CN106582827A - 高活性低水比乙苯脱氢催化剂 - Google Patents

高活性低水比乙苯脱氢催化剂 Download PDF

Info

Publication number
CN106582827A
CN106582827A CN201510674066.3A CN201510674066A CN106582827A CN 106582827 A CN106582827 A CN 106582827A CN 201510674066 A CN201510674066 A CN 201510674066A CN 106582827 A CN106582827 A CN 106582827A
Authority
CN
China
Prior art keywords
catalyst
parts
water ratio
low water
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510674066.3A
Other languages
English (en)
Other versions
CN106582827B (zh
Inventor
宋磊
危春玲
缪长喜
朱敏
徐永繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201510674066.3A priority Critical patent/CN106582827B/zh
Publication of CN106582827A publication Critical patent/CN106582827A/zh
Application granted granted Critical
Publication of CN106582827B publication Critical patent/CN106582827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及高活性低水比乙苯脱氢催化剂,主要解决以往技术中存在的低钾催化剂在低水比条件下稳定性差、活性低的问题。本发明通过采用高活性低水比乙苯脱氢催化剂,以重量百分比计包括以下组份:66~79%的Fe2O3;4~9%的K2O;6~11%的CeO2;1~5%的WO3;0.5~5%的CaO;0.5~8%的GeO2;0.1~5%的中稀土氧化物;0~4%的粘结剂,粘结剂选自高岭土、硅藻土或水泥的一种;所述中稀土氧化物选自Sm2O3、Eu2O3、Gd2O3或Dy2O3的至少一种的技术方案,较好地解决了该问题,可用于低水比条件下乙苯脱氢制备苯乙烯的工业生产中。

Description

高活性低水比乙苯脱氢催化剂
技术领域
本发明涉及一种高活性低水比乙苯脱氢制苯乙烯催化剂及其制备方法。
背景技术
乙苯脱氢的主反应为C6H5-C2H5→C6H5CH=CH2+H2+124KJ/mol。从热力学上看,降低乙苯分压对平衡有利,因此工业上通常加入水蒸汽,促使反应向产物方向移动。乙苯脱氢生产苯乙烯技术最新发展趋势是降低原材料消耗和提高能效。水的汽化潜热很大,苯乙烯生产过程耗用大量过热水蒸汽作为脱氢介质使得该工艺能耗大、生产成本居高不下。开发适用于等温式固定床中水比低于1.6(重量)的低水比催化剂、从而降低工业装置操作水比成为苯乙烯装置、特别是大型苯乙烯装置的迫切需要。
工业上乙苯脱氢生产苯乙烯普遍采用的是以氧化铁为主要活性组分、氧化钾为主要助催化剂的铁系催化剂,通常钾含量大于15%,但钾在高温水蒸汽冲刷下容易流失与迁移,影响催化剂的自再生能力和稳定性,实现10%左右低钾含量是乙苯脱氢催化剂开发的主流。一般公认钾碱是最有效的抗积炭助剂,低钾催化剂在低水比下操作,催化剂表面特别容易积炭,稳定性差,因此必须设法增强低钾催化剂耐低水比的能力。
对此,根据迄今为止的有关文献报导,人们已作过很多尝试。欧洲专利0177832报道了在催化剂中加入1.8~5.4%(重量)的氧化镁后,在水比低于2.0(重量)下表现出优良的稳定性能,但该催化剂的钾含量较高,大于20%。如ZL95111761.0报导了在Fe-K-Cr体系中加入多种金属氧化物和硅溶胶,制得的催化剂适于低水比下运行,但该催化剂含有污染环境、已被淘汰的Cr。
随着苯乙烯装置规模的大型化,节能显得越来越重要。因此,对脱氢催化剂的使用条件作微小的改进,不需改动任何设备,不需增加投资,就能使生产企业获得巨大的经济效益。开发一种适于低水比条件下运行、具有更高活性的低钾催化剂,一直是研究人员努力的方向。
发明内容
本发明所要解决的技术问题之一是以往技术中存在的低钾催化剂在低水比条件下稳定性差、活性低的问题,提供一种新的用于乙苯脱氢制备苯乙烯的催化剂,该催化剂用于乙苯脱氢反应具有在低水比条件下稳定性好、活性高的特点。
本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的高活性低水比乙苯脱氢催化剂的制备方法。
为解决上述技术问题之一,本发明采用的技术方案如下:高活性低水比乙苯脱氢催化剂,以重量百分比计包括以下组份:
(a)66~79%的Fe2O3
(b)4~9%的K2O;
(c)6~11%的CeO2
(d)1~5%的WO3
(e)0.5~5%的CaO;
(f)0.5~8%的GeO2
(g)0.1~5%的中稀土氧化物;
(h)0~4%的粘结剂,粘结剂选自高岭土、硅藻土或水泥的一种;
所述中稀土氧化物选自Sm2O3、Eu2O3、Gd2O3或Dy2O3的至少一种。
上述技术方案中,所述中稀土氧化物优选同时包括Sm2O3和Eu2O3,或Sm2O3和Gd2O3,或Sm2O3和Dy2O3,所述两个中稀土氧化物关于活性具有二元协同作用;更优选同时包括Sm2O3、Eu2O3和Gd2O3,此时关于活性具有三元协同的效果。
上述技术方案中,GeO2含量优选为1~7%。
上述技术方案中,GeO2含量优选为2~5%。
上述技术方案中,中稀土氧化物含量优选为0.8~4%。
上述技术方案中,Ce优选以氧化铈、草酸铈或醋酸铈形式加入。
上述技术方案中,催化剂中优选不含有氧化钼。
上述技术方案中,以重量百分比计,Fe2O3优选来自氧化铁红和氧化铁黄,其配比优选为氧化铁红:氧化铁黄=2.5~4.5:1。
为解决上述技术问题之二,本发明采用的技术方案如下:上述技术问题之一的技术方案中所述催化剂的制备方法,包括以下步骤:将按配比称量的Fe、K、Ce、W、Ca、Ge、需加入的中稀土氧化物和非强制性加入的粘结剂以及制孔剂,和水混合均匀,经挤出、干燥、焙烧得到所述催化剂。优选水的加入量为催化剂原料总重15~35%的水。
上述技术方案中,干燥温度没有特别限制,例如40~160℃,干燥时间可选0.5~8小时。
上述技术方案中,作为较优的选择,干燥逐步升温,例如但不限于40~70℃干燥2~4小时,然后80~160℃干燥0.5~4小时。
上述技术方案中,焙烧温度可选350~1000℃,焙烧时间可选2~8小时。
上述技术方案中,作为较优的焙烧条件,焙烧温度逐步提高,例如但不限于350~600℃焙烧2~4小时,然后在900~1000℃下焙烧2~4小时。
本发明涉及的催化剂组份所用的原料如下:
所用Fe2O3以氧化铁红和氧化铁黄形式加入;所用K以碳酸钾形式加入;所用W以它的盐或氧化物形式加入;所用Ca以氧化物、氢氧化物或钙盐形式加入;所用Ge以氧化物或硝酸盐形式加入;其余的元素以氧化物形式加入。在本发明的制备过程中,除催化剂主体成分外还应加入制孔剂,制孔剂可从石墨、聚苯乙烯微球或羧甲基纤维素钠中选择,其加入量为催化剂总重量的2~6%。
本发明中催化剂的抗压碎强度按中华人民共和国国家标准GB/T 3635规定的技术要求进行测定。随机抽样焙烧后的成品催化剂,用四分法取其中的50颗,使用QCY-602颗粒强度测定仪测定,单颗催化剂的抗压碎强度按以下公式计算:
Pi=Fi/L
式中:Pi—单颗催化剂的抗压碎强度,千克/毫米;
Fi—单颗催化剂抗压碎力,千克;
L—单颗催化剂长度,毫米。
催化剂的抗压碎强度以50次测定结果的算术平均值计算。
按上述方法制得的催化剂在等温式固定床中进行活性评价,对乙苯脱氢制苯乙烯催化剂活性评价而言,过程简述如下:
将脱离子水和乙苯分别经计量泵输入预热混合器,预热混合成气态后进入反应器,反应器采用电热丝加热,使之达到预定温度。反应器内径为1″的不锈钢管,内装填100毫升、粒径3毫米的催化剂。由反应器流出的反应物经水冷凝后用气相色谱仪分析其组成。
乙苯转化率、苯乙烯选择性按以下公式计算:
本发明通过在铁-钾-铈-钨-钙催化体系中添加氧化锗和选自中稀土氧化物Sm2O3、Eu2O3、Gd2O3或Dy2O3的至少一种,一方面,增进了活性相的电子传递能力,有利于获得较高的活性,另一方面提高了体系的碱性,稳定和分散了催化剂的活性相,加快了水蒸汽与催化剂表面积炭发生水煤气反应的速率,增强了催化剂的自再生能力。另外Ce以氧化铈、草酸铈或醋酸铈而非硝酸铈形式加入大大提高了催化剂的抗压碎强度。使用本发明制备的催化剂在等温式固定床进行活性评价,在常压、乙苯液体体积空速由通常的1.0小时-1增加30%至1.3小时-1、620℃、水比由通常的2.0(重量)降低35%至1.3(重量)条件下考评,转化率高达74.0%,运行500小时后转化率基本不变,明显提高了低钾催化剂在低水比条件下的活性和稳定性,取得了较好的技术效果。
