,冷却速度为0.15℃/s。
组织性能及盘体变形量检测:
根据国标GB/T 228.1-2010和GB-T229-2007测试实施例1~4试样室温拉伸及冲击韧性,测试结果如表2所示。根据国标GB/T 4338-2006金属材料高温拉伸试验方法测试试样500℃时的拉伸性能,测试结果如表3所示。使用塞尺检测各实施例获得盘体的变形量,测试结果见表4。
表2各实施例获得锻件的常温力学性能
表3各实施例获得锻件的高温力学性能
表4各实施例获得锻件的变形量
在实施例1获得的锻件上取样,经过机械打磨、抛光后,用饱和苦味酸和洗洁精混合溶液进行擦蚀,利用光学金相显微镜对晶粒度进行检测,检测结果如图1,利用透射电子显微镜观察锻件微纳米析出物,结果如图2所示。
实施例1~4获得的一种大径厚比盘形锻件尺寸结构均达到设计要求,由图可知,盘体及盘面复杂凸起结构成形完整,无损探伤结果表明未出现锻造裂纹等缺陷。由表2和表3各实施例锻件的常温和高温力学性能参数可知,该方法制得大径厚比盘形锻件力学性能优异,具有良好的强韧性匹配,500℃条件下拉伸力学性能优异。表4变形量测试结果显示各实施案例获得锻件变形程度较小,表明该方法能够有效抑制盘体变形。由图1晶粒度照片可知,该方法能够确保锻件晶粒度达到7~8级,细小的晶粒有利于锻件力学性能的提升,由图2锻件透射电镜照片可知,该方法使得锻件在相间或晶界处分布大量微纳米析出物,其尺寸为30~100nm,同时锻件位错密度较高,确保锻件具有优异的强韧性匹配及高温力学性能。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,其特征在于:包括以下步骤:
S01,将耐热钢棒料毛坯使用中频感应加热至1100℃~1200℃,采用自由敦粗与冲孔相复合的工艺进行制坯,坯料径厚比为(5.0~6.0):1;
S02,对S01获得的坯料进行径-轴向辗环扩孔,辗环终止温度750~850℃,扩孔后坯料径厚比为(20.0~50.0):1;
S03,对S02获得的坯料补温加热至1100℃~1150℃,采用开式模锻进行近净成形,获得大径厚比盘形锻件;
S04,对S03获得的锻件置于保温罩内缓冷,抑制模锻过程中非对称应变造成的盘体翘曲变形。
2.根据权利要求1所述的一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,其特征在于:所述耐热钢为低碳合金耐热钢,包含有Cr、Ni、Mo、Ti合金元素,还包括V、Nb中的任意一种或两种。
3.根据权利要求1所述的一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,其特征在于:所述大径厚比盘形锻件的外径尺寸是Φ500~2000mm,内径尺寸是Φ200~1000mm,轴向厚度尺寸是20~50mm。
4.根据权利要求1所述的一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,其特征在于:所述大径厚比盘形锻件为空心结构,盘面一侧或两侧带有凸起筋;所述凸起筋长120~140mm,高30~35mm,宽10~15mm。
5.根据权利要求1所述的一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,其特征在于:S03的补温加热和S01的中频感应加热的加热速率均为15~20℃/s。
6.根据权利要求1所述的一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法,其特征在于:S04中缓冷的速率为0.05~0.15℃/s。
CN201611215075.7A 2016-12-26 2016-12-26 一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法 Pending CN106623745A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611215075.7A CN106623745A (zh) 2016-12-26 2016-12-26 一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611215075.7A CN106623745A (zh) 2016-12-26 2016-12-26 一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法

Publications (1)

Publication Number Publication Date
CN106623745A true CN106623745A (zh) 2017-05-10

Family

ID=58827956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611215075.7A Pending CN106623745A (zh) 2016-12-26 2016-12-26 一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法

Country Status (1)

Country Link
CN (1) CN106623745A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708939A (zh) * 2019-01-24 2019-05-03 中南大学 一种含硫钢中MnS析出物三维形貌的简易侵蚀方法
CN115740314A (zh) * 2022-11-24 2023-03-07 南京工程学院 一种高强度大型锻件抗裂节能的锻造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491758A (zh) * 2003-08-27 2004-04-28 溧阳华荣锻造有限公司 轮圈的生产工艺
CN101020949A (zh) * 2007-03-05 2007-08-22 贵州安大航空锻造有限责任公司 Gh4169合金近等温锻造用细晶环坯的制坯方法
JP4039995B2 (ja) * 2003-08-18 2008-01-30 トピー工業株式会社 アルミホイールの製造方法
CN102586558A (zh) * 2011-01-05 2012-07-18 南京工程学院 一种提高非调质钢锻件韧性的制造工艺
JP5895111B1 (ja) * 2014-09-01 2016-03-30 日立金属Mmcスーパーアロイ株式会社 リング成形体の製造方法
CN105921948A (zh) * 2016-05-04 2016-09-07 南京工程学院 一种大中型复杂结构空心盘形锻件的高效精密成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4039995B2 (ja) * 2003-08-18 2008-01-30 トピー工業株式会社 アルミホイールの製造方法
CN1491758A (zh) * 2003-08-27 2004-04-28 溧阳华荣锻造有限公司 轮圈的生产工艺
CN101020949A (zh) * 2007-03-05 2007-08-22 贵州安大航空锻造有限责任公司 Gh4169合金近等温锻造用细晶环坯的制坯方法
CN102586558A (zh) * 2011-01-05 2012-07-18 南京工程学院 一种提高非调质钢锻件韧性的制造工艺
JP5895111B1 (ja) * 2014-09-01 2016-03-30 日立金属Mmcスーパーアロイ株式会社 リング成形体の製造方法
CN105921948A (zh) * 2016-05-04 2016-09-07 南京工程学院 一种大中型复杂结构空心盘形锻件的高效精密成形方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘劲松,蒲玉兴: "《航空工程材料 》", 31 December 2015 *
张兆隆,李彩凤: "《金属工艺学》", 1 August 2016 *
王英杰,张芙丽: "《高职高专规划教材 金属工艺学 》", 31 December 2013 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708939A (zh) * 2019-01-24 2019-05-03 中南大学 一种含硫钢中MnS析出物三维形貌的简易侵蚀方法
CN115740314A (zh) * 2022-11-24 2023-03-07 南京工程学院 一种高强度大型锻件抗裂节能的锻造工艺

Similar Documents

Publication Publication Date Title
CN101927312B (zh) Tc4钛合金锻环加工工艺
CN100482842C (zh) 高韧高耐磨冷作模具钢
US20230114417A1 (en) Steel for glass lining and production method therefor
CN101886228B (zh) 具有高强高韧和高耐腐蚀性能的低碳马氏体时效不锈钢
CN101392353A (zh) 高锰低铬型高强韧性热作模具钢及其制备方法
WO2021219056A1 (zh) 一种高强度不锈钢转子及其制备方法
CN101492787A (zh) 中高碳微合金非调质钢及其控锻——控冷的工艺方法
CN104928594B (zh) 具有抗热疲劳性能的铝铸轧辊套的制造方法
CN101831595B (zh) 一种2 1/4Cr-1Mo-1/4V钢锻件的快速冷却热处理方法
KR20230059826A (ko) 저원가 고성능 Q370qE-HPS 교량강 및 생산 방법
CN107779746A (zh) 超高强度高韧性耐蚀耐氧化超细晶合金钢及其制备方法
CN104099529B (zh) 一种钢管穿孔顶头及其制备方法
CN108779534A (zh) 非调质棒钢
CN114293102B (zh) 一种17CrNiMo6锻件的制造方法
CN106623745A (zh) 一种大径厚比盘形耐热钢锻件的低氧化补温锻造成形方法
CN104372239B (zh) 一种钒氮微合金高强相变诱发塑性钢无缝管及其制备方法
JP2005226150A (ja) 工具鋼の焼きなまし方法、及び工具鋼の焼きなまし材の製造方法、工具鋼の焼きなまし材、並びにそれを用いた工具鋼、工具
CN107406941A (zh) 热轧钢材及钢部件
CN105324495A (zh) 高Cr钢管的制造方法
CN106544583A (zh) 一种超耐磨h13模具钢
CN109312434A (zh) 热锻用轧制棒钢
CN101165195B (zh) 一种细化船用曲轴用钢显微组织的方法
JP2011236449A (ja) 機械構造用鋼、および、その製造方法、並びに、機械構造用鋼を用いた加工部品製造方法
CN106191694B (zh) 热锻温挤冷冲工模具兼用钢
Huo et al. Hot compression deformation behavior and microstructure evolution rule of a high-speed railway axle steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication