CN106605012A - 含有碳纳米管的耗氧电极及其制造方法 - Google Patents

含有碳纳米管的耗氧电极及其制造方法 Download PDF

Info

Publication number
CN106605012A
CN106605012A CN201580048831.9A CN201580048831A CN106605012A CN 106605012 A CN106605012 A CN 106605012A CN 201580048831 A CN201580048831 A CN 201580048831A CN 106605012 A CN106605012 A CN 106605012A
Authority
CN
China
Prior art keywords
gas
cnt
electrode
catalyst
carrier element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580048831.9A
Other languages
English (en)
Other versions
CN106605012B (zh
Inventor
A.布兰
J.金特鲁普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of CN106605012A publication Critical patent/CN106605012A/zh
Application granted granted Critical
Publication of CN106605012B publication Critical patent/CN106605012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种耗氧电极,特别是用于氯碱电解,其包含基于碳纳米管的催化剂涂层,以及涉及一种电解装置。本发明进一步涉及一种制造所述耗氧电极的方法,及其在氯碱电解或燃料电池技术中的用途。

Description

含有碳纳米管的耗氧电极及其制造方法
本发明涉及一种耗氧电极,特别是用于氯碱电解,该电极具有新颖的电催化剂涂层,以及涉及一种电解装置。本发明进一步涉及一种制造耗氧电极的方法,及其在氯碱电解或燃料电池技术中的用途。
本发明从耗氧电极出发,所述耗氧电极本身是已知的且形成为气体扩散电极,并且通常包含导电性载体和具有催化活性组分的气体扩散层。
耗氧电极是一种气体扩散电极的形式。气体扩散电极为这样的电极,其中物质三态,即固态、液态和气态彼此接触,并且固态电子传导催化剂催化液相和气相之间的电化学反应。这里,固态电催化剂通常包含于厚度为约200 μm至500 μm的多孔薄膜中。
对于在工业规模电解槽中操作耗氧电极的各种建议原则上是现有技术已知的。基本思想是通过耗氧电极(阴极)替代电解(例如在氯碱电解中)的析氢阴极。可能的槽设计和解决方案的综述可以在Moussallem等人的公开出版物“Chlor-Alkali Electrolysis withOxygen Depolarized Cathodes:History,Present Status and Future Prospects”,J.Appl. Electrochem. 38 (2008) 1177-1194中找到。
耗氧电极,以下也简称为SVE,必须满足一系列基本需求,以便可用于工业电解器。因此,电催化剂和所有其它使用的材料必须对于使用的碱金属氢氧化物溶液,例如浓度为约32 wt%的氢氧化钠溶液化学稳定,以及在通常80-90℃的温度下对于纯氧化学稳定。同样需要高标准的机械稳定性,以便在面积通常大于2 m2 (工业规模)的电解器中安装并操作电极。其它性能为:电催化剂的高导电性,高内表面积以及高电化学活性。用于输送气体和电解质的合适的疏水性和亲水性孔隙以及适当的孔隙结构也是必要的,例如密封性,使得例如气体空间和液体空间在电解器中彼此保持分离。长期稳定性和低生产成本是工业上可用的耗氧电极的其它特殊需求。
SVE技术在氯碱电解中应用的另一个发展方向是在SVE上直接放置离子交换膜,该膜将电解槽中的阳极区与阴极区分开。这种布局中不存在氢氧化钠溶液间隙。这种布局在现有技术中也称为零间隙布局。这种布局通常也应用于燃料电池技术中。其缺点是必须使形成的氢氧化钠溶液经由SVE输送至气体侧,随后向下流到SVE上。在这里,SVE中的孔隙不能被孔隙中的氢氧化钠溶液或氢氧化钠结晶堵塞。现已证明这里也可能出现极高的氢氧化钠浓度,因此离子交换膜对于这些高浓度并非长期稳定的(Lipp等人,J. Appl.Electrochem. 35 (2005) 1015-Los Alamos National Laboratory“Peroxide formationduring chlor-alkali electrolysis with carbon-based ODC”)。
必须完全避免使用廉价碳材料,例如炭黑或石墨作为载体材料,特别是在碱性介质中还原氧中,因为这些材料通常促进根据反应路径(I)的反应并因此导致电极寿命极大缩短和电流效率损失(O. Ichinose等人“Effect of silver catalyst on the activityand mechanism of a gas diffusion type oxygen cathode for chloralkalielectrolysis”,Journal of Applied Electrochemistry 34:55-59 (2004))。
使用电催化剂,例如其中存在担载在炭黑上的银的催化剂,和60℃至90℃的温度在碱性介质中还原氧的缺点是作为中间体形成的过氧化氢分解炭黑的碳,由此导致电极中形成裂纹以及电极的机械不稳定性和电极变得无法使用,其中“碱性介质”表示例如浓缩的,特别是浓度32 wt%的氢氧化钠溶液。由于这种“碳腐蚀”,担载的电极催化剂也变得与载体分离,电催化剂因此变得无法使用。
同样已知的是(参见O. Ichinose等人):当向炭黑中添加银时,可以避免两个电子向氧转移;这里,转移四个电极的步骤是优选的。
类似的效果也发生在电极填充有铂并且含有炭黑的情况下(L. Lipp“Peroxideformation in a zero-gap chlor-alkali cell with an oxygen-depolarizedcathode”,Journal of Applied Electrochemistry 35:1015-1024 (2005))。还公开了通过施加更高压和/或更高电流密度,一部分形成的过氧化氢可以进一步还原为所需氢氧化物离子。因此就描述了根据反应路径(I)和(II)的系列反应的可能性。但是,因为发生根据反应路径(I)的反应,所以也无法排除根据反应路径IV的反应,其进而导致氢氧化物离子产率降低。公开的方法变型(参见L. Lipp等人,O. Ichinose等人)因此具有相同的经济和工艺缺陷。
碳纳米管(CNTs)通常至少从它们在1991被Iijima 5 (S. Iijima,Nature 354,56-58,1991)描述起已经为本领域技术人员所知。从那时起,术语碳纳米管已经总结为包含碳并且直径为3至80 nm和长度为多倍直径,至少10倍直径的圆柱体。此外,这些碳纳米管由有序的碳原子层表征,这里碳纳米管通常具有形态不同的核。碳纳米管的同义词例如为“碳原纤”或“中空碳纤维”或“碳竹(carbon bamboos)”或(在卷状结构的情况下)“纳米卷(nanoscrolls)”或“纳米卷(nanorolls)”。
氧还原方法的另一个发展是含氮碳改性的应用(P. Matter等人,“Oxygenreduction reaction activity and surface properties of nanostructurednitrogen-containing carbon”,Journal of Molecular Catalysis A:Chemical 264:73-81 (2007))。这里,通过在载体材料,例如二氧化硅、氧化镁上催化沉积乙腈蒸汽,获得用于还原氧的催化活性,所述载体材料进一步含有铁、钴或镍作为催化活性组分。该氧还原方法特征在于其在0.5摩尔的硫酸溶液中进行。
WO 2010069490 A1描述氮改性的碳纳米管(NCNTs)用于在碱性介质中还原氧的用途。这里,不使用含贵金属的催化剂。但是,该实验已经显示NCNT基电极没有足够的长期稳定性。
DE102009058833 A1描述一种制造氮改性CNTs的方法,其中在NCNTs的表面上存在2至60 wt%的平均粒度为1至10 nm的金属纳米颗粒。缺点是生产办法非常复杂。
制造气体扩散电极的各种办法是已知的,其原则上可以分为湿法和干法。在干法中,例如DE102005023615A1中所述,催化剂与经常为PTFE的聚合物一起碾磨产生混合物,随后将该混合物施加于机械支撑元件,例如银或镍网格。粉末随后与载体一起通过压制,例如借助于辊压机压紧,形成电极。
与之相对,在湿法中,例如EP2397578A2中所述,制备催化剂和聚合物组分的悬浮液。其被施加于载体材料上,随后被干燥和烧结(I. Moussallem,J. Jörissen,U. Kunz,S.Pinnow,T. Turek,“Chlor-alkali electrolysis with oxygen depolarized cathodes:history,present status and future prospects”,J Appl. Electrochem. 2008,38,1177-1194)。
本发明的目的是提供一种碳基气体扩散电极及其制造方法,借助于该电极可以在不形成过氧化氢的基础上在酸性电解质(pH<6)和碱性电解质(pH>8)中还原氧,反应以高电流效率进行并且该电极具有足够的长期稳定性。
已经意外地发现,使用根据本发明方法与PTFE混合的特殊碳纳米管(CNTs),并且随后将获得的粉末混合物与载体元件一起压制,产生具有长期稳定性的电极。
本发明提供一种制造用于还原氧的气体扩散电极的方法,其中该气体扩散电极具有至少一个片状导电性载体元件和施加于该载体元件的气体扩散层以及电催化剂,特征在于气体扩散层由碳纳米管和氟聚合物,特别是PTFE的混合物形成,并且碳纳米管和氟聚合物的混合物以粉末形式施加于载体元件并被压紧,其中该碳纳米管形成电催化剂并且基本不含氮成分。
这里,基本不含氮成分表示以化学键合至CNTs的氮形式存在的氮的比例低于0.5wt%,优选低于0.3 wt%,特别优选低于0.2 wt%。这里氮含量可以基于试样在纯氧中在950℃燃烧和通过热导检测器检测释放的氮气的原理,通过商业CHN分析仪测定。
为了本发明的目的和如现有技术中那样,术语碳纳米管用来表示直径为1至100nm且长度为多倍于直径的通常主要是圆柱形的石墨管。这些管由一个或多个有序碳原子层构成,并且具有形态不同的核。这些碳纳米管也称为例如“碳原纤”或“中空碳纤维”。
碳纳米管已在技术文献中长久已知。虽然Iijima (出版物:S. Iijima,Nature354,56-58,1991)通常被誉为碳纳米管(也简称为纳米管或CNT)的发现者,但是这些材料,特别是具有多个石墨烯层的纤维状石墨材料已经自70年代和80年代早期已知。Tates和Baker (GB 1469930A1,1977和EP 0056 004A2,1982)首先描述从烃类的催化分解沉积极细微的纤维状碳。但是,基于短链烃产生的碳细丝并未就其直径而被进一步表征。
直径低于100 nm的碳纳米管的生产首次在EP 205 556B1和WO 86/03455A1中描述。这些碳纳米管使用轻质(即短-和中链脂肪族或单环或双环芳香族)烃类和铁基催化剂制造,在该催化剂上在高于800-900℃的温度下分解带有碳的化合物。
当今已知的用于制造碳纳米管的办法包括电弧、激光器烧蚀和催化法。在许多这些方法中,炭黑、无定形碳和具有大直径的纤维作为副产物形成。在催化法中,可将引入的催化剂颗粒的沉积物和原位形成且具有纳米范围直径的金属中心的沉积物之间区分开(被称为流动法)。在通过将来自反应条件下为气态的烃类的碳催化沉积进行生产中(以下CCVD;催化炭汽相沉积),提及乙炔、甲烷、乙烷、乙烯、丁烷、丁烯、丁二烯、苯和其它含碳起始材料作为可能的碳载体。
催化剂通常包含金属、金属氧化物或可分解或可还原的金属组分。作为可能的催化剂金属,现有技术提及例如Fe,Mo,Ni,V,Mn,Sn,Co,Cu等。单独的金属,甚至是单一的,通常具有催化碳纳米管形成的倾向。但是,根据现有技术,使用含有上述金属组合的金属催化剂有利地获得高碳纳米管产率和低无定形碳比例。
根据现有技术,特别有利的催化剂体系基于含有Fe,Co或Ni的组合。碳纳米管的形成以及形成管的性能以复杂方式依赖于用作催化剂的金属组分或多种金属组分的组合,使用的载体材料,催化剂和载体之间的相互作用,原料气和原料气分压,氢气或其它气体的混合,反应温度,停留时间以及使用的反应器。对于工业方法而言,优化是一个特殊挑战。
要注意的是CCVD中使用的并且称为催化剂的金属组分在合成方法期间被消耗。这种消耗可归因于金属组分的钝化,例如归因于整个颗粒上的碳沉积,这导致颗粒被完全覆盖(本领域技术人员称为“封闭(Encapping)”)。通常不能再活化,或者经济上不可行。每克催化剂经常获得仅最多几克碳纳米管,其中这里的催化剂包含使用的载体和一种或多种活性催化剂金属的总和。由于催化剂的指明的消耗以及由于涉及从最终碳纳米管产品中分离催化剂残留物的经济成本,基于使用的催化剂的高碳纳米管产率代表催化剂和方法的基本要求。
常见的碳纳米管结构为圆柱类型的那些(管状结构)。圆柱结构中,单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)之间存在差别。制造这些的常规方法例如为电弧法(弧光放电),激光器烧蚀,化学汽相沉积(CVD法)和催化化学汽相沉积(CCVD)。
这种圆柱形碳纳米管也可以由电弧法制造。Iijima (Nature 354,1991,56-8)报告在电弧法中形成碳管,所述碳管由两个或多个石墨烯层构成,所述石墨烯层卷起形成无缝封闭的圆柱体并且彼此嵌套。根据卷起矢量,碳原子沿着碳纤维的纵轴可能有手性和非手性布局。
WO 2009/036877A2中描述的方法使得可以制造例如具有所谓卷形结构的碳纳米管,其中由两个或多个叠加的石墨烯层构成的一个或多个石墨层形成卷曲结构。
其它已知的碳纳米管结构由Milne等人在综述文章中描述(Milne等,Encyclopedia of Nanoscience and Nanotechnology,2003,X卷,1-22页;ISBN 1-58883-001-2)。这些结构为“人字形(Herringbone)”结构,层叠杯状(cup-stacked)结构和层叠结构,竹状结构和小板(platelet)结构。碳纳米纤维也可以通过聚丙烯腈电纺丝和后续石墨化来制造(Jo等,Macromolecular Research,2005,13卷,521-528页)。
虽然所有上述碳纳米管类型原则上可以用于新的生产方法,但是优选使用具有如上所述卷形结构的碳纳米管。这些特殊的CNT类型的优点是它们以微米范围形成聚集体,相比粉末可以以更少的问题加工。因此在由干法生产气体扩散电极中优选使用这种CNT聚集体。
当与PTFE一起加工时,由现有技术已知的含氮碳纳米管产生气体扩散电极,当在氯碱电解中作为耗氧电极工作时,该电极在实际工作中显示有用的槽电压仅几个小时,然后迅速产生巨大的电压升高。基于含氮碳纳米管的这种电极材料几乎无法使用。
在一个优选方法中,碳纳米管和氟聚合物的混合物以粉末混合物的形式施加于载体元件。
作为优选的碳纳米管材料,使用聚集体形式的碳纳米管,其中聚集体颗粒的至少95体积%具有30 μm至5000 μm,优选50 μm至3000 μm和特别优选100 μm至1000 μm的外径。
外径例如在不使用超声波下,通过激光散射(根据ISO 13320:2009)对水性分散体测定,为此使用测量的累积体积分布曲线(the measured cumulated volumedistribution curve)。
这种材料在干法加工中比更细碎的CNT粉末更容易处理。同样有利的是在生产粉末混合物期间保持聚集体。在优选的实施方案中,最终的电极因此也具有上述直径分布的CNT聚集体。
在方法的另一个优选实施方案中,聚集体形式的平均粒度(d50)为100 μm至1 mm,优选150 μm至0.8 mm和特别优选200 μm至400 μm的粉状氟聚合物用作氟聚合物,特别是聚四氟乙烯(PTFE)。
聚集体形式的粒度例如通过激光散射对分散在空气或惰性气体中的干燥试样进行测定。所谓的测量的累积体积分布曲线的d50 值(也称中值)用作平均粒度。
粉末的碳纳米管和氟聚合物的加工优选通过干燥混合该粉末来进行。
作为聚合物组分,特别使用高分子量聚四氟乙烯(PTFE),例如购自Dyneon公司的PTFE粉末,2053类型,粒度d50为约230 μm。但是,也可使用其它PTFE粉末。
新的气体扩散电极优选含有碳纳米管和氟聚合物,特别是PTFE的混合物,其中有1至70 wt%,优选5至65 wt%,特别优选10至65 wt%的PTFE,和99至30 wt%,优选95至35 wt%,特别优选90至35 wt%的碳纳米管。
混合方法优选在两个阶段中进行:第一阶段,低剪切和低温,和第二阶段,高剪切和高温。该优选的操作方式特征在于在第一阶段进行干混,直到获得均相预混物,其中混合物料的温度最高25℃,优选最高20℃。
优选的方法为在第二阶段,特别使用具有快速运转搅打工具(Schlagwerkzeuge)的混合器,例如购自Eirich公司的混合器,类型R02,装有星状旋转器作为混合元件,其以5000 rpm的转速工作。与现有技术,例如DE 102005023615 A中相反,在优选的方法中,由第一阶段获得均相预混物之后,第二阶段中的混合过程应在大于30℃的温度下进行。优选混合温度为30℃至80℃,特别优选为35℃至70℃,极特别优选为40℃至60℃。因为混合过程期间没有加热,所以应在引入混合器之前加热粉末混合物,和/或应将混合容器加热到所需温度。优选使用具有双壁混合容器的混合器。
随后例如根据DE102005023615A中描述的方法,将产生的粉末混合物喷洒到载体元件上。
SVE的载体元件可以为筛网,无纺布,泡沫,纺织织物,编织物或金属网(Streckmetall)。载体可以由碳纤维,镍,银或用贵金属涂布的镍构成,其中该贵金属优选选自以下类别的一种或多种:银,金和铂。
可以例如经由筛网将粉末混合物喷洒到载体元件上。特别有利地将框状模板放置在载体元件上,其中优选选择该模板使得其正好包围载体元件。作为替代,也可以选择该模板,使得小于载体元件的面积。在这种情况下,在喷洒粉末混合物并与载体元件一起压制之后,载体元件的未涂布边缘保持不含电化学活性涂层。模板的厚度可以根据待施加于载体元件的粉末混合物的量来选择。该模板填充粉末混合物。过量的粉末可以通过刮刀去除。然后去除模板。但是,与现有技术相反,这里产生通常大于2 mm的层厚。因此,通过该新方法产生优选1至10 mm,优选3至8 mm的上述粉末混合物的层厚。
层例如借助于模板制造,过量的粉末通过刮刀去除。
粉末层随后特别压紧2至10倍。压紧率描述载体元件上压紧的CNT-PTFE粉末混合物的厚度与粉末混合物的松密度的比率。计算中不考虑载体元件。
粉末混合物的松密度例如测定如下。将已经由网孔为1 mm的筛网筛选的粉末混合物引入500 ml量筒中,随后称重。松密度由体积和质量计算。这里,粉末并未机械装载,量筒也并未紧紧地放下或机械装载,使得不能发生压紧或致密化。
已经喷洒到载体元件并刮平的粉末混合物可以压制或辊压(Walzenkompaktierung)来压紧。优选的方法为辊压。制造气体扩散电极的特别优选的方法因此特征在于借助于辊进行压紧,其中由用于载体元件和喷洒的粉末混合物的一个或多个辊施加的线性压制力优选为0.1至1 kN/cm,优选为0.2至0.8 kN/cm。
辊压优选在恒定的制造空间环境温度,特别是在最高20℃的温度下进行。
气体扩散电极可以在一侧或两侧具有气体扩散层,该气体扩散层通过CNT/氟聚合物-粉末混合物的压紧产生。气体扩散层优选施加于载体元件表面的一侧。
压紧之后的气体扩散电极的厚度特别为0.1至3 mm,优选为0.1至2 mm,特别优选为0.1至1 mm。
SVE的孔隙度为70至90%。孔隙度由气体扩散电极中的固相体积与空体积的比率计算。这里,气体扩散电极的固相体积由添加的组分体积的总和计算。没有载体元件的气体扩散电极的体积由气体扩散电极的物料密度决定。当从气体扩散电极体积中减去固相体积时,获得气体扩散电极的空体积。空体积与气体扩散电极体积的比率得到孔隙度。
本发明进一步提供一种用于氧还原的气体扩散电极,其中该气体扩散电极具有至少一个片状导电性载体元件和施加于载体元件上的气体扩散层以及电催化剂,特征在于气体扩散层由碳纳米管和PTFE的混合物构成,其中碳纳米管和氟聚合物以粉末形式施加于载体元件并被压紧,和其中碳纳米管形成电催化剂。
优选由如上所述本发明的生产方法获得的气体扩散电极。
在气体扩散电极的优选实施方案中,制造中使用的碳纳米管具有低于1 wt%,特别是低于0.5 wt%,特别优选最高0.3 wt%的用于制造碳纳米管的催化剂,特别是过渡金属,特别优选锰和/或铁和/或钴的催化剂残留物含量。这一点例如通过在加工形成粉末混合物之前用酸洗涤具有较高金属含量的CNT粉末并分离来实现。
本发明因此进一步提供该新型气体扩散电极用于在碱性电解质,例如氢氧化钠溶液存在下,特别是在碱性燃料电池中还原氧的用途,在引用水处理中的用途,例如用于生产次氯酸钠作为漂白液或在氯碱电解中的用途,特别是用于电解LiCl,KCl或NaCl。
该新型SVE特别优选用于氯碱电解,这里特别是用于氯化钠(NaCl)电解。
本发明进一步提供一种电解装置,特别是用于氯碱电解,其具有如上所述新型气体扩散电极作为耗氧阴极。
以下通过实施例更进一步说明本发明,但是这些实施例并不构成本发明的限制。
实施例
实施例1
电极的制造描述如下。
将15 g粉末混合物在约19℃下在第一阶段中预混产生均匀混合物,然后在干燥箱中加热到50℃并引入到已经预热至50℃的购自IKA公司的混合器中,该粉末混合物由40wt%的PTFE粉末Dyneon类型TF2053Z和60 wt%的CNT粉末(根据WO 2009/036877A2,实施例2中所述制造)构成,平均聚集体直径为约450 μm (d50值,借助于激光散射),松密度为约200g/l,残留催化剂(Co和Mn)含量为约0.64 wt%,氮含量为0.18 wt%。IKA混合器装有星状旋转器作为混合元件,并且以15 000 rpm的转速工作。混合过程的第二阶段中的混合时间为60秒,其中每15秒之后中断混合以分离壁上的混合料。第二混合阶段之后粉末混合物的温度为49.6℃。混合过程期间并未观察到粉末的加热。将粉末混合物冷却至室温。冷却之后,使用网孔为1.0 mm的筛网筛选该粉末混合物。粉末混合物具有0.0975 g/cm3的松密度。
随后将过筛的粉末混合物施加于线宽为0.14 mm和网孔为0.5 mm的由镀金镍丝制成的网格上。借助于4 mm厚的模板进行施加,其中使用网孔为1 mm的筛网施加粉末。借助于刮刀去除突出模板厚度的过量粉末。去除模板之后,通过辊压机,以0.45 kN/cm的压制力压制有施加的粉末混合物的载体元件。从辊压机中取出气体扩散电极。没有载体元件的电极的密度为0.5 g/cm3,产生5.28的压紧率。最终电极的厚度为0.6 mm。
将以这种方式制造的耗氧阴极(SVK)安装在有效面积为100 cm2的实验室电解槽中并在氯碱电解条件下工作。这里使用购自DuPONT的离子交换膜,N982WX型号。SVK和薄膜之间的氢氧化钠溶液间隙为3 mm。购自Denora公司的由具有用于氯气制备的商业DSA®涂层的金属网构成的钛阳极用作阳极。4 kA/m2的电流密度,90℃的电解质温度,210 g/l的氯化钠浓度和32 wt%的氢氧化钠浓度下,池电压为平均2.20 V。实验可以在电压不升高下进行120天。
实施例2 对比例-炭黑-载体元件银网格
如实施例1所述制造电极,但是使用购自Cabot公司的Vulcan炭黑XC72R类型代替CNTs。
在实验开始时池电压为2.20 V,保持7天恒定。从第7天开始,池电压每天连续升高16 mV。在第十九工作天,池电压为2.40 V。使用的电极显示由于电极涂层溶胀产生的机械变形。这意味着该材料不具有长期稳定性。
实施例 3对比例-使用氮掺杂的碳纳米管
借助于WO2007/093337A2 (实施例1,催化剂1)中所述的催化剂,引入到流化床反应器(直径100 mm)中制造氮改性的碳纳米管NCNTs。首先将60 g催化剂和200 g的NCNTs (来自预先实验)引入到反应器中,在27升/分钟的氢气和3升/分钟的氮气流中在750℃还原30分钟,关掉氢气流之前,将氮气流升高到21.5升/分钟,同样在750℃,同时开始以30 g每分钟的进料速率引入吡啶,持续30分钟。冷却之后,获得氮含量为5.1 wt%的约400 g的NCNTs。类似地制造其它NCNT材料,随后制造至少2批NCNT产品的混合物,然后用于电极制造。
代替CNTs,由上述实施例1中的方法处理氮含量为5.1 wt%的这些NCNTs,得到电极。相对于RHE,半电池的电势为387 mV。基于NCNT的电极的电势明显显著低于基于CNT的对应电极的电势(实施例1)。
实施例4
对于本实施例,使用已经用和实施例1的CNT材料相似的方式制造的CNT材料,差别为用于实施例4的材料被特别纯化,以去除来自流化床生产的催化剂的残留含量。纯化的CNT材料具有0.02 wt%的CNT催化剂(Co和Mn)的残留含量。使用的CNTs具有0.15 wt%的N含量。在实验室池测试中,SVK显示经16天2.18 V的平均池电压,该池电压因此比由未纯化的CNT材料(实施例1)制备的SVE的池电压低20 mV。

Claims (21)

1.制造用于还原氧的气体扩散电极的方法,其中该气体扩散电极具有至少一个片状导电性载体元件和施加于该载体元件的气体扩散层以及电催化剂,特征在于气体扩散层由碳纳米管和氟聚合物,特别是PTFE的混合物形成,并且碳纳米管和氟聚合物的混合物以粉末形式施加于载体元件并被压紧,其中该碳纳米管形成电催化剂并且该碳纳米管基本不含氮成分。
2.根据权利要求1所要求的方法,特征在于碳纳米管以聚集体的形式使用,其中聚集体颗粒的至少95体积%具有30 μm至5000 μm,优选50 μm至3000 μm,特别优选100 μm至1000 μm的外径。
3.根据权利要求1至2任一项所要求的方法,特征在于聚集体形式的氟聚合物,特别是PTFE,具有100 μm至1 mm,优选150 μm至0.8 mm和特别优选200 μm至400 μm的平均粒度d50。
4.根据权利要求1至3任一项所要求的方法,特征在于碳纳米管和氟聚合物的混合物由干混制造。
5.根据权利要求4所要求的方法,特征在于干混在第一阶段中进行,以获得均相预混物,其中混合物料的温度最高25℃,优选最高20℃。
6.根据权利要求4或5所要求的方法,特征在于在由第一阶段获得均相预混物之后,在第二阶段中使用混合工具进行干混,其中混合温度大于30℃,优选为30℃至80℃,特别优选为35℃至70℃,极特别优选为40℃至60℃。
7.根据权利要求1至6任一项所要求的方法,特征在于利用辊在辊压装置中进行压紧,其中由用于载体元件和喷洒的粉末混合物的一个或多个辊产生的线性压制力优选为0.1至1 kN/cm,优选为0.1至0.8 kN/cm。
8.根据权利要求1至7任一项所要求的方法,特征在于在恒定的制造空间环境温度下,特别是最高20℃的温度下进行辊压。
9.根据权利要求1至8任一项所要求的方法,特征在于碳纳米管和氟聚合物,特别是PTFE的混合物含有1至70 wt%,优选5至65 wt%,特别优选10至65 wt%的PTFE,和99至30wt%,优选95至35 wt%,特别优选90至35 wt%的碳纳米管。
10.根据权利要求1至9任一项所要求的方法,特征在于导电性载体元件为网格、无纺布、泡沫、纺织织物、编织物或金属网。
11.根据权利要求1至10任一项所要求的方法,特征在于载体元件由碳纤维,镍,银或涂布有贵金属的镍构成,其中该贵金属优选选自银,金和铂的一种或多种。
12.用于氧还原的气体扩散电极,其中该气体扩散电极具有至少一个片状导电性载体元件和施加于载体元件上的气体扩散层以及电催化剂,特征在于气体扩散层由碳纳米管和PTFE的混合物构成,其中碳纳米管和氟聚合物以粉末形式施加于载体元件并被压紧,且其中碳纳米管形成电催化剂。
13.根据权利要求12所要求的气体扩散电极,特征在于该电极根据权利要求1至11任一项所要求的方法制造。
14.根据权利要求12或13所要求的气体扩散电极,特征在于碳纳米管和氟聚合物,特别是PTFE的混合物含有1至70 wt%,优选5至65 wt%,特别优选10至65 wt%的PTFE,和99至30wt%,优选95至35 wt%,特别优选90至35 wt%的碳纳米管。
15.根据权利要求12至14任一项所要求的气体扩散电极,特征在于该电极具有0.1至3mm,优选0.1至2 mm,特别优选0.1至1 mm的厚度。
16.根据权利要求12至15任一项所要求的气体扩散电极,特征在于气体扩散层施加在载体元件表面的一侧或两侧,优选施加在一侧。
17.根据权利要求12至16任一项所要求的气体扩散电极,特征在于碳纳米管具有低于1wt%,特别是低于0.5 wt%,特别优选最高0.3 wt%的用于制造碳纳米管的催化剂,特别是过渡金属,特别优选锰和/或铁和/或钴的催化剂残留物含量。
18.根据权利要求12至17任一项所要求的气体扩散电极,特征在于碳纳米管粉末以聚集体形式存在,其中聚集体颗粒的至少95体积%具有30 μm至5000 μm,特别优选50 μm至3000 μm的外径。
19.根据权利要求12至18任一项所要求的气体扩散电极,特征在于化学键合至碳纳米管的氮形式的氮的比例低于0.5 wt%,优选低于0.3 wt%,特别优选低于0.2 wt%。
20.根据权利要求12至19任一项所要求的气体扩散电极在碱性介质中作为用于氧还原的耗氧电极,特别是在电解,尤其是氯碱电解中作为耗氧阴极,或在碱性燃料电池中作为电极或在金属/空气电池中作为电极的用途。
21.电解装置,特别是用于氯碱电解,其具有权利要求12至19任一项所要求的气体扩散电极作为耗氧阴极。
CN201580048831.9A 2014-09-12 2015-08-28 含有碳纳米管的耗氧电极及其制造方法 Active CN106605012B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014218368.5 2014-09-12
DE102014218368.5A DE102014218368A1 (de) 2014-09-12 2014-09-12 Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung
PCT/EP2015/069726 WO2016037867A1 (de) 2014-09-12 2015-08-28 Kohlenstoffnanorohrchen enthaltende sauerstoffverzehrelektrode und verfahren zu ihrer herstellung

Publications (2)

Publication Number Publication Date
CN106605012A true CN106605012A (zh) 2017-04-26
CN106605012B CN106605012B (zh) 2020-01-07

Family

ID=54011720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580048831.9A Active CN106605012B (zh) 2014-09-12 2015-08-28 含有碳纳米管的耗氧电极及其制造方法

Country Status (7)

Country Link
US (1) US20170283964A1 (zh)
EP (1) EP3191619B1 (zh)
JP (2) JP7108408B2 (zh)
KR (1) KR20170056596A (zh)
CN (1) CN106605012B (zh)
DE (1) DE102014218368A1 (zh)
WO (1) WO2016037867A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014218367A1 (de) * 2014-09-12 2016-03-17 Covestro Deutschland Ag Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung
KR101996537B1 (ko) * 2018-07-19 2019-07-04 (주) 테크로스 전기분해 및 불균일계 촉매를 이용한 수처리 장치
KR102453262B1 (ko) * 2020-04-07 2022-10-11 주식회사 케이티앤지 전해액을 포함하는 흡입 장치
EP4269361A1 (en) * 2020-12-25 2023-11-01 Daikin Industries, Ltd. Binder that is composite of single-walled carbon nanotubes and ptfe, and composition for electrode production and secondary battery using same
CN114752945B (zh) * 2022-03-16 2024-03-19 中南大学 一种电极组件及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880508A (zh) * 2005-05-21 2006-12-20 拜尔材料科学股份公司 气体扩散电极的制备方法
CN102210042A (zh) * 2008-09-08 2011-10-05 新加坡南洋理工大学 用于金属-空气电池、燃料电池元和超级电容器的电极材料
CN102337559A (zh) * 2010-07-20 2012-02-01 拜尔材料科学股份公司 耗氧性电极
GB2487836A (en) * 2011-02-04 2012-08-08 Afc Energy Plc Fuel Cell Assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1469930A (en) 1974-10-11 1977-04-06 Atomic Energy Authority Uk Carbon filaments
CA1175616A (en) 1981-01-05 1984-10-09 Exxon Research And Engineering Company Production of iron monoxide and carbon filaments therefrom
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US20110117462A1 (en) * 2006-07-18 2011-05-19 Pelton Walter E Methods and apparatuses for distributed fuel cells with nanotechnology
DE102006007147A1 (de) 2006-02-16 2007-08-23 Bayer Technology Services Gmbh Verfahren zur kontinuierlichen Herstellung von Katalysatoren
DE102007044031A1 (de) 2007-09-14 2009-03-19 Bayer Materialscience Ag Kohlenstoffnanoröhrchenpulver, Kohlenstoffnanoröhrchen und Verfahren zu ihrer Herstellung
DE102008063727A1 (de) 2008-12-18 2010-06-24 Bayer Technology Services Gmbh Elektrochemisches Verfahren zur Reduktion molekularen Sauerstoffs
DE102009038464A1 (de) * 2009-08-21 2011-02-24 Bayer Materialscience Ag Kohlenstoffnanoröhrchen-Agglomerat
DE102009058833A1 (de) 2009-12-18 2011-06-22 Bayer Technology Services GmbH, 51373 Stickstoff-dotierte Kohlenstoffnanoröhrchen mit Metall-Nanopartikeln
DE102010024053A1 (de) 2010-06-16 2011-12-22 Bayer Materialscience Ag Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung
JP5660917B2 (ja) * 2011-02-04 2015-01-28 国立大学法人東京工業大学 燃料電池用空気極触媒とその製造方法
DE102011005454A1 (de) * 2011-03-11 2012-09-13 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Sauerstoffverzehrelektroden
WO2013089026A1 (ja) 2011-12-12 2013-06-20 パナソニック株式会社 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880508A (zh) * 2005-05-21 2006-12-20 拜尔材料科学股份公司 气体扩散电极的制备方法
CN102210042A (zh) * 2008-09-08 2011-10-05 新加坡南洋理工大学 用于金属-空气电池、燃料电池元和超级电容器的电极材料
CN102337559A (zh) * 2010-07-20 2012-02-01 拜尔材料科学股份公司 耗氧性电极
GB2487836A (en) * 2011-02-04 2012-08-08 Afc Energy Plc Fuel Cell Assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
褚有群 等: "纳米碳管电极上氧的电催化还原", 《物理化学学报》 *

Also Published As

Publication number Publication date
KR20170056596A (ko) 2017-05-23
JP2021042477A (ja) 2021-03-18
EP3191619A1 (de) 2017-07-19
JP2017533343A (ja) 2017-11-09
WO2016037867A1 (de) 2016-03-17
JP7045439B2 (ja) 2022-03-31
CN106605012B (zh) 2020-01-07
DE102014218368A1 (de) 2016-03-17
EP3191619B1 (de) 2019-05-15
US20170283964A1 (en) 2017-10-05
JP7108408B2 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
Lu et al. CoP nanosheets in-situ grown on N-doped graphene as an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
Li et al. Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions
Hu et al. Palladium nanocrystals supported on helical carbon nanofibers for highly efficient electro-oxidation of formic acid, methanol and ethanol in alkaline electrolytes
Xiao et al. Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation
Xing et al. Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction
Singh et al. Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production
Pophali et al. Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell
Li et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels
JP7045439B2 (ja) カーボンナノチューブを含有する酸素消費電極およびその製造方法
Abbas et al. Decorated carbon nanofibers with mixed nickel− manganese carbides for methanol electro-oxidation in alkaline solution
JP2021038465A (ja) 酸素消費電極およびその製造方法
Li et al. Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions
Fan et al. Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation
Wang et al. Facile preparation of N, P co-doped molybdenum carbide/porous carbon rough microspheres for efficient electrocatalytic hydrogen evolution
Lu et al. Boosting oxygen evolution through phase and electronic modulation of highly dispersed tungsten carbide with nickel doping
Zhu et al. Iron-doped NiSe2 in-situ grown on graphene as an efficient electrocatalyst for oxygen evolution reaction
Schnucklake et al. A mini-review on decorating, templating of commercial and electrospinning of new porous carbon electrodes for vanadium redox flow batteries
Mariappan et al. Construction of MnFe layer double hydroxide on biomass-derived carbon heterostructure for efficient electrocatalytic water splitting
Liang et al. In-situ growth of NCNT and encapsulation of Co9S8/Co as a sustainable multifunctional electrocatalyst
JP5932791B2 (ja) 酸素消費電極およびその製造方法
Sun et al. Sandwich-like superstructure of in-situ self-assembled hetero-structured carbon nanocomposite for improving electrocatalytic oxygen reduction
Zhang et al. One-step construction of NiCo alloy particles encapsulated in N-doped carbon frameworks application for overall water splitting
Zeng et al. PPy-derived N, P co-doped hollow carbon fiber decorated with island-like Ni2P nanoparticles as bifunctional oxygen electrocatalysts
Wu et al. Pt/C catalysts using different carbon supports for the cathode of PEM fuel cells
Li et al. Highly dispersed TaC nanowire cathodes via template-assisted electrolysis for enhanced lithium–oxygen batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant