CN106610352A - 锂离子电池正极材料中磁性物质含量的检测方法 - Google Patents

锂离子电池正极材料中磁性物质含量的检测方法 Download PDF

Info

Publication number
CN106610352A
CN106610352A CN201510694670.2A CN201510694670A CN106610352A CN 106610352 A CN106610352 A CN 106610352A CN 201510694670 A CN201510694670 A CN 201510694670A CN 106610352 A CN106610352 A CN 106610352A
Authority
CN
China
Prior art keywords
magnet
magnetisable material
polymer overmold
lithium
lysate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510694670.2A
Other languages
English (en)
Inventor
刘玉梅
陈进英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Bak Battery Co Ltd
Original Assignee
Shenzhen Bak Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Bak Battery Co Ltd filed Critical Shenzhen Bak Battery Co Ltd
Priority to CN201510694670.2A priority Critical patent/CN106610352A/zh
Publication of CN106610352A publication Critical patent/CN106610352A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种锂离子电池正极材料中磁性物质含量的检测方法。一种锂离子电池正极材料中磁性物质含量的检测方法,包括以下步骤:将正极材料和聚合物包覆磁铁置于分散液中,以20~100kHz的频率超声分散30分钟后,以60r/min的转速搅拌30分钟,使所述聚合物包覆磁铁吸附所述正极材料中的磁性物质;将吸附有所述磁性物质的聚合物包覆磁铁从所述分散液取出后超声清洗;将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于质量浓度为18%的盐酸中,将所述磁性物质溶解得到溶解液并将所述聚合物包覆磁铁从所述溶解液中取出;检测所述溶解液中所述磁性物质的含量。采用上述检测方法,可精确检测锂离子电池正极材料中磁性铁物质的含量。

Description

锂离子电池正极材料中磁性物质含量的检测方法
技术领域
本发明涉及锂离子电池正极材料技术领域,特别是涉及一种锂离子电池正极材料中磁性物质含量的检测方法。
背景技术
锂离子电池具有能量密度高、循环性能好等诸多优良特性,已广泛地应用于便携式电子产品、通讯工具、电动汽车及储能设备等方面。高速增长的市场对锂离子电池提出了高容量、长寿命、高安全性的迫切要求,锂离子电池性能的提高成为行业发展的关键,而锂离子电池性能的发挥在很大程度上取决于正极材料。
近年来,研究发现锂离子电池正极材料中含有磁性物质杂质。这些磁性物质不仅会降低材料的比容量和能量密度,而且还会发生一系列副反应,导致电池的使用寿命、一致性和安全性能降低。锂离子电池正极材料中磁性物质杂质对电池自放电也有直接的影响,且磁性物质杂质含量与电池自放电率成正比,即磁性物质含量越高的正极材料,其组成的电池也自放电率越大。
因此,一种能够准确检测锂离子电池正极材料中磁性物质含量的方法对锂离子电池行业具有极其重要的意义。目前检测锂离子电池正极材料中磁性物质含量的方法,操作较为麻烦。
发明内容
基于此,有必要提供一种易于操作的锂离子电池正极材料中磁性物质含量的检测方法。
一种锂离子电池正极材料中磁性物质含量的检测方法,包括以下步骤:
将正极材料和聚合物包覆磁铁置于分散液中,以20~100kHz的频率超声分散30分钟后,以60r/min的转速搅拌30分钟,使所述聚合物包覆磁铁吸附所述 正极材料中的磁性物质;
将吸附有所述磁性物质的聚合物包覆磁铁从所述分散液取出后超声清洗;
将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于质量浓度为18%的盐酸中,将所述磁性物质溶解得到溶解液并将所述聚合物包覆磁铁从所述溶解液中取出;
检测所述溶解液中所述磁性物质的含量。
在其中一个实施例中,所述检测磁性物质的含量的具体步骤如下:
对所述溶解液进行定容得到待测液;检测所述待测液中所述磁性物质的含量。
在其中一个实施例中,将所述聚合物包覆磁铁从所述溶解液中取出后,先用去离子水冲洗所述聚合物包覆磁铁表面,并将冲洗后的所述去离子水加所述溶解液中。
在其中一个实施例中,所述分散液为水。
在其中一个实施例中,将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于盐酸中溶解的步骤中,对盐酸进行超声加热溶解,制得溶解液。
在其中一个实施例中,加热溶解的温度为50~60℃,恒温保持15~60min。
在其中一个实施例中,所述聚合物包覆磁铁的强度为3000~12000高斯。
在其中一个实施例中,所述聚合物包覆磁铁为聚四氟乙烯包覆磁铁。
在其中一个实施例中,在检测所述溶解液中所述磁性物质的含量的步骤之前还包括步骤:将所述聚合物包覆磁铁从所述溶解液中取出后,将所述聚合物包覆磁铁再次放入所述分散液中,和所述正极材料以20~100kHz的频率超声分散30分钟后,以60r/min的转速搅拌30分钟,使所述聚合物包覆磁铁吸附所述正极材料中的磁性物质,之后将吸附有所述磁性物质的聚合物包覆磁铁置从所述分散液取出后超声清洗,将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于质量浓度为18%的盐酸中,将所述磁性物质溶解得到液体加入所述溶解液中。
在其中一个实施例中,所述超声清洗进行至少一次,直至超声清洗结束后的所述清洗液呈无色且无悬浮物为止。
上述的检测方法,通过先超声分散再搅拌的方法,能够使正极材料中的磁性物质较为完全的吸附在聚合物包覆磁铁表面,可精确检测锂离子电池正极材料中磁性铁物质的含量,尤其可准确检测微米级材料和纳米材料中所具有磁性物质的含量,此外上述的检测方法要求的条件温和,易于操作,可进一步减少测量误差,而且所用试剂的危险性及污染性也较小。
具体实施方式
为了便于理解本发明,下面将用具体实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这实施例的目的是使对本发明的公开内容的理解更加透彻全面。
一种锂离子电池正极材料中磁性物质含量的检测方法,包括以下步骤:
S10、将正极材料和聚合物包覆磁铁置于分散液中,以20~100kHz的频率超声分散30分钟后,以60r/min的转速搅拌30分钟,使聚合物包覆磁铁吸附正极材料中的磁性物质。
该步骤中,待测的正极材料中颗粒团聚体内部的磁性物质通过超声的方法分散在分散液中。采用先超声分散后搅拌的方法,以使样品中所有磁性物质被聚合物包覆磁铁充分吸附,避免因磁性物质被正极材料包覆后因磁性减弱无法被聚合物包覆磁铁吸附,导致检测结果不准。
进一步的,分散液为去离子水。
进一步的,聚合物包覆磁铁优选聚四氟乙烯包覆磁铁,即表面涂有聚四氟乙烯耐磨层的磁铁。这种磁铁可有效避免引入新的杂质,影响检测结果精度。
进一步的,聚合物包覆磁铁的强度优选为3000~12000高斯。
优选的,聚合物包覆磁铁为块状。
进一步的,正极材料和聚合物包覆磁铁的质量比为300g:26g。
进一步的,待测的正极材料一般为镍钴锰酸锂。
优选的,聚合物包覆磁铁在使用前先进行清洗:将聚合物包覆磁铁在盐酸中浸泡30分钟后,用水清洗干净。
S20、将吸附有磁性物质的聚合物包覆磁铁从分散液中取出后置于清洗液中超声清洗。
该步骤中,清洗是为了去除聚合物包覆磁铁上的非磁性物质。
进一步的,清洗液为水,优选为去离子水。
进一步的,超声清洗的频率为20~100kHz。
进一步的,超声清洗的时间为10~30min。
进一步的,超声清洗完成后,若清洗液中仍有颜色,或清洗液中有悬浮物,则更换新的清洗液,重复步骤S20,直至超声清洗后清洗液中为无色且没有悬浮物。
S30、将清洗后的吸附有磁性物质的聚合物包覆磁铁置于质量浓度为18%的盐酸中,将磁性物质溶解得到溶解液并将所述聚合物包覆磁铁从所述溶解液中取出。
进一步的,溶解处理的过程中可进一步加热,加快溶解速度。进一步的,加热的采用带有加热功能的超声仪器。进一步的,超声加热的温度保持在50~60℃。进一步的,超声加热恒温保持15~60min。
盐酸作为一种强酸,其溶解效率高。此外,作为一种相对温和的强酸,它对人体和环境的伤害不大,而且通过超声加热不会产生危险。
进一步的,取出聚合物包覆磁铁,用去离子水冲洗聚合物包覆磁铁并使冲洗液加至溶解液中。
S40、检测溶解液中磁性物质的含量。
优选的,对溶解液进行定容得到待测液;检测所述待测液中磁性物质的含量。
本实施方式中,采用电感耦合等离子体体检测待测液中磁性物质的含量。可以理解,检测前对溶液进行定容只是确保检测结果准确的一种手段,如果能够确认溶解有磁性物质的盐酸的体积,则定容步骤是可以省略的。
当然也可以采用原子吸收光谱等其他方法体检测待测液中磁性物质的含量。
上述的检测方法,采用超声与搅拌并用的方式,超声可使正极材料中的磁 性物质分散在分散液中,搅拌则进一步使磁性物质充分被聚合物包覆磁铁吸附,以保证检测的准确性。
此外,采用溶解效率高的盐酸作为溶解剂,可将磁性物质充分溶解,同时盐酸作为一种温和的酸液,可以采用加热方式加速溶解且不产生危险,不会产生溅沸等情况而导致检测准确性下降。
因此,采用上述检测方法,可精确检测锂离子电池正极材料中磁性物质的含量,尤其可准确检测微米级材料和纳米材料中所具有磁性物质的含量,同时上述的检测方法要求的条件更加温和,易于操作,可进一步减少测量误差,而且所用试剂的危险性及污染性都很小。
需要说明的是,在步骤S40之前,还可以将从溶解液中取出聚合物包覆磁铁再次放入步骤S10的分散液中,重复步骤S10、步骤S20及步骤S30,将磁性物质溶解得到液体加入溶解液中合并,再进行步骤S40。
以下结合具体实施例对上述使用碳纳米管作为导电剂的锂离子电池进行详细说明。
实施例1
步骤1、聚四氟乙烯包覆磁铁(以下简称磁铁)一块,浸在35mL盐酸中30min,取出磁铁,纯净水将磁铁清洗干净以进行下步实验。
步骤S2、在一个500mL瓶子装入磁铁、300g钴酸锂及100mL水,以80kHz的频率超声30min分散后,以60r/min的转速搅拌混合30min,用包覆聚四氟乙烯塑料的磁棒出磁铁。
步骤S3、纯净水清洗磁铁后再放入水中以80kHz的频率超声30min超声清洗。然后将磁铁浸泡在装有35mL质量浓度为18%的盐酸的PTFE容器中60℃超声加热,保持恒温30min得到溶解液,超声的频率为80kHz。将溶解液倒入50ml容量瓶中,所得溶液为溶液A11,纯净水将磁铁清洗干净以进行下步实验。
步骤S4,将磁铁放回步骤S2的500mL瓶子中,以80kHz的频率超声30min分散后,以60r/min的转速搅拌混合30min,用包覆聚四氟乙烯塑料的磁棒出磁铁,纯净水清洗后再超声清洗,然后将磁铁浸泡在装有质量浓度为18%的35mL 盐酸的PTFE容器中60℃超声加热,保持恒温30min,超声的频率为80kHz,得到的溶液入50ml容量瓶中,为溶液A12,纯净水将磁铁清洗干净以进行下步实验。
步骤S5、在步骤S4的500mL瓶子中加入26.4mg的铁粉,以60r/min的转速搅拌混合30min,用包覆聚四氟乙烯塑料的磁棒出磁铁,纯净水清洗后再超声清洗,然后将磁铁浸泡在装有质量浓度为18%的35mL盐酸的PTFE容器中30min,超声的频率为80kHz,得到的溶液入50ml容量瓶中,所得溶液为溶液A13,纯净水将磁铁清洗干净以进行下步实验。
实施例2
步骤1、聚四氟乙烯包覆磁铁(以下简称磁铁)一块,浸在35mL盐酸中30min,取出磁铁,纯净水将磁铁清洗干净以进行下步实验。
步骤S2、在一个500mL瓶子装入磁铁、300g钴酸锂及100mL水,以80kHz的频率超声10min分散后,以60r/min的转速搅拌混合30min,用包覆聚四氟乙烯塑料的磁棒出磁铁。
步骤S3、纯净水清洗磁铁后再放入水中以80kHz的频率超声30min超声清洗。然后将磁铁浸泡在装有35mL质量浓度为18%的盐酸的PTFE容器中60℃超声加热,保持恒温30min得到溶解液,超声的频率为80kHz。将溶解液倒入50ml容量瓶中,所得溶液为溶液A21,纯净水将磁铁清洗干净以进行下步实验。
步骤S4,将磁铁放回步骤S2的500mL瓶子中,以80kHz的频率超声30min分散后,以60r/min的转速搅拌混合30min,用包覆聚四氟乙烯塑料的磁棒出磁铁,纯净水清洗后再超声清洗,然后将磁铁浸泡在装有质量浓度为18%的35mL盐酸的PTFE容器中60℃超声加热,保持恒温30min,超声的频率为80kHz,得到的溶液入50ml容量瓶中,为溶液A22,纯净水将磁铁清洗干净以进行下步实验。
步骤S5、在步骤S4的500mL瓶子中加入26.4mg的铁粉,以80kHz的频率超声30min分散后,以60r/min的转速搅拌混合30min,用包覆聚四氟乙烯塑料的磁棒出磁铁,纯净水清洗后再超声清洗,然后将磁铁浸泡在装有质量浓度为 18%的35mL盐酸的PTFE容器中60℃超声加热,保持恒温30min,超声的频率为80kHz,得到的溶液入50ml容量瓶中,所得溶液为溶液A23,纯净水将磁铁清洗干净以进行下步实验。
实施例3
采用25.2mg铁粉取代实施例1中的钴酸锂进行步骤S1~步骤S3,参数与实施例1完全相同,得到溶液A31。
将35.2mg铁粉与35ml质量浓度为18%的盐酸进行反应,得到溶液SF。
测试与分析
将溶液A11、溶液A12、溶液A13、溶液A31及溶液SF分别加热浓缩至5mL,再用容量瓶定容至500ml,再稀释20倍得到待测溶液,对待侧溶液通过ICP测试磁性物质的含量。
测试结果如下:
1、溶液SF:
测试结果C(Fe)=3.375μg/mL。
m(Fe)=C(Fe)×V×稀释倍数=3.375×500×20=33750μg。
铁粉纯度:
r(Fe)=m(Fe)/m(i.p.)=33.75mg/35.2mg=95.9%。
由于铁粉表面积大,与空气接触过程中容易被氧化导致含有氧。通过该测试测得铁粉中铁的含量为95.9%。
2、溶液A11:
C(Fe)=0.5120μg/mL。
磁性物质的含量=c*v/m=(0.5120×50)/300g=85.3ppb。
3、溶液A12:
C(Fe)=0.0065μg/mL。
磁性物质的含量=c*v/m=(0.0065×50)/300g=1.1ppb。
4、溶液A13:
C(Fe)=2.49460μg/mL。
m(Fe)=C(Fe)×V×稀释倍数=2.49460×500×20×10-3=24.946mg。
26.4mg铁粉中铁真实含量:
26.4mg×r(Fe)=26.4mg×95.9%=25.3mg。
回收率=24.946/25.3×100%=98.60%。
5、C(Fe)=2.39525μg/mL。
25.2mg铁粉中铁真实含量:
25.2mg×r(Fe)=25.2mg×95.9%=24.17mg。
回收率=(C*V)/M×100%=(2.39525×500×20×10-3)/24.17×100%=99.10%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,包括以下步骤:
将正极材料和聚合物包覆磁铁置于分散液中,以20~100kHz的频率超声分散30分钟后,以60r/min的转速搅拌30分钟,使所述聚合物包覆磁铁吸附所述正极材料中的磁性物质;
将吸附有所述磁性物质的聚合物包覆磁铁从所述分散液取出后超声清洗;
将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于质量浓度为18%的盐酸中,将所述磁性物质溶解得到溶解液并将所述聚合物包覆磁铁从所述溶解液中取出;
检测所述溶解液中所述磁性物质的含量。
2.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,所述检测磁性物质的含量的具体步骤如下:
对所述溶解液进行定容得到待测液;检测所述待测液中所述磁性物质的含量。
3.根据权利要求2所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,将所述聚合物包覆磁铁从所述溶解液中取出后,先用去离子水冲洗所述聚合物包覆磁铁表面,并将冲洗后的所述去离子水加所述溶解液中。
4.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,所述分散液为水。
5.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于盐酸中溶解的步骤中,对盐酸进行超声加热溶解,制得溶解液。
6.根据权利要求5所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,加热溶解的温度为50~60℃,恒温保持15~60min。
7.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,所述聚合物包覆磁铁的强度为3000~12000高斯。
8.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,所述聚合物包覆磁铁为聚四氟乙烯包覆磁铁。
9.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,在检测所述溶解液中所述磁性物质的含量的步骤之前还包括步骤:将所述聚合物包覆磁铁从所述溶解液中取出后,将所述聚合物包覆磁铁再次放入所述分散液中,和所述正极材料以20~100kHz的频率超声分散30分钟后,以60r/min的转速搅拌30分钟,使所述聚合物包覆磁铁吸附所述正极材料中的磁性物质,之后将吸附有所述磁性物质的聚合物包覆磁铁置从所述分散液取出后超声清洗,将清洗后的所述吸附有磁性物质的聚合物包覆磁铁置于质量浓度为18%的盐酸中,将所述磁性物质溶解得到液体加入所述溶解液中。
10.根据权利要求1所述的锂离子电池正极材料中磁性物质含量的检测方法,其特征在于,所述超声清洗进行至少一次,直至超声清洗结束后的所述清洗液呈无色且无悬浮物为止。
CN201510694670.2A 2015-10-22 2015-10-22 锂离子电池正极材料中磁性物质含量的检测方法 Pending CN106610352A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510694670.2A CN106610352A (zh) 2015-10-22 2015-10-22 锂离子电池正极材料中磁性物质含量的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510694670.2A CN106610352A (zh) 2015-10-22 2015-10-22 锂离子电池正极材料中磁性物质含量的检测方法

Publications (1)

Publication Number Publication Date
CN106610352A true CN106610352A (zh) 2017-05-03

Family

ID=58612799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510694670.2A Pending CN106610352A (zh) 2015-10-22 2015-10-22 锂离子电池正极材料中磁性物质含量的检测方法

Country Status (1)

Country Link
CN (1) CN106610352A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333168A (zh) * 2019-08-02 2019-10-15 江苏塔菲尔新能源科技股份有限公司 一种磁性颗粒的检测方法
CN110411914A (zh) * 2019-07-30 2019-11-05 厦门凯纳石墨烯技术股份有限公司 锂离子电池用材料磁性物质检测方法
CN110404674A (zh) * 2019-08-08 2019-11-05 青岛新正锂业有限公司 一种锂电池正极材料中磁性物质的去除方法及检测方法
CN110567999A (zh) * 2019-09-12 2019-12-13 金川集团股份有限公司 一种锂电材料中金属异物的sem-eds联用测试方法
CN111638173A (zh) * 2020-06-23 2020-09-08 合肥国轩高科动力能源有限公司 一种正极材料中金属磁性杂质的检测方法
CN113916965A (zh) * 2021-10-12 2022-01-11 芜湖天弋能源科技有限公司 一种检测锂离子电池正极材料中磁性物质含量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235950A (zh) * 2010-04-27 2011-11-09 深圳市比克电池有限公司 一种锂离子电池粉体材料中磁性物质的检测方法
CN103884571A (zh) * 2014-04-11 2014-06-25 深圳市德方纳米科技有限公司 锂离子电池正极材料中磁性物质含量的测试方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235950A (zh) * 2010-04-27 2011-11-09 深圳市比克电池有限公司 一种锂离子电池粉体材料中磁性物质的检测方法
CN103884571A (zh) * 2014-04-11 2014-06-25 深圳市德方纳米科技有限公司 锂离子电池正极材料中磁性物质含量的测试方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411914A (zh) * 2019-07-30 2019-11-05 厦门凯纳石墨烯技术股份有限公司 锂离子电池用材料磁性物质检测方法
CN110333168A (zh) * 2019-08-02 2019-10-15 江苏塔菲尔新能源科技股份有限公司 一种磁性颗粒的检测方法
CN110404674A (zh) * 2019-08-08 2019-11-05 青岛新正锂业有限公司 一种锂电池正极材料中磁性物质的去除方法及检测方法
CN110567999A (zh) * 2019-09-12 2019-12-13 金川集团股份有限公司 一种锂电材料中金属异物的sem-eds联用测试方法
CN111638173A (zh) * 2020-06-23 2020-09-08 合肥国轩高科动力能源有限公司 一种正极材料中金属磁性杂质的检测方法
CN113916965A (zh) * 2021-10-12 2022-01-11 芜湖天弋能源科技有限公司 一种检测锂离子电池正极材料中磁性物质含量的方法
CN113916965B (zh) * 2021-10-12 2023-12-15 芜湖天弋能源科技有限公司 一种检测锂离子电池正极材料中磁性物质含量的方法

Similar Documents

Publication Publication Date Title
CN106610352A (zh) 锂离子电池正极材料中磁性物质含量的检测方法
Baghayeri et al. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb (II) and Cd (II)
Wu et al. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor
CN103884571A (zh) 锂离子电池正极材料中磁性物质含量的测试方法
CN104316643B (zh) 镍钴锰三元材料的三元素测定方法
Wang et al. A durable luminescent ionic polymer for rapid detection and efficient removal of toxic Cr 2 O 7 2−
He et al. Construction of ion imprinted layer modified ZnFe2O4 for selective Cr (VI) reduction with simultaneous organic pollutants degradation based on different reaction channels
CN104391030B (zh) 一种基于海藻酸功能化石墨烯构建的重金属离子Cd2+、Pb2+和Cu2+的传感器的制备方法及应用
Wang et al. Nitrogen and boron-incorporated carbon dots for the sequential sensing of ferric ions and ascorbic acid sensitively and selectively
CN105505382B (zh) 一种铜纳米簇溶液的制备方法及应用
CN107064284A (zh) 粉体材料中痕量磁性杂质的检测方法
CN102507654A (zh) 一种检验粉体材料中的磁性杂质的方法
CN114192561A (zh) 一种含镉污染土壤的修复方法及其应用
CN112179894A (zh) 一种锂离子电池磷酸铁锂正极浆料中游离铁的检测方法
CN106084188B (zh) 一种咪唑基多孔有机离子聚合物的制备方法
CN115343276B (zh) 一种锂离子电池用磷酸铁锂中磁性铁异物的定量测定方法
CN105301194B (zh) 正极活性材料表面包覆效果的检测方法
Zhang et al. Ultra-sensitive electrochemical sensors through self-assembled MOF composites for the simultaneous detection of multiple heavy metal ions in food samples
CN110404674A (zh) 一种锂电池正极材料中磁性物质的去除方法及检测方法
CN104764730A (zh) 用于待测物拉曼光谱检测的复合粒子、其制备方法及使用方法
Li et al. Sensitive determination of bisphenol A based on Ag nanoparticles/polyguanine modified electrode
CN111007123B (zh) Fe3O4@PDA@MnO2核壳纳米颗粒的制备及对重金属离子的富集和电化学检测
Wang et al. Synthesis of ultrastable Ag nanoplates/polyethylenimine–reduced graphene oxide and its application as a versatile electrochemical sensor
CN106525954A (zh) 一种检测碳酸锂中磁性物质含量的方法
CN103323503B (zh) 一种现场快速检测水溶液中铜离子的电增强吸附显色方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170503