CN106582686A - 高活性低水比乙苯脱氢催化剂及其制备方法 - Google Patents

高活性低水比乙苯脱氢催化剂及其制备方法 Download PDF

Info

Publication number
CN106582686A
CN106582686A CN201510673246.XA CN201510673246A CN106582686A CN 106582686 A CN106582686 A CN 106582686A CN 201510673246 A CN201510673246 A CN 201510673246A CN 106582686 A CN106582686 A CN 106582686A
Authority
CN
China
Prior art keywords
catalyst
parts
hours
high activity
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510673246.XA
Other languages
English (en)
Inventor
宋磊
缪长喜
朱敏
危春玲
徐永繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201510673246.XA priority Critical patent/CN106582686A/zh
Publication of CN106582686A publication Critical patent/CN106582686A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种高活性低水比乙苯脱氢催化剂及其制备方法,主要解决以往技术中存在的低钾催化剂在低水比条件下稳定性差、活性低的问题。本发明通过采用高活性低水比乙苯脱氢催化剂,以重量百分比计包括以下组份:66~79%的Fe2O3;4~9%的K2O;6~11%的CeO2;1~5%的WO3;0.5~5%的MgO;0.5~8%的Sc2O3;0.1~5%重稀土氧化物;0~4%的粘结剂,粘结剂选自高岭土、硅藻土或水泥的一种;所述重稀土氧化物选自Er2O3、Tm2O3、Yb2O3或Lu2O3的至少一种的技术方案,较好地解决了该问题,可用于低水比条件下乙苯脱氢制备苯乙烯的工业生产中。