下面通过实施例对本发明作进一步的阐述:
具体实施方式
[实施例1]
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份CaO的氢氧化钙、3.16份GeO2、1.68份Sm2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.3条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[比较例1]
除了不用GeO2和Sm2O3以外,其余组分的相对比例关系、催化剂制备方法和催化剂评价条件均与实施例1相同,具体为:
将相当于60.39份Fe2O3的氧化铁红、相当于19.11份Fe2O3的氧化铁黄、相当于9.04份K2O的碳酸钾、7.58份CeO2、相当于2.71份WO3的钨酸铵、相当于1.18份CaO的氢氧化钙及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[比较例2]
除了不用GeO2以外,其余组分的相对比例关系、催化剂制备方法和催化剂评价条件均与实施例1相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份CaO的氢氧化钙、1.73份Sm2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[实施例2]
除了用Eu2O3替代Sm2O3以外,催化剂制备方法和催化剂评价条件均与实施例1相同,具体为:
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份CaO的氢氧化钙、3.16份GeO2、1.68份Eu2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[比较例3]
除了不用GeO2以外,其余组分的相对比例关系、催化剂制备方法和催化剂评价条件均与实施例2相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份CaO的氢氧化钙、1.73份Eu2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[实施例3]
除了用Gd2O3替代Sm2O3以外,催化剂制备方法和催化剂评价条件均与实施例1相同,具体为:
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份CaO的氢氧化钙、3.16份GeO2、1.68份Gd2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[比较例4]
除了不用GeO2以外,其余组分的相对比例关系、催化剂制备方法和催化剂评价条件均与实施例3相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份CaO的氢氧化钙、1.73份Gd2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[实施例4]
除了用Dy2O3替代Sm2O3以外,催化剂制备方法和催化剂评价条件均与实施例1相同,具体为:
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份CaO的氢氧化钙、3.16份GeO2、1.68份Dy2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[比较例5]
除了不用GeO2以外,其余组分的相对比例关系、催化剂制备方法和催化剂评价条件均与实施例4相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份CaO的氢氧化钙、1.73份Dy2O3及5.69份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。测试结果列于表2。
[实施例5]
按实施例1的方法制备催化剂和测试催化剂,所不同的是用0.84份Sm2O3和0.84份Eu2O3替代1.68份Sm2O3
催化剂的组成见表1,测试结果列于表2。
[实施例6]
按实施例1的方法制备催化剂和测试催化剂,所不同的是用0.84份Sm2O3和0.84份Gd2O3替代1.68份Sm2O3
催化剂的组成见表1,测试结果列于表2。
[实施例7]
按实施例1的方法制备催化剂和测试催化剂,所不同的是用0.84份Sm2O3和0.84份Dy2O3代替1.68份Sm2O3
催化剂的组成见表1,测试结果列于表2。
[实施例8]
按实施例1的方法制备催化剂和测试催化剂,所不同的是用0.56份Sm2O3、0.56份Eu2O3和0.56份Gd2O3替代1.68份Sm2O3
催化剂的组成见表1,测试结果列于表2。
[实施例9]
将相当于53.88份Fe2O3的氧化铁红、相当于17.05份Fe2O3的氧化铁黄、相当于7.85份K2O的碳酸钾、8.9份CeO2、相当于4.13份WO3的钨酸铵、相当于3.35份CaO的氢氧化钙、3.5份GeO2、0.85份Sm2O3、0.49份MnO2及3.62份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.3条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[实施例10]
将相当于55.36份Fe2O3的氧化铁红、相当于17.42份Fe2O3的氧化铁黄、相当于5.71份K2O的碳酸钾、7.46份CeO2、相当于4.62份WO3的钨酸铵、相当于1.03份CaO的氢氧化钙、0.72份GeO2、4.58份Gd2O3、相当于0.51份MoO3的钼酸铵、2.59份水泥及3.95份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.3条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
表1(待续)催化剂的重量百分组成
表1(续)催化剂的重量百分组成
表2催化剂性能对比
以上实施例说明,在铁-钾-铈-钨-钙催化体系中添加氧化锗和选自中稀土氧化物Sm2O3、Eu2O3、Gd2O3或Dy2O3的至少一种,提高了低钾催化剂在低水比条件下的活性和稳定性,具有显著的节能效果,可用于低水比条件下乙苯脱氢制备苯乙烯的工业生产中。

Claims (9)

1.高活性低水比乙苯脱氢催化剂,以重量百分比计包括以下组份:
(a)66~79%的Fe2O3
(b)4~9%的K2O;
(c)6~11%的CeO2
(d)1~5%的WO3
(e)0.5~5%的CaO;
(f)0.5~8%的GeO2
(g)0.1~5%的中稀土氧化物;
(h)0~4%的粘结剂,粘结剂选自高岭土、硅藻土或水泥的一种;
所述中稀土氧化物选自Sm2O3、Eu2O3、Gd2O3或Dy2O3的至少一种。
2.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于GeO2含量为1~7%。
3.根据权利要求2所述高活性低水比乙苯脱氢催化剂,其特征在于GeO2含量为2~5%。
4.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于中稀土氧化物含量为0.8~4%。
5.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于Ce以氧化铈、草酸铈或醋酸铈形式加入。
6.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于催化剂中不含有氧化钼。
7.权利要求1中所述催化剂的制备方法,包括以下步骤:将按配比称量的Fe、K、Ce、W、Ca、Ge、需加入的中稀土氧化物和非强制性加入的粘结剂以及制孔剂,和水混合均匀,经挤出、干燥和焙烧得到所述催化剂。
8.根据权利要求7所述的制备方法,其特征在于干燥温度为40~160℃。
9.根据权利要求7所述的制备方法,其特征在于焙烧温度为350~1000℃。
CN201510674066.3A 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂 Active CN106582827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510674066.3A CN106582827B (zh) 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510674066.3A CN106582827B (zh) 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂

Publications (2)

Publication Number Publication Date
CN106582827A true CN106582827A (zh) 2017-04-26
CN106582827B CN106582827B (zh) 2019-04-12

Family

ID=58553993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510674066.3A Active CN106582827B (zh) 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂

Country Status (1)

Country Link
CN (1) CN106582827B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569637A (zh) * 2017-09-29 2019-04-05 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法
CN110681390A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及其制备方法和应用
CN113877593A (zh) * 2020-07-02 2022-01-04 中国石油化工股份有限公司 高强度烷基芳烃脱氢催化剂及其制备方法和应用以及烷基芳烃脱氢方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032119A (zh) * 1987-06-29 1989-04-05 国际壳牌研究有限公司 脱氢催化剂
CN1981929A (zh) * 2005-12-14 2007-06-20 中国石油化工股份有限公司 低水比乙苯脱氢催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032119A (zh) * 1987-06-29 1989-04-05 国际壳牌研究有限公司 脱氢催化剂
CN1981929A (zh) * 2005-12-14 2007-06-20 中国石油化工股份有限公司 低水比乙苯脱氢催化剂

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569637A (zh) * 2017-09-29 2019-04-05 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法
CN109569637B (zh) * 2017-09-29 2020-06-09 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法
CN110681390A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及其制备方法和应用
CN110681390B (zh) * 2018-07-06 2022-10-11 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及其制备方法和应用
CN113877593A (zh) * 2020-07-02 2022-01-04 中国石油化工股份有限公司 高强度烷基芳烃脱氢催化剂及其制备方法和应用以及烷基芳烃脱氢方法
CN113877593B (zh) * 2020-07-02 2024-02-23 中国石油化工股份有限公司 高强度烷基芳烃脱氢催化剂及其制备方法和应用以及烷基芳烃脱氢方法

Also Published As

Publication number Publication date
CN106582827B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN103769152B (zh) 高活性低水比的乙苯脱氢催化剂、制备方法及其应用
CN103769151B (zh) 高活性低水比乙苯脱氢催化剂及其制备方法
CN102371160B (zh) 低温乙苯脱氢催化剂
CN103028419B (zh) 低水比乙苯脱氢的催化剂的制备方法
CN106582686A (zh) 高活性低水比乙苯脱氢催化剂及其制备方法
CN102371161B (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582683B (zh) 低水比乙苯的脱氢催化剂
CN106582687A (zh) 低水比乙苯脱氢的催化剂及其制备方法
CN101992094B (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582678B (zh) 高活性低水比乙苯脱氢的催化剂
CN106582693B (zh) 低温烷基芳烃脱氢催化剂及其制备方法
CN106582827B (zh) 高活性低水比乙苯脱氢催化剂
CN106582692B (zh) 高活性的低水比乙苯脱氢催化剂
CN103028418A (zh) 高活性低水比乙苯脱氢催化剂及其制备方法
CN106582681A (zh) 低水比乙苯脱氢的催化剂
CN109569638A (zh) 低温烷基芳烃脱氢催化剂及其制备方法
CN1981928A (zh) 低水比烷基芳烃脱氢催化剂
CN103537296B (zh) 低水比的乙苯脱氢催化剂
CN109569640A (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582684A (zh) 烷基芳烃脱氢的催化剂
CN106582685B (zh) 低温乙苯脱氢催化剂及其制备方法
CN102040463B (zh) 乙苯脱氢制苯乙烯的方法
CN102372592B (zh) 乙苯脱氢制苯乙烯的方法
CN106582691B (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582680B (zh) 低水比乙苯脱氢催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant