CN106595522A - 一种光栅投影三维测量系统的误差校正方法 - Google Patents

一种光栅投影三维测量系统的误差校正方法 Download PDF

Info

Publication number
CN106595522A
CN106595522A CN201611159007.3A CN201611159007A CN106595522A CN 106595522 A CN106595522 A CN 106595522A CN 201611159007 A CN201611159007 A CN 201611159007A CN 106595522 A CN106595522 A CN 106595522A
Authority
CN
China
Prior art keywords
modulation degree
pixel
degree coefficient
phase
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611159007.3A
Other languages
English (en)
Other versions
CN106595522B (zh
Inventor
达飞鹏
饶立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201611159007.3A priority Critical patent/CN106595522B/zh
Priority to US15/574,853 priority patent/US10415957B1/en
Priority to PCT/CN2017/075600 priority patent/WO2018107584A1/zh
Publication of CN106595522A publication Critical patent/CN106595522A/zh
Application granted granted Critical
Publication of CN106595522B publication Critical patent/CN106595522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种光栅投影三维测量系统的误差校正方法,其目的在于当测量表面反射率低的物体时,利用图像调制度中承载的物体反射率信息,对原始图像进行像素调整,从而提高相位质量。其实现步骤为:首先用相机采集受物体影响的变形条纹;然后用采集到的图像计算调制度系数I"并将其进行归一化;设定分割阈值T,将所有I"<T的像素点分类,每一类中所有像素对应的I"值相近;对于每一类中所有像素,可以获取若干组N个灰度值,将这些组灰度值进行求均值,可获取一组灰度值曲线;最后用该组平均灰度值来替换该类中所有像素对应的N个灰度值,完成图像的校正工作。校正之后的图像可以用于计算相位,相位信息可以最终转化为待测物体的三维信息。

Description

一种光栅投影三维测量系统的误差校正方法
技术领域
本发明涉及一种光栅投影三维测量系统误差校正方法,属于计算机视觉中三维重构的领域。
背景技术
基于光栅投影的三维测量技术FPP(fringe projection profilometry)由于其精度高,速度快,受环境光影响较小等优点,近年来受到了广泛的研究和应用。作为一种基于主动光投影的三维测量方法,FPP也有相应的局限性。其中最为明显的一个是测量系统中所采用的工业相机在实际测量过程中会产生多种噪声,该噪声会降低采集到的图片的信噪比(signal-to-noise ratio),影响光栅图像的质量,从而影响求解的相位质量以及最终的三维重构精度。该现象尤其在测量低反射率物体时较为严重。
对于表面纹理复杂,尤其是具有较暗纹理的物体,FPP系统采集到的图片信噪比较小,从而在暗部纹理图像部分求解得的相位质量较差。针对这一问题,目前绝大部分解决方法或是通过提高相机光圈大小,快门速度和相机增益,或是整体提高投影仪投影光强,从而使得拍摄到的图片中,暗部纹理部分获得充足曝光值。该类方法可以有效提高暗部细节的相位信息,但其缺点为增加光圈大小,曝光时间和相机增益会造成部分图像饱和,即图像灰度值达到255(对于图像格式为8位的工业相机),尤其是当物体表面纹理非常暗的时候,该类方法会造成严重的图像饱和。同时,该类方法往往需要对一个物体进行若干次测量,然后将不同的测量结果融合成为一个最终的结果。整个测量过程操作较为繁琐,且相机参数的调节难以量化。
造成暗部表面纹理对光栅图像质量有影响的主要原因有两个:相机的采样效应和随机噪声。相机的采样效应对光栅图像质量的影响可以通过使用更高位数的相机或者采用上述多重曝光和调整投影仪亮度的方法进行改善;随机噪声则需要额外设计算法进行补偿,这也是本专利的主要内容。
发明内容
