CN106604899B - 光纤预制棒、光纤和光纤的制造方法 - Google Patents

光纤预制棒、光纤和光纤的制造方法 Download PDF

Info

Publication number
CN106604899B
CN106604899B CN201680002358.5A CN201680002358A CN106604899B CN 106604899 B CN106604899 B CN 106604899B CN 201680002358 A CN201680002358 A CN 201680002358A CN 106604899 B CN106604899 B CN 106604899B
Authority
CN
China
Prior art keywords
optical fiber
wavelength
loss
transmittance
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680002358.5A
Other languages
English (en)
Other versions
CN106604899A (zh
Inventor
长洲胜文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of CN106604899A publication Critical patent/CN106604899A/zh
Application granted granted Critical
Publication of CN106604899B publication Critical patent/CN106604899B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明提供一种光纤预制棒,其具备由不含Ge的二氧化硅玻璃构成的纤芯,上述纤芯在分光测定中具备如下(1)和(2)中的至少1个特性:(1)在波长240nm~255nm具有吸收峰;(2)紫外透射率为50%以下的波长大于170nm。

Description

光纤预制棒、光纤和光纤的制造方法
技术领域
本发明涉及纺丝后的光纤的传输损耗减少的光纤预制棒、对该光纤预制棒进行纺丝而得到的光纤以及光纤的制造方法。
本申请基于在2015年7月15日提出申请的日本特愿2015-141567号主张优先权,将其内容援引于此。
背景技术
理论上显示:纤芯采用纯的二氧化硅玻璃、包层采用掺杂有氟的二氧化硅玻璃的所谓的纯(pure)二氧化硅纤芯光纤与纤芯采用掺杂有氧化锗的二氧化硅玻璃、包层采用纯的二氧化硅玻璃的通常的掺Ge纤芯光纤相比,能够实现更低的传输损耗。这是由于在光纤中传播的光的大部分通过的纤芯仅由二氧化硅玻璃构成,因此实质上没有浓度波动,瑞利散射变小。
然而,瑞利散射不仅由玻璃的浓度波动产生,也由密度波动产生。因此,即使是纯二氧化硅纤芯光纤,瑞利散射的减少也并不充分,传输损耗的大部分还是由瑞利散射引起的。到目前为止已经提出了大量的用于通过减少纯二氧化硅纤芯光纤的密度波动来减少瑞利散射的方法。
例如,专利文献1中提出了在纤芯中掺杂碱金属的方法。认为通过掺杂碱金属来抑制瑞利散射的机制是由于二氧化硅玻璃的熔融温度降低,其结果,在纺丝工序的光纤冷却的过程中二氧化硅的结构松弛加速,反映由液体进行玻璃化时分子振动被固定化的状态的温度、即,所谓的假想温度降低。
另外,专利文献2中提出了在纺丝工序中在直至将从加热炉出来的光纤用树脂被覆为止的期间实施再加热的方法。认为通过将光纤再加热,从而进行结构松弛,假想温度降低,因此瑞利散射被抑制。
现有技术文献
专利文献
专利文献1:日本专利第5625037号公报
专利文献2:日本专利第4663277号公报
发明内容
根据如上述的减少瑞利散射的方法,能够减少光纤的传输损耗。但是,本发明的发明人等确认了虽然瑞利散射降低、但传输损耗并未降低的大量事例。
本发明是鉴于上述情况而完成的,其课题在于提供一种能够减少纺丝后的光纤的传输损耗的光纤预制棒、对该光纤预制棒进行纺丝而得到的光纤和光纤的制造方法。
