CN106571292A - 一种在GaAs(511)A衬底上生长高质量InAs量子点的方法 - Google Patents

一种在GaAs(511)A衬底上生长高质量InAs量子点的方法 Download PDF

Info

Publication number
CN106571292A
CN106571292A CN201610925733.5A CN201610925733A CN106571292A CN 106571292 A CN106571292 A CN 106571292A CN 201610925733 A CN201610925733 A CN 201610925733A CN 106571292 A CN106571292 A CN 106571292A
Authority
CN
China
Prior art keywords
substrate
gaas
quantum dot
inas
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610925733.5A
Other languages
English (en)
Inventor
李国强
温雷
冯逸宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610925733.5A priority Critical patent/CN106571292A/zh
Publication of CN106571292A publication Critical patent/CN106571292A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3245Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种在GaAs(511)A衬底上生长高质量InAs量子点的方法,该方法主要包括以下步骤:(1)衬底清洗;(2)生长前准备;(3)衬底In退火除氧;(4)衬底原位退火取出表面In液滴;(5)量子点的生长。衬底的退火与量子点的生长均在MBE设备中进行。通过本发明中所述的In退火工艺对衬底进行处理,衬底表面形成了InGaAs二维岛。InGaAs二维岛的存在可以为外延层提供成核位点和应变能并限制量子点的迁移,提高量子点的密度以及均匀性。该工艺过程简单,所获得的量子点密度大、均匀性好。

Description

一种在GaAs(511)A衬底上生长高质量InAs量子点的方法
技术领域
本发明涉及中间带太阳能电池领域,尤其涉及一种在GaAs(511)A衬底上生长高质量InAs量子点的方法。
技术背景
中间带太阳能电池具有高达63.1%的理论光电转换效率因而受到人们的广泛关注。实现中间带比较通用的方法是在衬底上生长量子点。GaAs材料的禁带宽度为1.42 eV,InAs材料的禁带宽度是0.42 eV,它们都是直接带隙半导体,因此采用InAs/GaAs材料有利于生长出光学特性好、量子效应显著的量子点。为了保证太阳能电池的转换效率以及光学质量,量子点材料应具有量子点密度高、均匀性好的特点。
在采用常规方法生长InAs/GaAs量子点时存在着以下局限:在GaAs衬底上In原子的迁移长度长,量子点在生长的过程中容易发生合并会使得量子点尺寸不均匀,与此同时量子点的密度也很难得到保证。提高量子点的密度和均匀性有两种方法,一种是减小量子点的迁移长度,另一种是缩短量子点的迁移时间。现在人们往往采用的是降低量子点的生长温度以及加快量子点的沉积速率等方法来达到提高量子点密度的目的,然而这两种方法仍然存在一些弊端:
降低生长温度在一定范围内确实可以减小量子点的迁移长度,但是由于量子点的生长是存在临界温度的,温度过低不利于量子点的生长;加快沉积速率也确实可以在一定程度上缩短量子点的生长时间,但是使用这种方法会产生一些缺陷,在生长多层量子点的时候不利于后续量子点的生长。采用这两种方法对量子点密度的提高都是有限的,并且量子点的均匀性得不到提高,这些都使得中间带太阳能电池的实际光电转换效率难以达到一个比较理想的值。因此提出一种可行的生长方法,在不给材料引入过多缺陷的情况下,提高量子点的密度与均匀性具有十分重要的意义。
发明内容
为了克服现有的InAs/GaAs量子点生长方法的缺点与不足,本发明目的在于提供一种在GaAs衬底上生长高密度、高均匀性量子点的方法。通过采用低温In退火的方法,使得In液滴与GaAs衬底表面发生反应生成InGaAs二维岛,再经原位退火取出反应残余的In液滴获得平坦的衬底表面。在经过以上退火工艺后的衬底表面生长InAs量子点,获得了密度较高、均匀性好的量子点样品。
本发明通过如下技术方案实现。
一种在GaAs(511)A衬底上生长高质量InAs量子点的方法,包含以下步骤:
(1)生长前准备
将清洗后的GaAs衬底送入MBE设备准备室中预抽真空至1×10-8到5×10-7 Torr,再将GaAs衬底送入生长室;关闭生长室阀门,在生长室外灌入液氮;进行生长程序设定;
(2)对衬底进行In退火除氧
在1×10-8-5×10-7 Torr的条件下,将衬底升温至200到400℃,In源炉升温至710到750℃,在衬底表面沉积1-3 ML In液滴,去除衬底表面氧化层,此时衬底表面存在InGaAs二维岛和In液滴;
(3)衬底表面In液滴的去除
In退火后,将衬底升温至480-580 ℃,原位退火10-30 min,去除衬底表面In液滴,获得平坦的衬底表面;
(4)InAs量子点的生长:在步骤(3)所得衬底温度为480-580℃,反应室压力为1×10-8-5×10-7 Torr的条件下,将In源炉升温至730-815℃,As源炉升温至260-300℃沉积InAs生长量子点。
优选的,步骤(1)所述衬底为GaAs(511)A衬底。
优选的,步骤(1)所述GaAs(511)A衬底使用前需经丙酮、乙醇、去离子水依次清洗,去除光刻胶后用氮气枪吹干。
优选的,步骤(2)所述InAs沉积的厚度在1.5-2.5 ML,沉积的速率在0.02-0.15ML/s。
该方法得到的GaAs衬底上生长的InAs量子点,依次包括GaAs衬底、InGaAs二维岛以及InAs量子点。
对生长出来的量子点样品进行AFM表征,得到的样品表面形貌图表明量子点的密度与均匀性都很好。
本发明的量子点材料均是采用分子束外延的方法制得。
上述方法得到的量子点材料依次包括:GaAs衬底、InGaAs二维岛、InAs量子点。本发明描述了采用分子束外延法结合In退火工艺制得高密度、高均匀性的量子点样品的详细步骤。本发明公开的方法中,采用In退火的工艺,在去除衬底表面氧化层的同时,In与GaAs衬底发生反应生成InGaAs二维岛,量子点在二维岛处优先成核。二维岛的存在一方面给外延层提供应变能,可以减小浸润层厚度并缩短量子点生长时间;另一方面,由于InGaAs二维岛边缘存在势垒,量子点若想要跨越二维岛边缘进行合并则需要克服势垒,这使得量子点的迁移受到限制。在这种前提下,采用本发明中所述的In退火工艺可以明显提高量子点的密度与均匀性。
相对于现有技术,本发明具有以下优点和有益效果:
(1)与传统方法相比,本工艺简单,采用低温沉积In液滴的方法,经原位退火后获得了具有InGaAs二维岛的平坦衬底表面,可以有效降低衬底的退火温度,并且获得表面平整的GaAs衬底。
(2)本发明中In退火所生成的InGaAs二维岛有助于量子点的形核生长,能够减小量子点生长浸润层的厚度、提高量子点的密度和均匀性。
综上所述,本发明技术工艺简单,可以明显提高量子点的密度和均匀性。
附图说明
图1、图2、图3是本发明制备的不同沉积厚度的量子点样品的原子力显微镜表面形貌图。
图4、图5、图6是在其他制备条件相同的情况下采用常规As退火工艺生长出来的量子点样品的表面形貌图。
具体实施方式
以下结合实施例对本发明作进一步的说明,但本发明的实施方式不限于此。
实施例1
在GaAs衬底上生长高密度、高均匀性的InAs量子点样品主要包含以下步骤:
(1)衬底的清洗
GaAs(511)A衬底经丙酮、乙醇、去离子水依次清洗,去除光刻胶后用氮气枪吹干;
(2)生长前准备
将清洗后的衬底送入MBE设备准备室中预抽真空至1×10-8 Torr,再将衬底送入生长室;关闭生长室阀门,在生长室外灌入液氮;进行生长程序设定;
(3)对衬底进行In退火除氧
在1×10-8的条件下,将衬底升温至400℃,In源炉升温至710℃,在衬底表面沉积1MLIn液滴,去除衬底表面氧化层,此时衬底表面存在InGaAs二维岛和In液滴;
(4)衬底表面In液滴的去除
In退火后,将衬底升温至480℃,原位退火20 min,去除衬底表面In液滴,获得平坦的衬底表面;
(5)InAs量子点的生长
InAs量子点的生长:在步骤(4)所得衬底温度为480℃,反应室压力为1×10-8的条件下,将In源炉升温至730℃,As源炉升温至260℃沉积InAs生长量子点,InAs沉积厚度在1.5ML,沉积速率在0.02 ML/s。对生长出来的量子点样品进行AFM表征,测试结果如图1所示,得到的样品表面形貌图表明量子点的密度与均匀性都很好。而通过常规As退火工艺在其他生长条件不变时的AFM结果如图4,图中未观察到量子点生成,说明In退火相较于传统的As退火工艺能有效降低InAs量子点的行核势垒,在较低的InAs沉积量下就能获得质量高,密度合适的量子点样品。
实施例2
在GaAs衬底上生长高密度、高均匀性的InAs量子点样品主要包含以下步骤:
(1)衬底的清洗
GaAs(511)A衬底经丙酮、乙醇、去离子水依次清洗,去除光刻胶后用氮气枪吹干;
(2)生长前准备
将清洗后的衬底送入MBE设备准备室中预抽真空至1×10-7 Torr,再将衬底送入生长室;关闭生长室阀门,在生长室外灌入液氮;进行生长程序设定;
(3)对衬底进行In退火除氧
在1×10-7 Torr的条件下,将衬底升温至300℃,In源炉升温至730℃,在衬底表面沉积2 ML In液滴,去除衬底表面氧化层,此时衬底表面存在InGaAs二维岛和In液滴;
(4)衬底表面In液滴的去除
In退火后,将衬底升温至530℃,原位退火10 min,去除衬底表面In液滴,获得平坦的衬底表面;
(5)InAs量子点的生长
InAs量子点的生长:在步骤(4)所得衬底温度为530℃,反应室压力为1×10-7 Torr的条件下,将In源炉升温至775℃,As源炉升温至280℃沉积InAs生长量子点,InAs沉积厚度在2.0ML,沉积速率在0.06 ML/s。对生长出来的量子点样品进行AFM表征,测试结果如图2所示,得到的样品表面形貌图表明量子点的密度与均匀性都很好。而通过常规As退火工艺在其他生长条件不变时的AFM结果如图5,图中观察到少量量子点生成,并且量子点的均匀性较差。说明In退火工艺有助于形成高均匀性的量子点样品。
实施例3
在GaAs衬底上生长高密度、高均匀性的InAs量子点样品主要包含以下步骤:
(1)衬底的清洗
GaAs(511)A衬底经丙酮、乙醇、去离子水依次清洗,去除光刻胶后用氮气枪吹干;
(2)生长前准备
将清洗后的衬底送入MBE设备准备室中预抽真空至5×10-7 Torr,再将衬底送入生长室;关闭生长室阀门,在生长室外灌入液氮;进行生长程序设定;
(3)对衬底进行In退火除氧
在5×10-7 Torr的条件下,将衬底升温至200℃,In源炉升温至750℃,在衬底表面沉积3 ML In液滴,去除衬底表面氧化层,此时衬底表面存在InGaAs二维岛和In液滴;
(4)衬底表面In液滴的去除
In退火后,将衬底升温至580℃,原位退火30 min,去除衬底表面In液滴,获得平坦的衬底表面;
(5)InAs量子点的生长
InAs量子点的生长:在步骤(4)所得衬底温度为580℃,反应室压力为5×10-7 Torr的条件下,将In源炉升温至815℃,As源炉升温至300℃沉积InAs生长量子点,InAs沉积厚度在2.5ML,沉积速率在0.15 ML/s。对生长出来的量子点样品进行AFM表征,测试结果如图3所示,得到的样品表面形貌图表明量子点的密度与均匀性都很好。而通过常规As退火工艺在其他生长条件不变时的AFM结果如图6,图中观察到低密度、尺寸差异较大的量子点形成,说明In退火相较于传统的As退火工艺能有效降低尺寸差异,获得尺寸均一的量子点样品。
本发明的量子点材料均是采用分子束外延的方法制得。
上述方法得到的量子点材料依次包括:GaAs衬底、InGaAs二维岛、InAs量子点。本发明描述了采用分子束外延法结合In退火工艺制得高密度、高均匀性的量子点样品的详细步骤。本发明公开的方法中,采用In退火的工艺,在去除衬底表面氧化层的同时,In与GaAs衬底发生反应生成InGaAs二维岛,量子点在二维岛处优先成核。二维岛的存在一方面给外延层提供应变能,可以减小浸润层厚度并缩短量子点生长时间;另一方面,由于InGaAs二维岛边缘存在势垒,量子点若想要跨越二维岛边缘进行合并则需要克服势垒,这使得量子点的迁移受到限制。在这种前提下,采用本发明中所述的In退火工艺可以明显提高量子点的密度与均匀性。

Claims (5)

1.一种在GaAs(511)A衬底上生长高质量InAs量子点的方法,其特征在于,包含以下步骤:
(1)量子点生长前In退火工艺:将GaAs衬底送入MBE设备中,在GaAs衬底升温至200-400℃,In源炉升温至710-750℃,生长室压力在1×10-8-5×10-7 Torr的条件下,在GaAs衬底表面沉积1-3 ML In;然后将所得衬底升温至480-580℃进行原位退火,退火时间为10-30min,获得具有InGaAs二维岛的表面平整的GaAs衬底;
(2)InAs量子点的生长:在步骤(1)所得衬底温度为480-580℃,反应室压力为1×10-8-5×10-7 Torr的条件下,将In源炉升温至730-815℃,As源炉升温至260-300℃沉积InAs生长量子点。
2.根据权利要求1所述的方法,其特征在于,步骤(1)所述GaAs衬底为GaAs(511)A衬底。
3.根据权利要求1所述的方法,其特征在于,步骤(1)所述GaAs衬底使用前需经丙酮、乙醇、去离子水依次清洗,去除光刻胶后用氮气枪吹干。
4.根据权利要求1所述的方法,其特征在于,步骤(2)所述InAs沉积的厚度在1.5-2.5ML,沉积的速率在0.02-0.15 ML/s。
5.根据权利要求1所述的方法,其特征在于,该方法得到的GaAs衬底上生长的InAs量子点,依次包括GaAs衬底、InGaAs二维岛以及InAs量子点。
CN201610925733.5A 2016-10-24 2016-10-24 一种在GaAs(511)A衬底上生长高质量InAs量子点的方法 Pending CN106571292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610925733.5A CN106571292A (zh) 2016-10-24 2016-10-24 一种在GaAs(511)A衬底上生长高质量InAs量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610925733.5A CN106571292A (zh) 2016-10-24 2016-10-24 一种在GaAs(511)A衬底上生长高质量InAs量子点的方法

Publications (1)

Publication Number Publication Date
CN106571292A true CN106571292A (zh) 2017-04-19

Family

ID=60414388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610925733.5A Pending CN106571292A (zh) 2016-10-24 2016-10-24 一种在GaAs(511)A衬底上生长高质量InAs量子点的方法

Country Status (1)

Country Link
CN (1) CN106571292A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381801A (zh) * 2021-12-14 2022-04-22 南京信光半导体科技有限公司 一种高密度高均匀性InAs/GaAs量子点的分子束外延制备方法
CN114907848A (zh) * 2022-04-25 2022-08-16 苏州大学 一种双模尺寸InAs/GaAs量子点生长方法、量子点及量子点组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229059A (ja) * 2005-02-18 2006-08-31 Tottori Univ 量子ドットの形成方法および量子ドット装置
CN103534786A (zh) * 2011-03-14 2014-01-22 利兹大学 半导体表面的氧化物去除
US20160118774A1 (en) * 2014-10-22 2016-04-28 Kabushiki Kaisha Toshiba Optical device and method of fabricating an optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229059A (ja) * 2005-02-18 2006-08-31 Tottori Univ 量子ドットの形成方法および量子ドット装置
CN103534786A (zh) * 2011-03-14 2014-01-22 利兹大学 半导体表面的氧化物去除
US20160118774A1 (en) * 2014-10-22 2016-04-28 Kabushiki Kaisha Toshiba Optical device and method of fabricating an optical device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L . WEN ET AL.: "Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics", 《SMALL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381801A (zh) * 2021-12-14 2022-04-22 南京信光半导体科技有限公司 一种高密度高均匀性InAs/GaAs量子点的分子束外延制备方法
CN114907848A (zh) * 2022-04-25 2022-08-16 苏州大学 一种双模尺寸InAs/GaAs量子点生长方法、量子点及量子点组合物
WO2023206765A1 (zh) * 2022-04-25 2023-11-02 苏州大学 一种双模尺寸InAs/GaAs量子点生长方法、量子点及量子点组合物

Similar Documents

Publication Publication Date Title
WO2017016527A2 (zh) 一种生长在Si衬底上的GaAs薄膜及其制备方法
CN107863428A (zh) 一种纳米级图形化衬底及其制作方法
CN103117210A (zh) 一种纳米孔复制结合溅射沉积自组装有序Ge/Si量子点阵列的新方法
CN102290435A (zh) 一种大面积完美量子点及其阵列制造方法
CN104576326B (zh) 一种硅基ⅲ-v族砷化镓半导体材料制备方法和系统
Cederberg et al. GaAs/Si epitaxial integration utilizing a two-step, selectively grown Ge intermediate layer
CN106571292A (zh) 一种在GaAs(511)A衬底上生长高质量InAs量子点的方法
CN110629184B (zh) 介质衬底上直接生长二维六方氮化硼的方法
Aguirre et al. Selective growth of CdTe on nano-patterned CdS via close-space sublimation
CN110055589B (zh) 大尺寸单层六方氮化硼单晶或薄膜及制备方法
CN109913945A (zh) 一种在硅(211)衬底上生长硒化铋高指数面单晶薄膜的方法
CN103903966A (zh) 基于斜切硅衬底的超高密度锗硅量子点的制备方法
Löher et al. Highly oriented layers of the three‐dimensional semiconductor CdTe on the two‐dimensional layered semiconductors MoTe2 and WSe2
CN111477534A (zh) 氮化铝模板及其制备方法
Löher et al. Van der Waals epitaxy of three‐dimensional CdS on the two‐dimensional layered substrate MoTe2 (0001)
CN111430221B (zh) 锡自催化生长的锗锡合金硅基材料及定向异质外延方法
Chen et al. Microstructural evolution of diamond/Si (100) interfaces with pretreatments in chemical vapor deposition
CN106783553B (zh) 石墨烯/介质材料为复合衬底的三族氮化物微米柱结构及制备方法
CN103194793A (zh) 一种低密度InAs量子点的分子束外延生长方法
DE112019006310T5 (de) Verfahren zur herstellung eines freistehenden polykristallinen diamantsubstrats
CN109830429A (zh) 一种双光路脉冲激光在Si(100)基片上沉积InGaN薄膜的方法
KR102314020B1 (ko) 육방정계 질화붕소/그래핀 2차원 복합 소재 제조방법
CN107340307A (zh) 分析β‑SiC过渡层对金刚石膜形核生长影响的方法
CN109166788B (zh) 一种在硅衬底上直接外延生长锗虚拟衬底的方法
US10256093B2 (en) Selective area growth of semiconductors using patterned sol-gel materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419

RJ01 Rejection of invention patent application after publication