Description

高活性低水比乙苯脱氢催化剂及其制备方法
技术领域
本发明涉及一种高活性低水比乙苯脱氢制苯乙烯催化剂及其制备方法。
背景技术
乙苯脱氢的主反应为C6H5-C2H5→C6H5CH=CH2+H2+124KJ/mol。从热力学上看,降低乙苯分压对平衡有利,因此工业上通常加入水蒸汽,促使反应向产物方向移动。乙苯脱氢生产苯乙烯技术最新发展趋势是降低原材料消耗和提高能效。水的汽化潜热很大,苯乙烯生产过程耗用大量过热水蒸汽作为脱氢介质使得该工艺能耗大、生产成本居高不下。开发适用于等温式固定床中水比低于1.6(重量)的低水比催化剂、从而降低工业装置操作水比成为苯乙烯装置、特别是大型苯乙烯装置的迫切需要。
工业上乙苯脱氢生产苯乙烯普遍采用的是以氧化铁为主要活性组分、氧化钾为主要助催化剂的铁系催化剂,通常钾含量大于15%,但钾在高温水蒸汽冲刷下容易流失与迁移,影响催化剂的自再生能力和稳定性,实现10%左右低钾含量是乙苯脱氢催化剂开发的主流。一般公认钾碱是最有效的抗积炭助剂,低钾催化剂在低水比下操作,催化剂表面特别容易积炭,稳定性差,因此必须设法增强低钾催化剂耐低水比的能力。
对此,根据迄今为止的有关文献报导,人们已作过很多尝试。欧洲专利0177832报道了在催化剂中加入1.8~5.4%(重量)的氧化镁后,在水比低于2.0(重量)下表现出优良的稳定性能,但该催化剂的钾含量较高,大于20%。如ZL95111761.0报导了在Fe-K-Cr体系中加入多种金属氧化物和硅溶胶,制得的催化剂适于低水比下运行,但该催化剂含有污染环境、已被淘汰的Cr。
随着苯乙烯装置规模的大型化,节能显得越来越重要。因此,对脱氢催化剂的使用条件作微小的改进,不需改动任何设备,不需增加投资,就能使生产企业获得巨大的经济效益。开发一种适于低水比条件下运行、具有更高活性的低钾催化剂,一直是研究人员努力的方向。
发明内容
本发明所要解决的技术问题之一是以往技术中存在的低钾催化剂在低水比条件下稳定性差、活性低的问题,提供一种新的用于乙苯脱氢制备苯乙烯的催化剂,该催化剂用于乙苯脱氢反应具有在低水比条件下稳定性好、活性高的特点。
本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的高活性低水比乙苯脱氢催化剂的制备方法。
为解决上述技术问题之一,本发明采用的技术方案如下:高活性低水比乙苯脱氢催化剂,以重量百分比计包括以下组份:
(a)66~79%的Fe2O3
(b)4~9%的K2O;
(c)6~11%的CeO2
(d)1~5%的WO3
(e)0.5~5%的MgO;
(f)0.5~8%的Sc2O3
(g)0.1~5%重稀土氧化物;
(h)0~4%的粘结剂,粘结剂选自高岭土、硅藻土或水泥的一种;
所述重稀土氧化物选自Er2O3、Tm2O3、Yb2O3或Lu2O3的至少一种。
上述技术方案中,所述重稀土氧化物优选同时包括Er2O3和Tm2O3,或Er2O3和Lu2O3,或Tm2O3和Lu2O3,所述两个重稀土氧化物关于活性具有二元协同作用;更优选同时包括Er2O3、Tm2O3和Lu2O3,此时关于活性具有三元协同的效果。
上述技术方案中,Sc2O3含量优选为1~7%。
上述技术方案中,Sc2O3含量优选为2~5%。
上述技术方案中,重稀土氧化物含量优选为0.8~4%。
上述技术方案中,Ce优选以氧化铈、草酸铈或碳酸铈形式加入。
上述技术方案中,催化剂中优选不含有氧化钼。
上技术方案中,以重量百分比计,Fe2O3优选来自氧化铁红和氧化铁黄,其配比优选为氧化铁红:氧化铁黄=2.5~4.5:1。
为解决上述技术问题之二,本发明采用的技术方案如下:上述技术问题之一的技术方案中所述催化剂的制备方法,包括以下步骤:将按配比称量的Fe、K、Ce、W、Mg、Sc及需加入重稀土氧化物和非强制性加入的粘结剂以及制孔剂和水,混合均匀,经挤出、干燥、焙烧得到所述催化剂。优选水的加入量为催化剂原料总重15~35%的水。
上述技术方案中,干燥温度没有特别限制,例如40~150℃,干燥时间可选0.5~8小时。
上述技术方案中,作为较优的选择,干燥逐步升温,例如但不限于40~70℃干燥2~4小时,然后80~150℃干燥0.5~4小时。
上述技术方案中,焙烧的温度可选为400~1000℃,焙烧时间可选2~8小时。
上述技术方案中,作为较优的焙烧条件,焙烧的温度逐步提高,例如但不限于400~600℃焙烧2~4小时,然后在900~1000℃下焙烧2~4小时。
本发明涉及的催化剂组份所用的原料如下:
所用Fe2O3以氧化铁红和氧化铁黄形式加入;所用K以碳酸钾形式加入;所用W以它的盐或氧化物形式加入;所用Mg以氧化物、氢氧化物或镁盐形式加入;所用Sc以氧化物或硝酸盐形式加入;其余的元素以氧化物形式加入。在本发明的制备过程中,除催化剂主体成分外还应加入制孔剂,制孔剂可从石墨、聚苯乙烯微球或羧甲基纤维素钠中选择,其加入量为催化剂总重量的2~6%。
本发明中催化剂的抗压碎强度按中华人民共和国国家标准GB/T 3635规定的技术要求进行测定。随机抽样焙烧后的成品催化剂,用四分法取其中的50颗,使用QCY-602颗粒强度测定仪测定,单颗催化剂的抗压碎强度按以下公式计算:
Pi=Fi/L
式中:Pi—单颗催化剂的抗压碎强度,千克/毫米;
Fi—单颗催化剂抗压碎力,千克;
L—单颗催化剂长度,毫米。
催化剂的抗压碎强度以50次测定结果的算术平均值计算。
按上述方法制得的催化剂在等温式固定床中进行活性评价,对乙苯脱氢制苯乙烯催化剂活性评价而言,过程简述如下:
将脱离子水和乙苯分别经计量泵输入预热混合器,预热混合成气态后进入反应器,反应器采用电热丝加热,使之达到预定温度。反应器内径为1″的不锈钢管,内装填100毫升、粒径3毫米的催化剂。由反应器流出的反应物经水冷凝后用气相色谱仪分析其组成。
乙苯转化率、苯乙烯选择性按以下公式计算:
本发明通过在铁-钾-铈-钨-镁催化体系中添加氧化钪和选自重稀土氧化物Er2O3、Tm2O3、Yb2O3或Lu2O3的至少一种,一方面,增进了活性相的电子传递能力,有利于获得较高的活性,另一方面提高了体系的碱性,稳定和分散了催化剂的活性相,加快了水蒸汽与催化剂表面积炭发生水煤气反应的速率,增强了催化剂的自再生能力。另外Ce以氧化铈、草酸铈或碳酸铈而非硝酸铈形式加入大大提高了催化剂的抗压碎强度。使用本发明制备的催化剂在等温式固定床进行活性评价,在常压、乙苯液体体积空速1.3小时-1、620℃、水比1.5(重量)条件下考评,转化率高达75.8%,运行1000小时后转化率保持不变,明显提高了低钾催化剂在低水比条件下的活性和稳定性,取得了较好的技术效果。
下面通过实施例对本发明作进一步的阐述:
具体实施方式
[实施例1]
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份的CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份MgO的氢氧化镁、3.16份的Sc2O3、1.68份的Er2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[比较例1]