发明目的:光栅投影三维测量系统在测量具有较暗纹理的物体时,会出现较为明显的相位误差。针对此问题,本发明提供一种基于对所采集的光栅条纹图像进行调制度分析并直接对图像进行校正,从而校正最终的相位误差的方法。该方法无需借助除测量系统本身以外任的硬件,也无需对同一物体进行多次测量,仅通过分析光栅条纹图的调制度信息,实现低反射率部分的相位误差补偿。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种光栅投影三维测量系统的误差校正方法,包括:
(1)用投影仪向待测物体表面投射N幅相移正弦光栅图像并用相机采集;
(2)根据采集得到的N幅相移条纹图求解调制度系数;
(3)基于调制度系数确定物体表面发射率较低的部分,对应的像素点为需要处理的像素点;
(4)将所有要处理的像素点根据调制度系数进行分类,同一类的像素点的调制度系数相近;
(5)对于每一类中若干个像素,每个像素对应一组N个灰度值,将这些像素的若干组N个灰度值对应位置进行求均值操作,然后用均值替换原像素的灰度值,实现图像校正;
(6)基于校正后的图像计算主值相位并最终求解物体的三维信息。
所述步骤(2)中根据采集到的N幅相移条纹图Ii,i=1,2,..,N,求解调制度系数I″的公式为:
其中δi是每一步的相移量。
作为优选,所述步骤(2)中求解得到调制度系数后根据如下公式归一化至区间[0,1]:
Iz″=(I″-I″min)/(I″max-I″min)
其中Iz″为归一化之后的调制度系数,I″max,I″min分别表示求取的调制度系数I″的最大和最小值。
所述步骤(3)中通过设定一个分割阈值,将归一化后的调制度系数低于设定阈值的像素点确定为需要处理的像素点;作为优选,所述分割阈值取值范围为0.25~0.4。
所述步骤(4)中通过设定一个最小阈值,将每两个像素点对应的调制度系数差值小于设定阈值的像素点划分在同一类中;作为优选,所述最小阈值取值范围为0.008~0.012。
所述步骤(6)中主值相位的计算公式为:
其中,In为校正后的第n幅图像的灰度值。
有益效果:本发明提出一种光栅投影三维测量系统测量低反射率物体时的误差校正方法,相比现有技术,具有以下有益效果:
本发明针对传统光栅投影三维测量系统在测量具有较暗纹理的物体时容易产生相位误差的问题,提出了基于条纹调制度分析的相位误差校正算法。在光栅投影三维测量中,物体表面反射率相同的点在成像之后对应像素的调制度也相同,这些相同的像素点对应的图像噪声的方差也一样。所以在实际测量中,可以将调制度较低的像素点进行分类,每一类中的若干个像素点对应的调制度系数近似相等(两两之间的差值小于0.008~0.012)。将这些像素点看作是对物体上同一反射率的点进行的多次采样,则可以通过对这些像素点对应的若干组,每组N个灰度值进行类似均值滤波处理。处理后的条纹图即可用来获取校正后的相位。不同于采用多重曝光和改变投影仪亮度的方法,本发明算法实现过程简便,无需对同一物体进行多次测量,用数学方法即可有效减小随机噪声对相位的影响,明显改进暗部纹理区域对应的相位质量,从而提高暗部纹理对应的三维重构精度。
附图说明
图1是发明的整个过程的流程图。
图2是光栅投影三维测量系统框架图。
图3是具有丰富纹理的待测物体示意图。
图4是暗部纹理处某像素对应的N个灰度值曲线图。
图5是M类中某一类若干个像素对应的多组N个灰度值曲线示意图。
图6是图4中数据的均值曲线图。
图7是用本专利方法校正之前的相位误差结果图。
图8是用本专利方法校正之后的相位误差结果图。
图9是应用本专利校正方法之前相位误差的直方图。
图10是应用本专利校正方法之后相位误差的直方图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。在Windows操作系统下选用MATLAB作为编程工具,对计算机生成的正弦光栅以及CCD相机采集到的光栅图像进行处理。该实例采用具有黑色纹理的白色平面作为被测物体,证实本专利提出的误差校正方法的有效性。应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
本发明实施例公开的一种光栅投影三维测量系统测量低反射率物体时的误差校正方法,首先用投影仪向待测物体表面投射N幅相移正弦光栅图像并用相机采集;然后根据采集得到的N幅相移条纹图求解调制度系数,基于调制度系数确定物体表面发射率较低的部分,对应的像素点为需要处理的像素点;接着将所有要处理的像素点根据调制度系数进行分类,每一类中若干像素对应的若干组N个灰度值相应位置进行求均值,然后用均值替换原像素灰度值,实现图像校正;最后基于校正后的图像计算主值相位并最终求解物体的三维信息。算法主要流程如图1所示。测量系统结构框图如图2所示,Is为计算机生成用于测量的标准相移条纹图;Ip为投影仪投射出的光栅图;Io和Ic分别为经物体反射之后的条纹图和最终相机采集到的条纹图。在整个条纹的采集过程中,采集到的条纹图质量决定了相位质量,也影响最终的三维重构精度。对于具有较暗纹理的待测物体,计算得到的相位会收到明显影响。本专利通过对采集到的条纹进行调制度分析,应用统计学思想对条纹灰度值进行处理,有效减少了暗部纹理处的相位误差,提高系统的重构精度。
本发明实施例的具体实施过程包括以下步骤:
步骤1:根据主动光投影三维测量系统中的硬件三角关系固定投影仪和摄像机,将表面纹理复杂的待测物体放置在合适的位置。使用投影仪在物体上投射所需的N幅标准相移正弦光栅图像I,条纹灰度值设置为:
其中,I(i,j)为光栅图像I在第i行第j列处的灰度值,p为光栅条纹周期,为光栅的相移量。为了简便,在下文描述中省略掉像素坐标(i,j)。
步骤2:将摄像机相关参数:光圈大小,快门速度和感光度进行合理设置,使得采集回来的图像不会出现图像饱和(即最亮区域灰度值小于255)。在此相机参数下对N幅条纹图进行采集。图3为采集到的一幅相移光栅条纹图。采集到的条纹灰度值为:
In=I′+I″cos[φ+2πn/N]
其中,n=1,2,...,N,In为采集到的第n幅图像的灰度值,I′为条纹光强的背景值,I″为调制强度,φ为待求的主值相位分布。I′和I″与条纹图In拥有相同的分辨率。
步骤3:对于步骤2中采集得到的条纹图,求解条纹图的调制度系数I″,并将该系数进行归一化处理。I″反映所拍摄到的物体表面每个像素的反射率信息,与步骤2中采集到的图片中的像素是一一对应的关系。条纹调制度系数的计算方法:
步骤3.1:对于采集到的N幅相移条纹图Ii,i=1,2,..,N,根据下式计算条纹调制度系数:
其中δi是每一步的相移量。
所述步骤3中条纹调制度系数的归一化方法如下:
步骤3.2:对于计算得到的调制度系数I″,根据下式将其归一化至区间0~1。
Iz″=(I″-I″min)/(I″max-I″min)
其中Iz″为归一化之后的调制度系数,I″max,I″min分别表示求取的调制度系数I″的最大和最小值。
步骤4:在区间0.25~0.4内设置一个阈值T,如T=0.3,根据该阈值将步骤2中归一化之后的调制度系数I″进行阈值分割,对应调制度系数低于该阈值的像素点可以当作物体表面低反射率暗部纹理部分,也是本专利要处理的部分;高于该阈值的像素点则是对应物体表面反射率较高的区域,本专利中对此区域不做处理。阈值T的具体选择应根据不同的测量场景:对于不同的场景,分析其调制度系数I″,未归一化之前的调制度系数最大值I″max和最小值I″min差值越大,则阈值T应设置为越小,即越接近0.25;该差值越小,则T应越接近0.4。对于本专利所要处理的每一个像素,在N幅相移光栅条纹图中可以获取N个灰度值,则该N个灰度值的分布应呈正弦性。
图4是图3中A点对应的N个灰度值的曲线图,A点是物体上暗部纹理处反射率为0.1的像素点,容易看到由于相机的采样效应和随机噪声的影响,其正弦性很差。
步骤5:将步骤3中需要处理的所有像素进一步分为M类,分类规则是每一类中的像素点两两之间调制度系数I″相差不超过设定的阈值,阈值取值可在0.008~0.012范围内选取,如0.01。则每一类中的若干个像素点可以近似看作是从物体上同一反射率的纹理部分采集得到的。
图5是图3中与A点处于同一类的10个像素的灰度值曲线,可以看到该10个像素对应的灰度值曲线由于随机噪声和采样效应的影响,正弦性均较差。
步骤6:对于M类中每一类的若干像素,可以看作是对同一反射率的点的若干次采样。若某一类中有Q个像素,则表示第q个像素在第n步相移图中的灰度值,q=1,2,...,Q,n=1,2,...,N。对于每一步n相移,进行如下平均操作:
其中,为求均值操作后得到的平均灰度值,即校正之后的图像灰度值。该平均操作可以有效减小随机噪声对N个灰度值分布的正弦性影响。用平均之后的N个灰度值替换原始该类中的所有像素对应的N个灰度值,则完成了该类间的灰度值校正工作。图5中的10个像素对应的灰度值曲线图取平均之后如图6所示。对比图4与图6,能发现图6的正弦性要明显好于图4校正前的正弦性。对所有的M类重复这一校正操作,则完成了原始图像的校正工作。校正之后的图像可以用于获取更准确的相位。相位计算公式为:
用38步相移测量同一物体20次,将20次解得的相位的均值作为标准相位。将本专利的条纹校正方法用于4步相移,校正前后的条纹图求得的相位值与标准相位的差如图7和图8所示。可以发现经过本专利方法的校正,相位质量得到明显提升,平均相位误差降至校正前的1/5。
图9和图10为上述误差补偿前后的相位误差直方图,随机噪声引起的相位误差是零均值高斯分布。可以看出采用本专利误差校正方法之后,相位误差的方差明显减小。
步骤7:对主值相位进行展开得到绝对相位,根据经典光栅投影的相位到高度的转换公式,最终求得测量物体的三维信息。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种光栅投影三维测量系统的误差校正方法,其特征在于,包括:
(1)用投影仪向待测物体表面投射N幅相移正弦光栅图像并用相机采集;
(2)根据采集得到的N幅相移条纹图求解调制度系数;
(3)基于调制度系数确定物体表面发射率较低的部分,对应的像素点为需要处理的像素点;
(4)将所有要处理的像素点根据调制度系数进行分类,同一类的像素点的调制度系数相近;
(5)对于每一类中若干个像素,每个像素对应一组N个灰度值,将这些像素的若干组N个灰度值对应位置进行求均值操作,然后用均值替换原像素的灰度值,实现图像校正;
(6)基于校正后的图像计算主值相位并最终求解物体的三维信息。
2.根据权利要求1所述的一种光栅投影三维测量系统的误差校正方法,其特征在于,所述步骤(2)中根据采集到的N幅相移条纹图Ii,i=1,2,..,N,求解调制度系数I″的公式为:
I ′ ′ = 2 N ( ( ΣI i cosδ i ) 2 + ( ΣI i sinδ i ) 2 )
其中δi是每一步的相移量。
3.根据权利要求1所述的一种光栅投影三维测量系统的误差校正方法,其特征在于,所述步骤(2)中求解得到调制度系数后根据如下公式归一化至区间[0,1]:
I″z=(I″-I″min)/(I″max-I″min)
其中I″z为归一化之后的调制度系数,I″max,I″min分别表示求取的调制度系数I″的最大和最小值。
4.根据权利要求3所述的一种光栅投影三维测量系统的误差校正方法,其特征在于,所述步骤(3)中通过设定一个分割阈值,将归一化后的调制度系数低于设定阈值的像素点确定为需要处理的像素点;所述分割阈值取值范围为0.25~0.4。
5.根据权利要求3所述的一种光栅投影三维测量系统的误差校正方法,其特征在于,所述步骤(4)中通过设定一个最小阈值,将每两个像素点对应的调制度系数差值小于设定阈值的像素点划分在同一类中;所述最小阈值取值范围为0.008~0.012。
6.根据权利要求1所述的一种光栅投影三维测量系统的误差校正方法,其特征在于,所述步骤(6)中主值相位的计算公式为:
φ = a r c t a n [ Σ n = 1 N I n r s i n ( 2 π n / N ) Σ n = 1 N I n r cos ( 2 π n / N ) ]
其中,为校正后的第n幅图像的灰度值。
CN201611159007.3A 2016-12-15 2016-12-15 一种光栅投影三维测量系统的误差校正方法 Active CN106595522B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611159007.3A CN106595522B (zh) 2016-12-15 2016-12-15 一种光栅投影三维测量系统的误差校正方法
US15/574,853 US10415957B1 (en) 2016-12-15 2017-03-03 Error correction method for fringe projection profilometry system
PCT/CN2017/075600 WO2018107584A1 (zh) 2016-12-15 2017-03-03 一种光栅投影三维测量系统的误差校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611159007.3A CN106595522B (zh) 2016-12-15 2016-12-15 一种光栅投影三维测量系统的误差校正方法

Publications (2)

Publication Number Publication Date
CN106595522A true CN106595522A (zh) 2017-04-26
CN106595522B CN106595522B (zh) 2018-11-09

Family

ID=58801538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611159007.3A Active CN106595522B (zh) 2016-12-15 2016-12-15 一种光栅投影三维测量系统的误差校正方法

Country Status (3)

Country Link
US (1) US10415957B1 (zh)
CN (1) CN106595522B (zh)
WO (1) WO2018107584A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271445A (zh) * 2017-05-16 2017-10-20 广州视源电子科技股份有限公司 一种缺陷检测方法及装置
CN107633537A (zh) * 2017-08-28 2018-01-26 深圳市德赛微电子技术有限公司 一种基于投影的摄像头标定方法
CN107894215A (zh) * 2017-12-26 2018-04-10 东南大学 基于全自动曝光的高动态范围光栅投影三维测量方法
CN108109201A (zh) * 2017-12-28 2018-06-01 深圳市易尚展示股份有限公司 复杂颜色表面物体的三维重建方法和系统
CN109341589A (zh) * 2018-10-17 2019-02-15 深圳市华汉伟业科技有限公司 一种光栅图像投影方法、三维重建方法及三维重建系统
CN109341574A (zh) * 2018-09-30 2019-02-15 中国科学院光电技术研究所 一种基于结构光的微纳结构三维形貌高速检测方法
CN109631797A (zh) * 2018-12-28 2019-04-16 广东奥普特科技股份有限公司 一种基于相移技术的三维重构无效区域快速定位方法
WO2019153569A1 (zh) * 2018-02-09 2019-08-15 东南大学 一种针对条纹投影三维测量系统离焦现象的相位误差校正方法
CN110375671A (zh) * 2019-02-19 2019-10-25 西安理工大学 一种相位误差的自校正方法
CN110567397A (zh) * 2018-06-05 2019-12-13 成都精工华耀科技有限公司 一种扣件弹舌离缝检测方法
CN111207697A (zh) * 2020-01-17 2020-05-29 四川大学 基于查找表的相位和调制获取方法、装置及电子设备
CN111220079A (zh) * 2019-11-19 2020-06-02 湖北中烟工业有限责任公司 烟条长度在线测量装置
WO2020124460A1 (zh) * 2018-12-19 2020-06-25 合刃科技(深圳)有限公司 图像获取方法及系统
CN112097685A (zh) * 2020-07-28 2020-12-18 安徽农业大学 一种基于彩色条纹投影的运动物体三维测量方法
CN112184788A (zh) * 2020-09-16 2021-01-05 西安邮电大学 一种四步相移的主值相位提取方法
CN112378348A (zh) * 2020-10-28 2021-02-19 华中科技大学 一种针对低质量条纹图像的迭代相位校正方法
CN114998409A (zh) * 2022-05-05 2022-09-02 四川大学 一种自适应结构光测量方法、装置、电子设备及介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044833B (zh) * 2017-03-24 2019-03-05 南京理工大学 一种基于改进的傅立叶变换轮廓技术的超快三维形貌测量方法及其系统
CN110163817B (zh) * 2019-04-28 2021-06-18 浙江工业大学 一种基于全卷积神经网络的相位主值提取方法
CN110230994B (zh) * 2019-04-30 2020-08-14 浙江大学 像点溯源的物体光栅图像相移法相位测量误差校正方法
CN111524173B (zh) * 2020-04-01 2022-09-06 中国科学技术大学 一种基于双参考平面的快速大范围相位解包裹方法
CN113983923B (zh) * 2021-10-12 2023-06-27 安徽农业大学 一种相移量未知的相位恢复方法
CN114234850B (zh) * 2021-12-20 2022-07-08 广东工业大学 一种调制级次相位于周期边缘的三维测量方法
CN114688995A (zh) * 2022-04-27 2022-07-01 河北工程大学 一种条纹投影三维测量中的相位误差补偿方法
CN116416294A (zh) * 2023-06-12 2023-07-11 南京理工大学 一种反射率不一致物体的精确三维重建方法
CN116608794B (zh) * 2023-07-17 2023-10-03 山东科技大学 一种抗纹理3d结构光成像方法、系统、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105393A (zh) * 2006-07-13 2008-01-16 周波 投射多频光栅的物体表面三维轮廓的视觉测量方法
CN101236066A (zh) * 2008-03-04 2008-08-06 东南大学 投影光栅的自校正方法
CN102519393A (zh) * 2011-11-15 2012-06-27 四川大学 用两个正交正弦光栅实现快速调制度测量轮廓术的方法
CN103383249A (zh) * 2013-07-12 2013-11-06 西安交通大学 灰度条纹投影光强非线性校正方法及基于该方法的相位校正方法
JP2013257206A (ja) * 2012-06-12 2013-12-26 Shima Seiki Mfg Ltd 3次元計測装置でのプロジェクタの調整方法と調整装置
CN104061879B (zh) * 2014-06-19 2017-11-24 四川大学 一种连续扫描的结构光三维面形垂直测量方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003256029A1 (en) * 2002-07-31 2004-02-25 Optical Metrology Patents Limited A monitoring apparatus
CN103557808B (zh) * 2013-11-19 2016-05-25 东南大学 一种基于Sierra Lite抖动算法的散焦投影光栅测量方法
CN103727898B (zh) * 2014-01-21 2017-01-18 成都天拓众成科技有限公司 利用查找表修正非线性畸变的快速三维测量系统及方法
CN104236482B (zh) * 2014-09-11 2016-09-28 四川大学 结合几何标定的相位测量轮廓术系统非线性校正方法
WO2016044014A1 (en) * 2014-09-15 2016-03-24 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2d camera and method of obtaining 3d representations
CN105403172B (zh) 2015-10-27 2018-07-20 华侨大学 一种大视场结构光视觉测量中分区域Gamma预校正相位误差补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105393A (zh) * 2006-07-13 2008-01-16 周波 投射多频光栅的物体表面三维轮廓的视觉测量方法
CN101236066A (zh) * 2008-03-04 2008-08-06 东南大学 投影光栅的自校正方法
CN102519393A (zh) * 2011-11-15 2012-06-27 四川大学 用两个正交正弦光栅实现快速调制度测量轮廓术的方法
JP2013257206A (ja) * 2012-06-12 2013-12-26 Shima Seiki Mfg Ltd 3次元計測装置でのプロジェクタの調整方法と調整装置
CN103383249A (zh) * 2013-07-12 2013-11-06 西安交通大学 灰度条纹投影光强非线性校正方法及基于该方法的相位校正方法
CN104061879B (zh) * 2014-06-19 2017-11-24 四川大学 一种连续扫描的结构光三维面形垂直测量方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271445A (zh) * 2017-05-16 2017-10-20 广州视源电子科技股份有限公司 一种缺陷检测方法及装置
CN107271445B (zh) * 2017-05-16 2020-10-16 广州视源电子科技股份有限公司 一种缺陷检测方法及装置
CN107633537A (zh) * 2017-08-28 2018-01-26 深圳市德赛微电子技术有限公司 一种基于投影的摄像头标定方法
CN107633537B (zh) * 2017-08-28 2021-08-27 深圳市德赛微电子技术有限公司 一种基于投影的摄像头标定方法
CN107894215A (zh) * 2017-12-26 2018-04-10 东南大学 基于全自动曝光的高动态范围光栅投影三维测量方法
CN107894215B (zh) * 2017-12-26 2020-05-08 东南大学 基于全自动曝光的高动态范围光栅投影三维测量方法
CN108109201A (zh) * 2017-12-28 2018-06-01 深圳市易尚展示股份有限公司 复杂颜色表面物体的三维重建方法和系统
CN108109201B (zh) * 2017-12-28 2021-11-30 深圳市易尚展示股份有限公司 复杂颜色表面物体的三维重建方法和系统
WO2019153569A1 (zh) * 2018-02-09 2019-08-15 东南大学 一种针对条纹投影三维测量系统离焦现象的相位误差校正方法
CN110567397A (zh) * 2018-06-05 2019-12-13 成都精工华耀科技有限公司 一种扣件弹舌离缝检测方法
CN109341574A (zh) * 2018-09-30 2019-02-15 中国科学院光电技术研究所 一种基于结构光的微纳结构三维形貌高速检测方法
CN109341589B (zh) * 2018-10-17 2020-08-04 深圳市华汉伟业科技有限公司 一种光栅图像投影方法、三维重建方法及三维重建系统
CN109341589A (zh) * 2018-10-17 2019-02-15 深圳市华汉伟业科技有限公司 一种光栅图像投影方法、三维重建方法及三维重建系统
WO2020124460A1 (zh) * 2018-12-19 2020-06-25 合刃科技(深圳)有限公司 图像获取方法及系统
CN109631797A (zh) * 2018-12-28 2019-04-16 广东奥普特科技股份有限公司 一种基于相移技术的三维重构无效区域快速定位方法
CN110375671B (zh) * 2019-02-19 2021-04-02 西安理工大学 一种相位误差的自校正方法
CN110375671A (zh) * 2019-02-19 2019-10-25 西安理工大学 一种相位误差的自校正方法
CN111220079A (zh) * 2019-11-19 2020-06-02 湖北中烟工业有限责任公司 烟条长度在线测量装置
CN111207697B (zh) * 2020-01-17 2021-07-02 四川大学 基于查找表的相位和调制获取方法、装置及电子设备
CN111207697A (zh) * 2020-01-17 2020-05-29 四川大学 基于查找表的相位和调制获取方法、装置及电子设备
CN112097685B (zh) * 2020-07-28 2021-07-27 安徽农业大学 一种基于彩色条纹投影的运动物体三维测量方法
CN112097685A (zh) * 2020-07-28 2020-12-18 安徽农业大学 一种基于彩色条纹投影的运动物体三维测量方法
CN112184788A (zh) * 2020-09-16 2021-01-05 西安邮电大学 一种四步相移的主值相位提取方法
CN112184788B (zh) * 2020-09-16 2023-11-07 西安邮电大学 一种四步相移的主值相位提取方法
CN112378348A (zh) * 2020-10-28 2021-02-19 华中科技大学 一种针对低质量条纹图像的迭代相位校正方法
CN112378348B (zh) * 2020-10-28 2021-10-08 华中科技大学 一种针对低质量条纹图像的迭代相位校正方法
CN114998409A (zh) * 2022-05-05 2022-09-02 四川大学 一种自适应结构光测量方法、装置、电子设备及介质
CN114998409B (zh) * 2022-05-05 2024-03-26 四川大学 一种自适应结构光测量方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN106595522B (zh) 2018-11-09
US10415957B1 (en) 2019-09-17
WO2018107584A1 (zh) 2018-06-21
US20190271540A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
CN106595522B (zh) 一种光栅投影三维测量系统的误差校正方法
CN107607060B (zh) 一种应用于光栅三维投影测量中的相位误差补偿方法
CN106874949B (zh) 基于红外图像的运动成像平台运动目标检测方法及系统
CN107894215B (zh) 基于全自动曝光的高动态范围光栅投影三维测量方法
CN109477710B (zh) 基于点的结构化光系统的反射率图估计
CN101986098B (zh) 基于三色光投影的傅里叶变换三维测量法
CN108168464A (zh) 针对条纹投影三维测量系统离焦现象的相位误差校正方法
CN103383249B (zh) 灰度条纹投影光强非线性校正方法及基于该方法的相位校正方法
CN107917679B (zh) 一种高亮、过暗区域动态检测、补偿的方法
CN106705855A (zh) 一种基于自适应光栅投影的高动态性能三维测量方法
CN105651203A (zh) 一种自适应条纹亮度的高动态范围三维形貌测量方法
CN104075659B (zh) 一种基于rgb结构光源的三维成像识别方法
CN108362226A (zh) 提高图像过曝区域相位测量精度的双四步相移法
CN103925889B (zh) 一种基于最小二乘法的高光物体表面相位快速恢复方法
CN113358063B (zh) 一种基于相位加权融合的面结构光三维测量方法及系统
CN105913401B (zh) 工业相机摄影测量图像亮度补偿方法
CN109579738B (zh) 一种二值条纹离焦投影系统低通滤波特性测量方法
CN103868473B (zh) 一种基于递推法的高光物体表面相位快速恢复方法
JP7460579B2 (ja) 暗い画像の強調
CN115451820B (zh) 三通道偏振信息采集系统
CN107014313A (zh) 基于s变换脊值的加权最小二乘相位展开的方法及系统
DE19859801C2 (de) Verfahren zur echtzeitfähigen Ermittlung und Darstellung von Verformungen oder Verschiebungen von Prüfobjekten und Vorrichtung zur Durchführung des Verfahrens
CN114136236A (zh) 一种结合极线约束的相位轮廓自适应投影测量方法
CN107256540A (zh) 图像修复方法、装置及三维重建系统
EP2693397B1 (en) Method and apparatus for noise reduction in an imaging system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant