CN106602085B - 一种燃料电池阳极钯钌纳米催化剂的制备方法 - Google Patents

一种燃料电池阳极钯钌纳米催化剂的制备方法 Download PDF

Info

Publication number
CN106602085B
CN106602085B CN201710033986.6A CN201710033986A CN106602085B CN 106602085 B CN106602085 B CN 106602085B CN 201710033986 A CN201710033986 A CN 201710033986A CN 106602085 B CN106602085 B CN 106602085B
Authority
CN
China
Prior art keywords
ruthenium
palladium
fuel cell
anode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710033986.6A
Other languages
English (en)
Other versions
CN106602085A (zh
Inventor
张腾
张心愿
魏颖
李巍婷
温翠莲
唐电
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710033986.6A priority Critical patent/CN106602085B/zh
Publication of CN106602085A publication Critical patent/CN106602085A/zh
Application granted granted Critical
Publication of CN106602085B publication Critical patent/CN106602085B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • H01M8/1013Other direct alcohol fuel cells [DAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种燃料电池阳极钯钌纳米催化剂的制备方法。本发明以碳基导电材料为载体,钯盐和钌盐为前驱体,加入油酸或油酸盐形成油酸盐包裹体,然后在保护气氛中以150~300℃温度热分解得到钯钌纳米催化剂。本发明中得到的钯钌颗粒尺寸均匀,分散均匀,平均粒径在4nm以下,对乙醇及甲醇等醇类燃料具有较高的催化活性。与传统方法相比,本发明不生成污染物,无需添加还原剂,绿色环保,原料方便易得,达到产业化的要求。

Description

一种燃料电池阳极钯钌纳米催化剂的制备方法
技术领域
本发明涉及一种燃料电池阳极钯钌纳米催化剂的制备方法,属于催化和能源工业的材料制备技术领域。
背景技术
随着全球能源危机的加剧,新的能源引起社会的广泛关注。直接醇类燃料电池(DMFCs/DEFCs)是一种可以将燃料的化学能直接转换成电能的电化学反应装置,具有较低的工作温度,高能量密度,环境友好等优点。在燃料电池方面,铂催化剂的的催化效率较高,但是贵金属铂的资源十分贫乏,导致其价格昂贵,增加燃料电池的成本。因此,钯被认为是低铂乃至无铂催化剂的关键材料。
然而,Pd基催化剂的催化活性远不及铂类催化剂,无法满足商业化使用的要求。国内外研究表明,调节Pd基催化剂的表面电子结构可使其获得与Pt基催化剂相当的催化剂活性。其中,通过形成合金是一种有效调节Pd电子结构的方法。然而,合金纳米催化剂的分散性是制约其性能的主要因素。
发明内容
本发明的目的在于针对现有技术不足,提供一种导电载体表面负载尺寸均匀、高分散的钯钌纳米颗粒制备方法。
为实现上述目的,本发明采用以下如下技术方案:
一种燃料电池阳极钯钌纳米催化剂的制备方法,具体包括以下步骤:
(1)将载体(碳纳米管、导电炭黑、石墨烯和活性炭中的一种或者几种)在硝酸溶液中回流4小时,过滤洗涤干燥后,得到活化载体;
(2)将钯盐(二氯化钯、四氯钯酸钠和醋酸钯中的一种或者几种)、钌盐(三氯化钌、醋酸钌和碘化钌中的一种或者几种)与步骤(1)活化后的载体超声混合在有机溶剂中,然后搅拌1h~4h,得到溶液A;所述的钯盐与活化的载体的摩尔比为1:20~50;
(3)将油酸或油酸盐(油酸钾、油酸钙和油酸钠中的一种或者几种)超声溶解于有机溶剂中,得到溶液B,所述钯盐:钌盐:油酸盐(或油酸)的摩尔比为1:1:1~10;
(4)将溶液B加入到溶液A当中,然后搅拌1h~4h后,加入与油酸盐(或油酸)摩尔比为1:1~50:1的去离子水,得到溶液C;
(5)将溶液C搅拌1h~2h后,抽滤并用去离子水洗涤数遍后,放入干燥箱内干燥1~12h,得到固体D;
(6)将固体D放入刚玉陶瓷舟内,转移到管式炉内,通入保护气体(保护气体为氩气、氢气和氮气中的一种或者几种),然后在室温下以2℃/min的升温速率升到150℃~300℃,保温0.5h~2h,冷却后得到钯钌纳米催化剂颗粒,所述的钯钌催化剂的活性物质粒径小于5nm。
本发明中,步骤(1)中所述的硝酸为稀硝酸或者浓硝酸。
本发明中步骤(2)和步骤(3)所述有机溶剂为无水乙醇或乙二醇。
本发明具有如下显著优点:
本发明中得到的钯钌颗粒大小均一,在载体上分散均匀,平均粒径在4nm以下。高分散的纳米催化剂能够充分发挥钯钌合金的晶格收缩效应和表面配位效应,从而对乙醇及甲醇等醇类燃料具有较高的催化活性。使用碳基材料作为载体,保持高导电性,并解决了碳基载体的强疏水性导致催化剂活性颗粒在超声搅拌过程中团聚以及脱落的问题。与传统方法相比,本发明不生成污染物,无需添加还原剂,绿色环保,原料方便易得,达到产业化的要求。
附图说明
图1是制备的燃料电池钯钌催化剂的TEM图。
具体实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例1
(1)将碳纳米管在浓硝酸溶液中回流4小时,过滤洗涤干燥后,得到活化的碳纳米管;
(2)将醋酸钯、醋酸钌与活化后的碳纳米管超声混合在乙二醇中,然后搅拌1h,得到溶液A;所述的醋酸钯与活化的碳纳米管的摩尔比为1:20;
(3)将油酸超声溶解于乙二醇中,得到溶液B,油酸、醋酸钯与醋酸钌的摩尔比为1:1:1;
(4)将溶液B加入到溶液A当中,然后搅拌1h后,加入与油酸摩尔比为1:1的去离子水,得到溶液C;
(5)将溶液C搅拌2h后,抽滤并用去离子水洗涤数遍后,放入干燥箱内干燥12h,得到固体D;
(6)将固体D放入刚玉陶瓷舟内,转移到管式炉内,通入氩气保护气体,然后在室温下以2℃/min的升温速率升到300℃,保温2h,冷却至室温后,得到目标产物。图1是产物的TEM图。由图可知,Pd-Ru合金纳米颗粒分散均匀,平均粒径3.5nm。
实施例2
(1)将导电炭黑在稀硝酸溶液中回流4小时,过滤洗涤干燥后,得到活化的导电炭黑;
(2)将二氯化钯、三氯化钌与活化后的导电炭黑超声混合在乙醇中,然后搅拌3h,得到溶液A;所述的二氯化钯与活化后的导电炭黑的摩尔比为1:50;
(3)将油酸钾与乙醇混合超声溶解,得到溶液B,二氯化钯、三氯化钌与油酸钾的摩尔比为1:1:10;
(4)将溶液B加入到溶液A当中,然后搅拌2h后,加入与油酸钾摩尔比为50:1的去离子水,得到溶液C;
(5)将溶液C搅拌1h后,抽滤并用去离子水洗涤数遍后,放入干燥箱内干燥1h,得到固体D;
(6)将固体D放入刚玉陶瓷舟内,转移到管式炉内,通入氮气保护气体,然后在室温下以2℃/min的升温速率升到150℃,保温2h,冷却至室温后,得到目标产物。
实施例3
(1)将载体(石墨烯和活性炭按质量比1:1混合)在浓硝酸溶液中回流4小时,过滤洗涤干燥后,得到活化载体;
(2)将钯盐(四氯钯酸钠和醋酸钯按质量比1:1混合)、钌盐(醋酸钌和碘化钌按质量比1:1混合)与步骤(1)活化后的载体超声混合在乙二醇中,然后搅拌4h,得到溶液A;所述的钯盐与活化的载体的摩尔比为1:30;
(3)将油酸盐(油酸钙和油酸钠按质量比1:1混合)超声溶解于乙二醇中,得到溶液B,所述钯盐:钌盐:油酸盐(或油酸)的摩尔比为1:1:5;
(4)将溶液B加入到溶液A当中,然后搅拌4h后,加入与所述油酸盐摩尔比为1:1:25的去离子水,得到溶液C;
(5)将溶液C搅拌1.5h后,抽滤并用去离子水洗涤数遍后,放入干燥箱内干燥6h,得到固体D;
(6)将固体D放入刚玉陶瓷舟内,转移到管式炉内,通入保护气体(保护气体为氩气、氢气和氮气中的一种或者几种),然后在室温下以2℃/min的升温速率升到200℃,保温1h,冷却后得到钯钌纳米催化剂颗粒。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:具体包括以下步骤:
(1)将载体在硝酸溶液中回流4小时,过滤洗涤干燥后,得到活化载体;
(2)将钯盐、钌盐和步骤(1)活化后的载体超声混合在有机溶剂中,然后搅拌1h~4h,得到溶液A;
(3)将油酸或油酸盐超声溶解于有机溶剂中,得到溶液B;
(4)将溶液B加入到溶液A当中,然后搅拌1h~4h后,加入与油酸或油酸盐摩尔比为1:1~50:1的去离子水,得到溶液C;
(5)将溶液C搅拌1h~2h后,抽滤并用去离子水洗涤数遍后,放入干燥箱内干燥1~12h,得到固体D;
(6)将固体D转移到管式炉,在150 ~ 300℃的保护气体中保温0.5h~2h,冷却后得到钯钌纳米催化剂颗粒。
2.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的钯盐为二氯化钯、四氯钯酸钠和醋酸钯中的一种或者几种。
3.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的钌盐为三氯化钌、醋酸钌和碘化钌中的一种或者几种。
4.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的载体为碳纳米管、导电炭黑、石墨烯和活性炭中的一种或者几种。
5.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的油酸盐为油酸钾、油酸钙和油酸钠中的一种或者几种。
6.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的保护气体为氩气、氢气和氮气中的一种或者几种。
7.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的钯盐:钌盐:油酸盐或油酸的摩尔比为1:1:1~10;所述的钯盐与活化载体的摩尔比为1:20~50。
8.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:步骤(2)和步骤(3)中所述的有机溶剂为无水乙醇或乙二醇。
9.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:步骤(6)的升温速率为2℃/min。
10.根据权利要求1所述的一种燃料电池阳极钯钌纳米催化剂的制备方法,其特征在于:所述的钯钌催化剂的活性物质粒径小于5nm。
CN201710033986.6A 2017-01-18 2017-01-18 一种燃料电池阳极钯钌纳米催化剂的制备方法 Expired - Fee Related CN106602085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710033986.6A CN106602085B (zh) 2017-01-18 2017-01-18 一种燃料电池阳极钯钌纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710033986.6A CN106602085B (zh) 2017-01-18 2017-01-18 一种燃料电池阳极钯钌纳米催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106602085A CN106602085A (zh) 2017-04-26
CN106602085B true CN106602085B (zh) 2019-03-12

Family

ID=58584917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710033986.6A Expired - Fee Related CN106602085B (zh) 2017-01-18 2017-01-18 一种燃料电池阳极钯钌纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106602085B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963279B (zh) * 2018-07-11 2021-06-08 中国科学院上海高等研究院 氮掺杂碳微球/Pd复合催化剂及其制备方法和应用
US11192091B2 (en) * 2019-03-22 2021-12-07 The Hong Kong University Of Science And Technology Palladium-ruthenium alloys for electrolyzers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226341A (en) * 1961-11-08 1965-12-28 Leesona Corp Method of preparing a catalyst composition consisting of lithium in a host metal of either group ib or viii
DE1274088B (de) * 1963-07-18 1968-08-01 Varta Ag Verfahren zur Herstellung von Gas-Diffusionselektroden fuer elektrochemische Vorrichtungen
JPS51108251A (zh) * 1975-03-20 1976-09-25 Toray Industries
JP2001224963A (ja) * 2000-02-16 2001-08-21 Nissan Motor Co Ltd 触媒組成物、その製造方法及びその使用方法
CN100341791C (zh) * 2005-12-28 2007-10-10 中国科学院长春应用化学研究所 有机配体包覆的氧化锆纳米晶的合成方法
CN101937999B (zh) * 2010-09-09 2013-06-05 哈尔滨工业大学 二元合金担载型多孔空心球结构直接醇类燃料电池催化剂的制备方法
CN102886260A (zh) * 2012-10-24 2013-01-23 南京大学 一种钯钌/多壁碳纳米管催化剂及其制备方法
CN102974341A (zh) * 2012-12-10 2013-03-20 天津工业大学 纳米晶结构质子交换膜燃料电池催化剂的制备方法
CN104588035B (zh) * 2015-01-20 2016-10-19 西南大学 金钯钴核壳结构(Au@PdCo)/碳高性能乙醇氧化催化剂的制备方法
CN106044754B (zh) * 2016-05-31 2018-07-20 中国科学院山西煤炭化学研究所 一种杂原子掺杂石墨烯多级孔碳材料的制备方法

Also Published As

Publication number Publication date
CN106602085A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106784897B (zh) 一种燃料电池阳极Pd/CNTs纳米催化剂的制备方法
Chen et al. Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C 3 N 4 template
CN108899558B (zh) 一种PtCo/C电催化剂及其制备方法
Zhang et al. Facile synthesis of palladium–graphene nanocomposites and their catalysis for electro-oxidation of methanol and ethanol
CN101740786B (zh) 一种PtRu/石墨烯纳米电催化剂及其制备方法
CN100511789C (zh) 一种高活性PtNi基质子交换膜燃料电池阳极催化剂
US8969235B2 (en) WC/CNT, WC/CNT/Pt composite material and preparation process therefor and use thereof
CN105244513A (zh) 石墨相氮化碳修饰的炭黑负载铂钯合金纳米电催化剂及制备方法
CN101740785B (zh) 一种钯/石墨烯纳米电催化剂及其制备方法
CN112517011B (zh) 一种碳基镍铁双金属析氧催化剂及其制备方法
CN110721728A (zh) 一种负载型双功能催化复合材料及其制备方法
CN103537299A (zh) 一种碳载Co核-Pt壳纳米粒子催化剂及其制备方法
Yılmaz et al. Binary CuPt alloy nanoparticles assembled on reduced graphene oxide-carbon black hybrid as efficient and cost-effective electrocatalyst for PEMFC
CN101436670A (zh) 一种燃料电池阴极催化剂及其制备方法
Zhang et al. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition
CN103816894A (zh) 掺杂型石墨烯负载PtRu合金纳米电催化剂及其制备方法
Rahsepar et al. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes
CN105655607A (zh) 碳纳米管高负载铂基纳米催化剂及其制备方法
CN108666583B (zh) 一种高结合度纳米wc基二元复合材料的制备方法和应用
JP4759507B2 (ja) 燃料電池用電極触媒,これを用いた燃料電池
CN106602085B (zh) 一种燃料电池阳极钯钌纳米催化剂的制备方法
CN100371079C (zh) 一种微波合成铂/碳纳米电催化剂的制备方法
Thamer et al. Fabrication of highly dispersed bimetallic Ni-Mo@ CNFs by sol–gel assisted electrospinning for methanol oxidation electrocatalysis
CN107369839B (zh) 氧化钌-硅藻土复合负载燃料电池催化剂的制备方法
Wang et al. Catalytic performance and synthesis of a Pt/graphene-TiO2 catalyst using an environmentally friendly microwave-assisted solvothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190312

Termination date: 20220118