除了不用Sc2O3和Er2O3以外,其余组分的相对比例关系、制备方法均与实施例1相同,具体为:
将相当于60.39份Fe2O3的氧化铁红、相当于19.11份Fe2O3的氧化铁黄、相当于9.04份K2O的碳酸钾、7.58份的CeO2、相当于2.71份WO3的钨酸铵、相当于1.18份MgO的氢氧化镁及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[比较例2]
除了不用Sc2O3以外,其余组分的相对比例关系、制备方法均与实施例1相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份的CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份MgO的氢氧化镁、1.73份的Er2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[实施例2]
除了用Tm2O3替代Er2O3以外,制备方法均与实施例1相同,具体为:
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份的CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份MgO的氢氧化镁、3.16份的Sc2O3、1.68份的Tm2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[比较例3]
除了不用Sc2O3以外,其余组分的相对比例关系、制备方法均与实施例2相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份的CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份MgO的氢氧化镁、1.73份的Tm2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[实施例3]
除了用Lu2O3替代Er2O3以外,制备方法均与实施例1相同,具体为:
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份的CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份MgO的氢氧化镁、3.16份的Sc2O3、1.68份的Lu2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[比较例4]
除了不用Sc2O3以外,其余组分的相对比例关系、制备方法均与实施例3相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份的CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份MgO的氢氧化镁、1.73份的Lu2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[实施例4]
除了用Yb2O3替代Er2O3以外,制备方法均与实施例1相同,具体为:
将相当于57.47份Fe2O3的氧化铁红、相当于18.18份Fe2O3的氧化铁黄、相当于8.6份K2O的碳酸钾、7.21份的CeO2、相当于2.58份WO3的钨酸铵、相当于1.12份MgO的氢氧化镁、3.16份的Sc2O3、1.68份的Yb2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[比较例5]
除了不用Sc2O3以外,其余组分的相对比例关系、制备方法均与实施例4相同,具体为:
将相当于59.35份Fe2O3的氧化铁红、相当于18.77份Fe2O3的氧化铁黄、相当于8.88份K2O的碳酸钾、7.45份的CeO2、相当于2.66份WO3的钨酸铵、相当于1.16份MgO的氢氧化镁、1.73份的Yb2O3及5.69份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[实施例5]
按实施例1的方法制备催化剂和催化剂测试,所不同的是用0.84份的Er2O3和0.84份的Tm2O3替代1.68份的Er2O3
催化剂的组成见表1,测试结果列于表2。
[实施例6]
按实施例1的方法制备催化剂和催化剂测试,所不同的是用0.84份的Er2O3和0.84份的Lu2O3替代1.68份的Er2O3
催化剂的组成见表1,测试结果列于表2。
[实施例7]
按实施例1的方法制备催化剂和催化剂测试,所不同的是用0.84份的Tm2O3和0.84份的Lu2O3代替1.68份的Er2O3
催化剂的组成见表1,测试结果列于表2。
[实施例8]
按实施例1的方法制备催化剂和催化剂测试,所不同的是用0.56份的Er2O3、0.56份的Tm2O3和0.56份的Lu2O3替代1.68份的Er2O3
催化剂的组成见表1,测试结果列于表2。
[实施例9]
将相当于53.88份Fe2O3的氧化铁红、相当于17.05份Fe2O3的氧化铁黄、相当于7.85份K2O的碳酸钾、8.90份的CeO2、相当于4.13份WO3的钨酸铵、相当于3.35份MgO的氢氧化镁、3.50份的Sc2O3、0.85份的Er2O3及0.49份的MnO2及3.62份羧甲基纤维素钠在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
[实施例10]
将相当于55.36份Fe2O3的氧化铁红、相当于17.42份Fe2O3的氧化铁黄、相当于5.71份K2O的碳酸钾、7.46份的CeO2、相当于4.62份WO3的钨酸铵、相当于1.03份MgO的氢氧化镁、0.72份的Sc2O3、4.58份的Lu2O3、相当于0.51份MoO3的钼酸铵、2.59份的水泥及3.95份石墨在捏合机中搅拌1.5小时,加入占催化剂原料总重25%的脱离子水,拌和0.5小时,取出挤条,挤成直径3毫米、长6毫米的颗粒,放入烘箱,60℃烘2小时,130℃烘3小时,然后置于马福炉中,于550℃焙烧3小时,920℃焙烧3小时得到成品催化剂,催化剂组成列于表1。
将100毫升催化剂装入反应器,在常压、乙苯液体体积空速1.3小时-1、620℃、水比(重量)1.5条件下进行活性评价,并测定催化剂的抗压碎强度,测试结果列于表2。
表1(待续) 催化剂的重量百分组成
表1(续) 催化剂的重量百分组成
表2 催化剂性能对比
以上实施例说明,在铁-钾-铈-钨-镁催化体系中添加氧化钪和选自重稀土氧化物Er2O3、Tm2O3、Yb2O3或Lu2O3的至少一种,提高了低钾催化剂在低水比条件下的活性和稳定性,具有显著的节能效果,可用于低水比条件下乙苯脱氢制备苯乙烯的工业生产中。

Claims (9)

1.高活性低水比乙苯脱氢催化剂,以重量百分比计包括以下组份:
(a)66~79%的Fe2O3
(b)4~9%的K2O;
(c)6~11%的CeO2
(d)1~5%的WO3
(e)0.5~5%的MgO;
(f)0.5~8%的Sc2O3
(g)0.1~5%重稀土氧化物;
(h)0~4%的粘结剂,粘结剂选自高岭土、硅藻土或水泥的一种;
所述重稀土氧化物选自Er2O3、Tm2O3、Yb2O3或Lu2O3的至少一种。
2.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于Sc2O3含量为1~7%。
3.根据权利要求2所述高活性低水比乙苯脱氢催化剂,其特征在于Sc2O3含量为2~5%。
4.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于重稀土氧化物含量为0.8~4%。
5.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于Ce以氧化铈、草酸铈或碳酸铈形式加入。
6.根据权利要求1所述高活性低水比乙苯脱氢催化剂,其特征在于催化剂中不含有氧化钼。
7.权利要求1中所述催化剂的制备方法,包括以下步骤:将按配比称量的Fe、K、Ce、W、Mg、Sc及需加入重稀土氧化物和非强制性加入的粘结剂以及制孔剂和水,混合均匀,经挤出、干燥、焙烧得到所述催化剂。
8.根据权利要求7所述的制备方法,其特征在于干燥温度为40~150℃。
9.根据权利要求7所述的制备方法,其特征在于焙烧的温度为400~1000℃。
CN201510673246.XA 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂及其制备方法 Pending CN106582686A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510673246.XA CN106582686A (zh) 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510673246.XA CN106582686A (zh) 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN106582686A true CN106582686A (zh) 2017-04-26

Family

ID=58553777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510673246.XA Pending CN106582686A (zh) 2015-10-16 2015-10-16 高活性低水比乙苯脱氢催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106582686A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681391A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法
CN110681392A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及其制备方法
CN110681394A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 用于制备苯乙烯的脱氢催化剂及其制备方法和应用
CN110681393A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法和应用
CN111420673A (zh) * 2020-03-19 2020-07-17 湖南城市学院 一种烷基芳烃脱氢的催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195252B1 (de) * 1985-02-21 1991-01-16 BASF Aktiengesellschaft Dehydrierungskatalysator und dessen Verwendung
CN1062678A (zh) * 1991-10-30 1992-07-15 中国石油化工总公司 用于烷基芳烃的脱氢催化剂
CN1268398A (zh) * 1999-03-30 2000-10-04 中国石油化工集团公司 烷基芳烃催化脱氢催化剂
CN1490084A (zh) * 2002-10-16 2004-04-21 中国石油化工股份有限公司 用于烷基芳烃脱氢的催化剂
CN103769152A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 高活性低水比的乙苯脱氢催化剂、制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195252B1 (de) * 1985-02-21 1991-01-16 BASF Aktiengesellschaft Dehydrierungskatalysator und dessen Verwendung
CN1062678A (zh) * 1991-10-30 1992-07-15 中国石油化工总公司 用于烷基芳烃的脱氢催化剂
CN1268398A (zh) * 1999-03-30 2000-10-04 中国石油化工集团公司 烷基芳烃催化脱氢催化剂
CN1490084A (zh) * 2002-10-16 2004-04-21 中国石油化工股份有限公司 用于烷基芳烃脱氢的催化剂
CN103769152A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 高活性低水比的乙苯脱氢催化剂、制备方法及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681391A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法
CN110681392A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及其制备方法
CN110681394A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 用于制备苯乙烯的脱氢催化剂及其制备方法和应用
CN110681393A (zh) * 2018-07-06 2020-01-14 中国石油化工股份有限公司 低水比乙苯脱氢催化剂及制备方法和应用
CN111420673A (zh) * 2020-03-19 2020-07-17 湖南城市学院 一种烷基芳烃脱氢的催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN103769152B (zh) 高活性低水比的乙苯脱氢催化剂、制备方法及其应用
CN106582686A (zh) 高活性低水比乙苯脱氢催化剂及其制备方法
CN102371160B (zh) 低温乙苯脱氢催化剂
CN103769151B (zh) 高活性低水比乙苯脱氢催化剂及其制备方法
CN106582687B (zh) 低水比乙苯脱氢的催化剂及其制备方法
CN103028419B (zh) 低水比乙苯脱氢的催化剂的制备方法
CN102371161B (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582683B (zh) 低水比乙苯的脱氢催化剂
CN106582693B (zh) 低温烷基芳烃脱氢催化剂及其制备方法
CN106582678B (zh) 高活性低水比乙苯脱氢的催化剂
CN101992094B (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582827B (zh) 高活性低水比乙苯脱氢催化剂
CN106582692B (zh) 高活性的低水比乙苯脱氢催化剂
CN106582681A (zh) 低水比乙苯脱氢的催化剂
CN103028418A (zh) 高活性低水比乙苯脱氢催化剂及其制备方法
CN101623642B (zh) 低水比乙苯脱氢催化剂
CN109569638A (zh) 低温烷基芳烃脱氢催化剂及其制备方法
CN109569640A (zh) 低水比乙苯脱氢催化剂及其制备方法
CN103537296B (zh) 低水比的乙苯脱氢催化剂
CN106582684A (zh) 烷基芳烃脱氢的催化剂
CN102372592B (zh) 乙苯脱氢制苯乙烯的方法
CN102040463B (zh) 乙苯脱氢制苯乙烯的方法
CN106582685B (zh) 低温乙苯脱氢催化剂及其制备方法
CN106582691B (zh) 低水比乙苯脱氢催化剂及其制备方法
CN106582680B (zh) 低水比乙苯脱氢催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170426

RJ01 Rejection of invention patent application after publication