为了解决上述课题,本发明的第一方式的光纤预制棒具备由不含Ge的二氧化硅玻璃构成的纤芯,上述纤芯在分光测定中具备如下(1)和(2)中的至少1个特性:(1)在波长240nm~255nm具有吸收峰;(2)紫外透射率为50%以下的波长大于170nm。
上述纤芯可以由纯二氧化硅玻璃或含有氯的纯二氧化硅玻璃构成。
在上述纤芯的外周可以具备由掺杂有氟的二氧化硅玻璃构成的包层。
另外,本发明的第二方式的光纤是对上述方式的光纤预制棒进行纺丝而得到的光纤,其中,在波长1550nm,从总损耗减去因瑞利散射所致的损耗和因结构不完善所致的损耗而得的损耗为0.03dB/km以下,波长1550nm的总损耗为0.175dB/km以下,在室温下暴露于0.01气压的氢气中后由OH基产生的损耗增加在波长1383nm为0.05dB/km以下。
另外,本发明的第三方式的光纤的制造方法对上述方式的光纤预制棒进行纺丝。
可以确认上述光纤预制棒具备上述(1)和上述(2)中的至少1个特性。
根据本发明的上述方式,光纤预制棒的纤芯可以具有由缺氧型缺陷(ODC)引起的光学特性。由此,即使在纺丝时生成在光纤的一般的波段、例如C波段(1530~1565nm)成为损耗的主要原因的氧过量型缺陷,也能够通过使氧过量型缺陷中的过量的氧原子与ODC键合而减少氧过量型缺陷。因此,所得的光纤能够减少该波长频带的传输损耗。另外,由于同时也能够抑制非桥氧空穴中心(NBOHC)的产生,所以还能够使耐氢特性良好。
附图说明
图1是表示纤芯区域的紫外透射率特性的一个例子的图。
图2是将图1的α部附近放大而成的图。
图3是表示透射率50%波长与损耗C的关系的一个例子的图。
图4是表示248nm峰深度与损耗C的关系的一个例子的图。
图5是表示透射率50%波长与传输损耗的关系的一个例子的图。
图6是表示透射率50%波长与248nm峰深度的关系的一个例子的图。
图7是表示1%氢暴露试验的结果的一个例子的图。
具体实施方式
以下,基于优选的实施方式对本发明进行说明。
本实施方式的一个实施方式的光纤预制棒具有由不含Ge的二氧化硅玻璃构成的纤芯。由此,能够减少瑞利散射。光纤预制棒的纤芯是成为光纤的纤芯的部分。作为可在纤芯的全部或一部分区域中添加的掺杂剂,可举出碱金属(Li、Na、K、Rb、Cs)、氟(F)、氯(Cl)等中的1种或2种以上的元素。作为构成纤芯的二氧化硅玻璃,优选为纯二氧化硅玻璃或含有氯的纯二氧化硅玻璃。纯二氧化硅玻璃由不含掺杂剂的二氧化硅(SiO2)构成,但可以含有不可避免的杂质、缺陷等。纯二氧化硅玻璃也可以含有氯。此时,添加于纯二氧化硅玻璃的掺杂剂实质上可以仅设为氯。
但是,虽然通过纤芯不含Ge而使瑞利散射降低,但也存在传输损耗并不降低的事例。因此,也需要对引起光纤的传输损耗的其它主要原因进行研究。
光纤的传输损耗在波长区域1000nm~1700nm可以由下式1表示。
(传输损耗)=瑞利散射(A)+结构不完善(B)+其它损耗(C)(式1)
因瑞利散射所致的损耗与波长λ的4次方分之1(λ-4)成比例。因结构不完善所致的损耗一般取决于波长λ。因此,只要测定传输损耗的波长特性(波长依赖性),则可以将传输损耗(总损耗)分解为因瑞利散射所致的损耗A、因结构不完善所致的损耗B、其它损耗C这3种。作为其它损耗C,有短波长侧的紫外吸收、长波长侧的Si-O红外吸收、以1383nm为中心波长的由OH基产生的吸收等。因此,在本说明书中,将从传输损耗的测定值减去因瑞利散射所致的损耗A和因结构不完善所致的损耗B而得的值称为损耗C。例如,在日本特开2003-75293号公报(参考文献1)的0009段所记载的算式中,第1项设为因瑞利散射所致的损耗,第2项设为因结构不完善所致的损耗,第3项的KUV·w·exp(CUV/λ)设为因紫外吸收所致的损耗,第4项的E(λ)设为因缺陷所致的损耗。这里,λ为波长,w为GeO2浓度(wt%),KUV和CUV为常量,E(λ)为λ的函数。本申请说明书的损耗C的计算方法与参考文献1同样地求出因瑞利散射和结构不完善所致的损耗,进一步求出从总损耗中减去该损耗的差而得到。但是,参考文献1中,还考虑了因掺杂Ge所致的损耗(第3项)等,本申请说明书中的损耗C的内容与参考文献1的第3项或第4项未必一致。
在1000nm~1700nm的波长区域测定光纤的传输损耗,在应用式1时,可知在1550nm附近的波长,在传输损耗如所期待地降低的光纤与传输损耗未降低的光纤之间,损耗C存在较大的差。在1550nm的损耗C包含因Si-O红外吸收所致的损耗,但损耗C根据纤维而不同,所以预想还包含由Si-O红外吸收以外的某些主要原因所致的损耗。
基于这样的结果而进行了各种研究,其结果发现,损耗C的大小与纤芯玻璃在真空紫外波长区域的透射率特性有关。将光纤预制棒的一部分切成圆片,取出圆柱状的样品,将纤芯区域放置于真空紫外分光光度计的试样室,测定紫外波长区域的透射率(紫外透射率),此时得到像图1那样的透射特性。在该例子中,从测定上限波长的300nm向短波长维持高透射率,但透射率在180nm附近的波长下急剧降低至0%。
根据图1的图,作为第1特性,可举出在近紫外波长区域(紫外区域中的波长为200nm以上),在波长240nm~255nm具有吸收峰。在图1中,对该吸收峰标记符号α。该吸收峰表示在该波长区域的范围内具有至少1个吸收极大值(即透射率的极小值)。
另外,作为第2特性,可举出在真空紫外波长区域(紫外区域中的波长为200nm以下),紫外透射率为50%以下的波长(透射率50%波长)大于170nm。在图1中,对相当于该波长的位置标记符号β。如果对同一样品存在多个紫外透射率为50%的波长时,将其中最长的波长设为“透射率50%波长”。满足本特性的纤芯在与透射率50%波长相比为长波长的紫外区域中,透射率高于50%。一般的二氧化硅玻璃还在从可见到近红外的波长2μm附近的波长区域透射率也高。
可以说在波长163nm存有由作为缺氧型缺陷的ODC(oxygendeficient center)(Si-Si)产生的吸收,由此,关于第2特性,认为真空紫外波长区域的透射率的急剧降低是由ODC引起的。另外,在图1的透射率特性中,可以确认在波长248nm附近虽然小但仍存在的吸收峰。图2表示图1的α部的部分放大。与图1同样地,图2的纵轴为透射率(%),图2的横轴为波长(nm)。可以说在波长248nm附近也存在ODC(Si-Si)的吸收,因此,关于第1特性,认为波长248nm的微小吸收是由ODC引起的。
详细内容在实施例中后述,光纤预制棒的纤芯在紫外波长区域的分光特性(以下为“紫外透射率特性”)方面通过具备上述的第1特性和第2特性中的至少1个特性而示出损耗C降低的趋势。根据该结果,推测在损耗C中Si-O红外吸收以外的损耗的主要原因是由含有由ODC消耗的物质,即氧原子的某些缺陷(氧过量型缺陷)产生的吸收。
推测玻璃中的ODC越多,氧过量型缺陷中的氧原子越会通过与ODC的Si的键合而变为Si-O-Si,损耗C越减少。推测氧过量型缺陷是在纤芯部分的烟炱(スート)生成时、将纤芯部分的烟炱脱水烧结时、纺丝时等产生的,ODC与氧原子的键合是在从光纤预制棒在纺丝中由加热炉熔融到经纺丝的光纤被冷却为止的期间发生的。
如以上说明的那样,可以推测光纤预制棒的纤芯中的ODC越多,氧过量型缺陷的氧原子越会与ODC中的Si原子键合而光纤的损耗C降低。如此,通过对光纤预制棒的纤芯的波长163nm的吸收和波长248nm的吸收中的至少1个进行测定,能够确认存在足够的ODC量。
另外,对光纤预制棒的纤芯区域的紫外透射率特性进行阐述,光纤预制棒的纤芯区域相当于在纺丝而得到的光纤中光信号通过的区域。因此,优选光纤预制棒在纤芯区域的整个区域具有同样的紫外透射率特性。纤芯区域的紫外透射率的测定优选在光纤预制棒的长度方向、半径方向或其它方向以至少1点进行,更优选以2点以上进行。
在紫外分光测定中使用的样品的厚度方向(光透射的测定方向)没有特别限定,可以选自光纤预制棒的长度方向、半径方向或其它方向中。分光测定时的样品的厚度没有特别限定,例如为1~10mm,作为具体例,可举出5mm。由于在以下所示的本实施例中以5mm进行测定,因此在以5mm以外的厚度进行测定时,可以以得到厚度5mm的紫外透射率特性的方式换算测定值。将光纤预制棒的长度方向作为测定方向时,即使在纤芯的周围具有包层的情况下,也能够不除去包层地进行纤芯的分光测定,因此为优选。
光纤预制棒的紫外透射率特性可以主要根据光纤预制棒的纤芯部分的制造条件来进行控制。光纤预制棒的纤芯部分例如可通过VAD法来制作。纤芯部分的形状例如为圆柱的杆状。也可以将通过常规方法拉伸成适当粗细的玻璃母材用作纤芯母材来代替将通过VAD法等制作的玻璃母材直接用作纤芯母材。
在VAD法中,可以首先将四氯化硅(SiCl4)等二氧化硅玻璃的原料流到氢氧火焰内,在靶上沉积二氧化硅烟炱,接着,在含有脱水剂的非活性气体等环境下进行加热而脱水,最后在He气环境下进一步升高加热温度,从而进行烧结而得到透明的纤芯玻璃。作为脱水剂,可举出氯(Cl2)、亚硫酰氯(SOCl2)等含氯化合物。作为非活性气体,可举出氦(He)、氩(Ar)等。
纤芯玻璃的紫外透射率特性可以根据二氧化硅烟炱沉积时的氧流量、氢流量、原料流量、各气体的流速等气体条件、二氧化硅烟炱在脱水中或烧结中的氯浓度、氧浓度、处理温度等各种制造条件中的1种或2种以上而进行变更。
光纤预制棒的包层部分可以利用通常的外部气相沉积法(外付け法)在纤芯部分的外周由外部气相沉积法等形成包层玻璃而得到。作为包层玻璃,优选为掺杂了氟(F)、硼(B)等使折射率降低的添加物的二氧化硅玻璃。作为其它包层材料,可举出氟化物玻璃等多组分玻璃、丙烯酸系树脂或氟树脂等光学树脂等。包层可以具有玻璃组成、物性等不同的2个以上的区域。
在外部气相沉积法中,使二氧化硅烟炱沉积在纤芯母材的外周后,在含有脱水剂的非活性气体等环境下进行加热而脱水,接着,在He气等环境中进行烧结,从而能够形成由透明玻璃构成的包层。作为在包层玻璃中掺杂氟的方法,可举出在脱水后的二氧化硅烟炱的烧结时向He气等环境中添加氟源的方法、在二氧化硅烟炱沉积(外部气相沉积)时向供给到氢氧火焰内的原料气体中添加氟源的方法。作为氟源,可举出四氟化硅(SiF4)、四氟化碳(CF4)、六氟化硫(SF6)等氟化合物。
为了设为所需的纤芯/包层的半径比,可以反复进行多次包层的外部气相沉积。在反复进行多次包层的外部气相沉积的情况下,在各外部气相沉积工序中形成的包层的玻璃组成可以相同或不同。为了得到所需的紫外透射率特性,可以在制造包层时调整二氧化硅烟炱沉积时的氧流量、氢流量、原料流量、各气体的流速等气体条件、二氧化硅烟炱在脱水中或烧结中的氯浓度、氧浓度、处理温度等各种制造条件中的1种或2种以上。
使用了本实施方式的光纤预制棒的光纤的制造可以由通常的纺丝工序来实施。沿大致上下方向配置光纤预制棒的长度方向,将光纤预制棒的下部以通过加热而熔融的状态向下方拉伸,从而能够拉出纤维(fiber)状的细玻璃。经拉出的玻璃纤维在拉丝之间、空中缓慢地冷却之后,被卷绕于线轴等。
为了在光纤的纺丝时保护玻璃纤维,可以在被卷绕于线轴等之前的玻璃纤维的外周设置1层或2层以上的树脂等被覆层。作为树脂,没有特别限定,可举出各种丙烯酸酯等紫外线(UV)固化型树脂、热固型树脂。
在光纤的纺丝工序之前,优选进行确认光纤预制棒具备如下(1)和(2)中的至少1个特性的工序:(1)在波长240nm~255nm的范围内具有吸收峰;(2)紫外透射率为50%以下的波长大于170nm。确认这些紫外透射率特性的工序可以将具有与光纤相同的纤芯/包层的半径比的光纤预制棒作为对象。只要能够确认纤芯部分的紫外透射率特性,则可以在纤芯母材的阶段或包层的外部气相沉积一部分尚未实施的阶段测定紫外透射率特性。
如上所述,具备(1)在波长240nm~255nm的范围内具有吸收峰和(2)紫外透射率为50%以下的波长大于170nm中的至少1个特性表示在纤芯玻璃中存在充分的ODC。具有这样的纤芯的光纤预制棒即使在纺丝工序等中产生在波长1550nm附近成为损耗主要原因的氧过量型缺陷,也能够通过将氧过量型缺陷中的氧与ODC的Si原子键合而减少氧过量型缺陷。因此,如此得到的光纤能够减少1550nm附近的损耗。另外,由于同时也抑制非桥氧空穴中心(NBOHC)的产生,因此光纤的耐氢特性也良好。
所得的光纤的损耗C优选为0.03dB/km以下。另外,所得的光纤的波长1550nm的总损耗优选为0.175dB/km以下。优选将所得的光纤在室温下暴露于0.01气压的氢气中后由OH基产生的损耗增加在波长1383nm为0.05dB/km以下。
以上,基于优选的实施方式对本发明进行了说明,但本发明不限定于上述实施方式,可以在不偏离本发明的主旨的范围内进行各种改变。
光纤的种类没有特别限定,可举出单模光纤(SMF)、多模光纤(MMF)、少模光纤(FMF)、多芯光纤(MCF)、色散补偿光纤(DCF)、非零色散位移光纤(NZ-DSF)、色散位移光纤(DSF)、保偏光纤(PMF)、截止位移光纤、束状光纤等各种光纤。
实施例
以下,举出实施例对本发明进行具体说明。
光纤预制棒的纤芯部分通过VAD法而制作。在VAD法中,将沉积的二氧化硅烟炱在含有氯(Cl2)作为脱水剂的氦(He)气环境中加热而脱水,接着,在He气环境下进一步升高加热温度,从而进行烧结而得到透明的纤芯玻璃。在脱水剂浓度0.2~6.0mol%、氧浓度0~1mol%、脱水温度1000~1300℃的范围进行脱水,在脱水剂浓度0~6.0mol%、氧浓度0~1mol%、烧结温度1380~1500℃的范围进行烧结,从而得到具有各种紫外透射率特性的纤芯玻璃。
通过常规方法将以这种方式制作的纤芯玻璃拉伸成适当的粗细后,通过通常的外部气相沉积法将纯二氧化硅烟炱外部气相沉积于拉伸纤芯母材后,在SOCl2/He混合气体环境中进行加热而脱水,接着,在含有作为氟源的四氟化硅(SiF4)的He气环境中烧结,从而在纤芯玻璃的外周形成(外部气相沉积)掺杂有氟的透明玻璃(掺F包层)。进而,以成为所需的纤芯/包层的半径比的方式反复进行掺F包层的外部气相沉积而制作光纤预制棒。
将以这种方式得到的光纤预制棒的一部分切成圆片,取出厚度5mm的圆柱状的样品,将纤芯区域放置于真空紫外分光光度计中,测定真空紫外波长区域的透射率。作为真空紫外分光光度计,使用日本分光株式会社制的V-1000(测定波长范围115~300nm)。
图1中示出通过测定得到的紫外透射率特性的一个例子。得到了如下特性:从测定上限波长的300nm向短波长维持高透射率,但透射率在180nm附近急剧降低至0%。另外,可以确认在248nm附近虽然小但仍存在的吸收峰。透射率为50%的波长(以下为“透射率50%波长”)为178nm,波长248nm的峰深度(以下为“248nm峰深度”)为1.2%。
对剩余的光纤预制棒以线速度100m/min进行纺丝而制作光纤,在1000nm~1700nm的范围测定传输损耗。使用式1由在该测定中得到的(总)传输损耗的波长依赖性的值将因瑞利散射和结构不完善所致的损耗与损耗C分离而求出。
对以这种方式进行真空紫外波长区域的透射率的测定以及在相同条件下进行纺丝而测定传输损耗的几个样品求出透射率50%波长(nm)、波长1550nm的总传输损耗(dB/km)、波长1550nm的损耗C(dB/km)、248nm峰深度(%)。将其结果示于表1。“@(波长)”表示“在(波长)的”。另外,图3~6是对表1的结果进行标绘的图。
[表1]
Figure BDA0001232116000000101
图3是对横轴标绘透射率50%波长、对纵轴标绘在1550nm的损耗C而得到的图。图5是对横轴标绘透射率50%波长,对纵轴标绘1550nm的损耗(总传输损耗和损耗C)而得到的图。在这些图中可看到透射率50%波长越长,总传输损耗和损耗C越低的趋势。透射率50%波长大于170nm时,总传输损耗降低至0.175dB/km以下,损耗C降低至0.03dB/km以下。
图4是对横轴标绘248nm峰深度、对纵轴标绘1550nm的损耗C而得到的图。另外,图6中示出透射率50%波长与248nm峰深度的关系的一个例子。如图4所示,在成为248nm附近完全观测不到峰的情况(248nm峰深度为0%)的样品中,损耗C变高,但在248nm附近能够确认至少0.3%的少量吸收的情况下,损耗C降低至小于0.03dB/km。另外,如图6所示,透射率50%波长的长波长化与248nm峰深度的增加也呈现连动的趋势。
根据如上真空紫外区域的透射率特性的评价结果,能够评价1550nm的损耗程度。
接下来,将标绘了图5的点A和点B的光纤的样品进行IEC60793-2-50的AnnexC所规定的1%氢试验。图7是表示作为由OH基产生的吸收的波长1383nm的损耗值在试验前、刚暴露于氢后及其后14天如何变化的图。在图5中透射率50%波长较短的163nm的点A的样品因氢暴露而损耗大幅度增加,即使其后在不存在氢的环境下保存,也不会恢复到原来的损耗。另一方面,在图5中透射率50%波长较长的175nm的点B的样品的因氢暴露所致的损耗未增加,显示极其良好的耐氢特性。
符号说明
α…由ODC产生的吸收峰
β…紫外透射率为50%以下的波长。

Claims (6)

1.一种光纤预制棒,其具备由不含Ge而含有氯的纯二氧化硅玻璃构成的纤芯,
使用由所述光纤预制棒取出的样品的分光测定中,所述纤芯具备如下(1)和(2)中的至少1个特性:
(1)在近紫外波长区域,在波长240nm~255nm具有吸收峰;
(2)在真空紫外波长区域紫外透射率为50%以下的波长即透射率50%的波长大于170nm,当对同一样品存在多个紫外透射率为50%的波长时,将其中最长的波长设为所述透射率50%波长,在与所述透射率50%波长相比为长波长的紫外区域中,紫外透射率高于50%。
2.根据权利要求1所述的光纤预制棒,其中,在所述纤芯的纤芯区域的整个区域具有同样的紫外透射率特性。
3.根据权利要求1或2所述的光纤预制棒,其中,在所述纤芯的外周具备由掺杂有氟的二氧化硅玻璃构成的包层。
4.一种光纤,是对权利要求1~3中任一项所述的光纤预制棒进行纺丝而得到的光纤,其中,
在波长1550nm,从总损耗减去因瑞利散射所致的损耗和因结构不完善所致的损耗而得的损耗为0.03dB/km以下,
波长1550nm的总损耗为0.175dB/km以下,
在室温下暴露于0.01气压的氢气中后由OH基产生的损耗增加在波长1383nm为0.05dB/km以下。
5.一种光纤的制造方法,其对权利要求1~3中任一项所述的光纤预制棒进行纺丝。
6.根据权利要求5所述的光纤的制造方法,其中,确认所述光纤预制棒具备所述(1)和所述(2)中的至少1个特性。
CN201680002358.5A 2015-07-15 2016-06-10 光纤预制棒、光纤和光纤的制造方法 Active CN106604899B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-141567 2015-07-15
JP2015141567A JP2017024917A (ja) 2015-07-15 2015-07-15 光ファイバプリフォーム、光ファイバおよび光ファイバの製造方法
PCT/JP2016/067389 WO2017010205A1 (ja) 2015-07-15 2016-06-10 光ファイバプリフォーム、光ファイバおよび光ファイバの製造方法

Publications (2)

Publication Number Publication Date
CN106604899A CN106604899A (zh) 2017-04-26
CN106604899B true CN106604899B (zh) 2020-06-19

Family

ID=57756935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680002358.5A Active CN106604899B (zh) 2015-07-15 2016-06-10 光纤预制棒、光纤和光纤的制造方法

Country Status (4)

Country Link
US (1) US20170285259A1 (zh)
JP (1) JP2017024917A (zh)
CN (1) CN106604899B (zh)
WO (1) WO2017010205A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205357A (ja) * 2017-05-30 2018-12-27 株式会社フジクラ 光ファイバ、光ファイバの製造方法、および光ファイバ母材
WO2019226445A1 (en) * 2018-05-23 2019-11-28 Corning Incorporated Vacuum slow cooling device for optical fiber draw

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132531A (ja) * 1984-11-30 1986-06-20 Sumitomo Electric Ind Ltd 光フアイバの製造方法
JPH04164836A (ja) * 1990-10-25 1992-06-10 Sumitomo Electric Ind Ltd 光フアイバ用ガラス母材の製造方法
CN1576916A (zh) * 2003-06-26 2005-02-09 古河电气工业株式会社 低弯曲损耗的光纤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176942A (ja) * 1986-01-29 1987-08-03 Sumitomo Electric Ind Ltd 光フアイバ
JP3206916B2 (ja) * 1990-11-28 2001-09-10 住友電気工業株式会社 欠陥濃度低減方法、紫外線透過用光学ガラスの製造方法及び紫外線透過用光学ガラス
US5925468A (en) * 1996-04-12 1999-07-20 Corning Incorporated Solarizaton resistant and UV blocking glass
JP3845906B2 (ja) * 1996-08-09 2006-11-15 住友電気工業株式会社 合成シリカガラスの製造方法
EP1154294B1 (en) * 1999-01-18 2012-08-29 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacture thereof
WO2002048060A2 (en) * 2000-12-14 2002-06-20 Corning Incorporated Method and apparatus for continuously manufacturing optical preform and fiber
US6917740B2 (en) * 2003-05-30 2005-07-12 Corning Incorporated Optical fiber having reduced viscosity mismatch
JP4699267B2 (ja) * 2006-04-14 2011-06-08 株式会社フジクラ 耐放射線性光ファイバ及びその製造方法
US7805039B2 (en) * 2007-05-04 2010-09-28 Weatherford/Lamb, Inc. Single mode optical fiber with improved bend performance
JP5590617B2 (ja) * 2011-06-03 2014-09-17 信越化学工業株式会社 コアから離隔した位置に低屈折率部を有する光ファイバ用母材の製造方法
EP2952490A4 (en) * 2013-02-04 2016-10-05 Sumitomo Electric Industries OPTICAL FIBER PREFORM AND PROCESS FOR PRODUCING THE SAME
US9658395B2 (en) * 2014-10-21 2017-05-23 Ofs Fitel, Llc Low loss optical fiber and method of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132531A (ja) * 1984-11-30 1986-06-20 Sumitomo Electric Ind Ltd 光フアイバの製造方法
JPH04164836A (ja) * 1990-10-25 1992-06-10 Sumitomo Electric Ind Ltd 光フアイバ用ガラス母材の製造方法
CN1576916A (zh) * 2003-06-26 2005-02-09 古河电气工业株式会社 低弯曲损耗的光纤

Also Published As

Publication number Publication date
WO2017010205A1 (ja) 2017-01-19
CN106604899A (zh) 2017-04-26
JP2017024917A (ja) 2017-02-02
US20170285259A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP7190236B2 (ja) フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
CN105527675B (zh) 低损耗光纤及其制造方法
US7805039B2 (en) Single mode optical fiber with improved bend performance
US10259742B2 (en) Optical fiber with low loss and nanoscale structurally homogeneous core
CN110187433B (zh) 光纤和光纤母材的制造方法
CN111372899B (zh) 纤芯共掺杂了两种或更多种卤素的低损耗光纤
KR102034362B1 (ko) 도핑 최적화된 최저 감쇠 단일모드 광섬유
CN108700704B (zh) 光纤
CN109250898B (zh) 光纤预制件
CN112805253A (zh) 用于光纤的卤素共掺杂的纤芯和光纤的制造方法
CN106604899B (zh) 光纤预制棒、光纤和光纤的制造方法
WO2018181047A1 (ja) 光ファイバ及び光ファイバの製造方法
JP2014214079A (ja) 光ファイバ母材
US20130302001A1 (en) Low-loss optical fiber over wide wavelength range and method of manufacturing the same
Dukel’skiĭ et al. Minimizing the optical losses in anisotropic single-mode lightguides with elliptical boron germanosilicate cladding
JP2005181414A (ja) 光ファイバの製造方法
JPS61251539A (ja) 光フアイバ
JP2013230961A (ja) 光ファイバプリフォームの製造方法
JP2017043512A (ja) 光ファイバ母材の製造方法、光ファイバの製造方法およびレンズの製造方法
CN114402240A (zh) 光纤
JP2001240424A (ja) 光ファイバ母材の製造方法
JPS61281046A (ja) 光フアイバ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant