CN106565758A - 一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法 - Google Patents

一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法 Download PDF

Info

Publication number
CN106565758A
CN106565758A CN201610875021.7A CN201610875021A CN106565758A CN 106565758 A CN106565758 A CN 106565758A CN 201610875021 A CN201610875021 A CN 201610875021A CN 106565758 A CN106565758 A CN 106565758A
Authority
CN
China
Prior art keywords
ion
water
mercury
probe
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610875021.7A
Other languages
English (en)
Other versions
CN106565758B (zh
Inventor
程探宇
赵军伟
刘国华
何兆帅
李标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201610875021.7A priority Critical patent/CN106565758B/zh
Publication of CN106565758A publication Critical patent/CN106565758A/zh
Application granted granted Critical
Publication of CN106565758B publication Critical patent/CN106565758B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/29Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及环境监测领域,具体是一种检测水中铜离子、银离子和汞离子的探针,所述的探针的结构通式I如下所示。本发明提供了一种比较直观快速地通过观测颜色变化来确定河水污染程度的小分子探针,不必取样带回实验室就可以检测河水中铜离子、银离子和汞离子污染状况;本发明的小分子探针,由于其具有较高的灵敏度,可用于监测上述离子对水质的污染情况,具有检测方便、灵敏度高、无需配套昂贵仪器、操作简便等一系列优点,可较为直观地通过颜色变化来观测等优点,将在污水处理与环境检测方面有广阔的应用前景。

Description

一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针 及其合成方法
技术领域
本发明涉及环境监测技术领域,具体地说,是一种可用于简便检测水中铜、汞和银离子的灵敏性氟硼吡咯类探针及其合成方法。
背景技术
能否快速有效地检测水中的重金属含量是否超标切实关系着人们的生活与生产质量。重金属离子,尤其是汞(Hg2+)铅(Pb2+)镉(Cd2+)铜(Cu2+)等,具有显著的生物毒性。重金属还有一个缺点就是其不能被生物体所降解,能长期在生物体内积累,故而重金属检测在医药、食品以及环境等多个领域至关重要。已知90多种天然元素中有28种元素为人体必需元素,其中包括铁、锌、铜、锰、铬、硒、钼、钴、氟等微量元素。微量元素是人体进行生命活动所必须的,但是当其浓度超过一定范围时会对人体产生危害。《生活饮用水卫生规范》规定饮用水中汞含量小于0.001mg/L,铜含量小于1.0mg/L,银含量小于0.05mg/L,传统的重金属检测方法包括原子吸收光谱法、电感藕合等离子体法、原子荧光光谱法、溶出伏安法、生物酶抑制法、免疫分析法和生物化学传感器法等。然而这些技术依赖大型仪器设备、耗费耗时、而且需要专业的人员进行操作。为了检测出水中极低含量的重金属离子,设计出比较灵敏的分子探针是很有必要的。有许多检测铜、汞或银离子的探针被报道出来,其中由于汞离子对生物体的高毒性,所以人们对汞离子探针的关注较多。
发明内容
本发明的目的在于提供一种比较直观快速地通过观测颜色变化来确定水质污染程度的小分子探针,不必取样带回实验室就可以检测河水中铜离子、银离子和汞离子污染状况,同时也可应用于普通家庭饮用水检测。
为了实现上述目的,本发明的第一方面,提供一种检测水中铜离子、银离子和汞离子的探针,所述的探针的结构通式如下式I所示:
其中,R1,R2,R3为C1~C20的烷烃,-O(CH2)nCH3,-N(CH2)nCH3,-S(CH2)nCH3,-COO(CH2)nCH3,n=0~20;
R4为-F,-Cl,-Br,-I,-NHNH2,-NHNH-(CH2)nCH3,-NHNH-Ar,n=0~20;
R5为-H,C1~C20的烷烃,芳环及其衍生物。
优选的,所述的R1为:-O(CH2)nCH3,-COO(CH2)nCH3,n=0~10。
优选的,所述的R2,R3为:H,C1~C3的烷烃。
优选的,所述的R4为:-F,-Cl,-Br,-I,-NHNH2,苯肼。
优选的,所述的R5为:H,C1~C3的烷烃,苯环及其衍生物。
在本发明的优选实施例中,所述的探针化合物(以下简称MCFP)中R1为:OCH3,R2,R3为:H,R4为:Cl,R5为:苯基。
本发明的第二方面,提供上述的探针在对水中铜离子、银离子和汞离子进行定性、定量检测中的应用。
将上述结构通式Ⅰ代表的本发明的化合物用于检测铜离子、银离子和汞离子时,通式Ⅰ与铜离子、银离子和汞离子反应生成如下通式Ⅱ所代表的化合物,结构的变化导致“紫外-可见光”吸收以及颜色的变化。所述的通式Ⅱ的结构如下:
其中,R1,R2,R3为C1~C20的烷烃,-O(CH2)nCH3,-N(CH2)nCH3,-S(CH2)nCH3,-COO(CH2)nCH3,n=0~20;
R4为-F,-Cl,-Br,-I,-NHNH2,-NHNH-(CH2)nCH3,-NHNH-Ar,n=0~20;
R5为-H,C1~C20的烷烃,芳环及其衍生物。
优选的,所述的R1为:-O(CH2)nCH3,-COO(CH2)nCH3,n=0~10。
优选的,所述的R2,R3为:H,C1~C3的烷烃。
优选的,所述的R4为:-F,-Cl,-Br,-I,-NHNH2,苯肼。
优选的,所述的R5为:H,C1~C3的烷烃,苯环及其衍生物。
在本发明的优选实施例中,所述的R1为:OCH3,R2,R3为:H,R4为:Cl,R5为:苯基。
将浓度呈梯度变化的铜离子、银离子和汞离子水溶液分别加入通式Ⅰ化合物的溶液中(乙醇:去离子水=1:10),分别测定加入后各体系的“紫外-可见光”吸收变化。然后以铜离子(或银离子/汞离子)的浓度为横坐标、610nm与483nm的“紫外-可见光”吸收强度比值为纵坐标作图。从而在图中可以根据“紫外-可见光”吸收变化来读出铜离子、银离子和汞离子的浓度。
上述通式Ⅰ所代表的化合物溶解于溶液中为橙黄色,加入铜离子、银离子和汞离子之后氧化生成通式Ⅱ所代表的化合物,其颜色发生变化,如在去离子水:乙醇=10:1的溶液中,铜离子、银离子和汞离子溶液在加入通式Ⅰ所代表的化合物后呈靛青色、紫色、褐色。
通式Ⅰ所代表的化合物与铜离子、银离子和汞离子作用后颜色变化,是由于生成了具有通式Ⅱ结构的化合物,通式Ⅱ与通式Ⅰ的比例是产生不同颜色变化的主要原因。
本发明的第三方面,提供一种利用上述的探针对水中铜离子、银离子和汞离子进行检测的方法,包括以下步骤:
1.定性检测:
1)肉眼观测:将1-1000μL(最优60μL)1mM探针MCFP溶于3mL待检测的水中(探针浓度为0.33-333.33μM,最优20μM),放置0-120min(最优30min-40min),观察颜色变化。若颜色变暗,呈现出类似蓝色或紫色的颜色变化,则说明该水质被铜离子或银离子或汞离子污染。
2)紫外-可见光检测:将1-1000μL(最优15μL)1mM探针溶于3mL待检测的水中(探针浓度为0.33-333.33μM,最优5μM),通过测试其“紫外-可见光”吸收变化来确定待检测的水中的铜离子、银离子、汞离子浓度。“紫外-可见光”吸收变化越大,则说明该水质被铜离子或银离子或汞离子污染越严重。
2.定量检测:
首先,以铜离子(或银离子、或汞离子)浓度为横坐标,601nm处与485nm处紫外-可见光吸收强度的比值为纵坐标做标准曲线。
然后将1-1000μL(最优15μL)1mM探针溶于3mL待检测的水中(探针浓度为0.33-333.33μM,最优5μM),通过测试其“紫外-可见光”吸收变化来确定待检测的水中的铜离子、银离子、汞离子浓度。在时间一定的条件下,“紫外-可见光”吸收强度可分别对应不同的铜离子、银离子、汞离子浓度,从而实现定量检测。
本发明优点在于:
1、本发明的一种基于氟硼吡咯母体和苯肼活性基团的可用于检测水质中铜离子、银离子和汞离子的小分子探针,提供了一种比较直观快速地通过观测颜色变化来确定河水污染程度的小分子探针,因此不必取样带回实验室就可以检测河水中铜离子、银离子和汞离子污染状况;
2、本发明的探针及其溶液为橙黄色,在483nm和519nm处有较强的紫外-可见光吸收,其具有还原性,能够被铜离子(Cu2+)、银离子(Ag+)和汞离子(Hg2+)氧化,其氧化产物具有偶氮苯的结构,与氟硼吡咯母体形成共轭,从而紫外吸收红移至610nm,溶于溶剂后呈紫色。通过与其它金属离子相对照,该探针在加入铜离子、银离子和汞离子之后颜色会产生变化。该探针的灵敏度也较好,检测限可以达到1×10-7M;
3、本发明的小分子探针,由于其具有较高的灵敏度,可用于监测上述离子对水质的污染情况,具有检测方便、灵敏度高、无需配套昂贵仪器、操作简便等一系列优点,可较为直观地通过颜色变化来观测等优点,将在污水处理与环境检测方面有广阔的应用前景。
附图说明
图1a在不同铜离子浓度条件下探针MCFP的“紫外-可见光”吸收光谱;图1b在不同铜离子浓度条件下,探针MCFP在610nm处与485nm处紫外吸收比值的变化。
图2a在不同银离子浓度条件下探针MCFP的“紫外-可见光”吸收光谱;图2b在不同银离子浓度条件下,探针MCFP在610nm处与485nm处紫外吸收比值的变化。
图3a在不同汞离子浓度条件下探针MCFP的“紫外-可见光”吸收光谱;图3b在不同汞离子浓度条件下,探针MCFP在610nm处与485nm处紫外吸收比值的变化。
图4探针MCFP(6.67×10-5M)对不同金属离子(1.33×10-4M)的响应选择性。探针MCFP在不同金属离子存在条件下“紫外-可见光”吸收随时间的变化。
图5探针MCFP(6.67×10-5M)在不同离子(1.33×10-4M)存在条件下的颜色变化。左至右依次为:空白、Ag+、Al3+、Ba2+、Cd2+、Co2+、Cu2+、Fe3+、Hg2+、Li+、Mg2+、Mn2+、Na+、Ni2+、Pb2+、Zn2 +
图6探针MCFP在不同来源的水中的稳定性叠加比较。
图7探针MCFP(20μM)在不同水质条件下的颜色变化;三幅图从左到右依次是:0min,20min,40min。每张图从左至右依次是:去离子水、自来水、华东理工大学河水、华东师范大学河水。
具体实施方式
下面结合实施例对本发明提供的具体实施方式作详细说明。
实施例1:探针的合成
探针化合物MCFP的合成过程:
1.1合成化合物1:
取4.16g对甲氧基苯甲醛(茴香醛)和22mL吡咯于250mL圆底烧瓶中,再加入100mL二氯甲烷,氮气保护。随后滴加0.5mL三氟乙酸,在滴加的过程中,溶液变成棕色,并且颜色逐渐加深,室温下搅拌2h,反应完全。旋干,过柱纯化(淋洗剂比例,PE:DCM=3:2),得到淡黄色固体2.5g。
1HNMR(400MHz,CDCl3):δ7.94(s,2H),7.16(d,J=8.8Hz,2H),6.88(d,J=8.8,2H),6.71-6.72(m,2H),6.17-6.19(m,2H),5.92-5.95(m,2H),5.46(s,1H),3.38(s,3H).
1.2合成化合物2:
取1.0g化合物1于250mL干燥的三口瓶中,加入少量四氢呋喃溶解,氮气保护,置于-78℃至恒温。避光用恒压滴液漏斗滴加含1.18g NCS的THF溶液80mL,1h滴加完毕,继续搅拌。2h后,升温至-20℃,搅拌3h。浓缩反应液,将剩余物溶于DCM,水洗2次,用无水Na2SO4干燥有机相后浓缩。过柱纯化(淋洗液,PE:EA=18:1),得到710mg固体。
将上述固体180mg加入250mL圆底烧瓶中,加入30mLDCM溶解,再加入100mL含四氢苯醌173mg的DCM溶液,氮气保护,搅拌过夜。然后,加入3mL的DIEA与三氟化硼乙醚溶液,常温搅拌30min。结束反应时,加入100mL水,DCM萃取,合并有机相用无水Na2SO4干燥。旋干,过柱纯化,得到76mg固体。
1H NMR(400MHz,CDCl3):δ7.46(d,J=8.8Hz,2H),7.04(d,J=8.4Hz,2H),6.88(d,J=4.0Hz,2H),6.44(d,J=4.0Hz,2H),3.9(s,3H).13C NMR(400MHz,
CDCl3):δ162.4,144.4,144.3,133.9,132.5,131.7,125.0,118.8,114.4,55.8.HRMS(ESI)m/z Calcd.for C16H11BCl2F2N2O[M+H]+,367.0385,found 367.0387。
1.3探针MCFP的合成:
取50mg化合物2溶于16mL甲苯中,冰浴,滴加16mL含19.2mg苯肼的甲苯溶液,氮气保护,搅拌5h。过柱纯化(淋洗液,PE:EA=3:1)。
1H NMR(400MHz,DMSO-d6):δ10.25(s,1H),8.58(s,1H),7.44(d,J=8.8Hz,2H),7.218(t,J=8Hz,2H),7.07(d,J=8.8Hz,2H),6.974(d,J=4.8Hz,1H),6.82(t,J=7.2Hz,1H),6.76(d,J=8.4Hz,2H),6.49(d,J=5.2Hz,1H),6.29(q,J=3.6Hz,2H),3.83(s,3H).13CNMR(400MHz,DMSO-d6:δ165.36,160.87,149.23,136.48,134.51,132.29,131.96,130.35,129.72,127.23,126.14,120.48,118.95,114.92,114.71,113.23,112.73,55.99.HRMS(ESI)m/z Calcd.for C22H18BClF2N4O[M-H]+,437.1162,found 437.1165。
实施例2:探针MCFP在不同铜离子浓度条件下“紫外-可见光”吸收的变化
15μL 1mM探针加入3mL去离子水(乙醇:水=1:10),测试一次,作为空白。随后每次加入1μL 1mM铜离子,混合均匀后开始测试。测试结果如图1。
实施例3:探针MCFP在不同银离子浓度条件下“紫外-可见光”吸收的变化
15μL 1mM探针加入3mL去离子水(乙醇:水=1:10),测试一次,作为空白。随后每次加入1μL 1mM银离子,混合均匀后静置5min后开始测试。测试结果如图2。
实施例4:探针MCFP在不同汞离子浓度条件下“紫外-可见光”吸收的变化
15μL 1mM探针加入3mL去离子水(乙醇:水=1:10),测试一次,作为空白。随后每次加入1μL 1mM汞离子,混合均匀后静置10min后开始测试。测试结果如图3。
实施例5:探针MCFP对不同金属离子的响应选择性
4μL 10mM不同的金属离子加入含有10μL 1mM探针的溶液中(乙醇:水=1:10),测试其“紫外-可见光”吸收变化情况。测试结果如图4。
实施例6:探针MCFP在不同离子存在条件下的颜色变化
200μL 1mM该探针加入3mL水溶液(乙醇:水=1:10)。随后40μL 10mM不同金属离子水溶液加入,半小时后观察颜色变化。
如图5所示,左至右依次为:空白、Ag+、Al3+、Ba2+、Cd2+、Co2+、Cu2+、Fe3+、Hg2+、Li+、Mg2 +、Mn2+、Na+、Ni2+、Pb2+、Zn2+。由图可以看出其中Ag+、Cu2+、Hg2+有颜色变化。
实施例7:探针MCFP在不同来源的水中的稳定性
探针MCFP在不同来源的水中的稳定性测定,其中水的来源为:去离子水,自来水,不同地点的河水。
15μL 1mM探针溶于3mL水中,通过测试其“紫外-可见光”吸收变化来确定不同水中的离子浓度。如图6。
实施例8:探针MCFP在不同水质条件下的颜色变化
60μL 1mM探针MCFP溶于3mL水中,探针浓度为20μM,其中水的来源为:去离子水,自来水,不同学校的河水。
在0min,10min,40min之后,分别拍照。从左至右依次是:去离子水、自来水、华东理工大学河水、华东师范大学河水。如图7。
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种检测水中铜离子、银离子和汞离子的探针,其特征在于,所述的探针的结构通式I如下所示:
其中,R1,R2,R3为C1~C20的烷烃,-O(CH2)nCH3,-N(CH2)nCH3,-S(CH2)nCH3,-COO(CH2)nCH3,n=0~20;
R4为-F,-Cl,-Br,-I,-NHNH2,-NHNH-(CH2)nCH3,-NHNH-Ar,n=0~20;
R5为-H,C1~C20的烷烃,芳环及其衍生物。
2.根据权利要求1所述的检测水中铜离子、银离子和汞离子的探针,其特征在于,所述的R1为:-O(CH2)nCH3,-COO(CH2)nCH3,n=0~10。
3.根据权利要求1所述的检测水中铜离子、银离子和汞离子的探针,其特征在于,所述的R2,R3为:H,C1~C3的烷烃。
4.根据权利要求1所述的检测水中铜离子、银离子和汞离子的探针,其特征在于,所述的R4为:-F,-Cl,-Br,-I,-NHNH2,苯肼。
5.根据权利要求1所述的检测水中铜离子、银离子和汞离子的探针,其特征在于,所述的R5为:H,C1~C3的烷烃,苯环及其衍生物。
6.根据权利要求1所述的检测水中铜离子、银离子和汞离子的探针,其特征在于,所述的R1为:OCH3,R2,R3为:H,R4为:Cl,R5为:苯基。
7.一种如权利要求1-6任一所述的探针在对水中铜离子、银离子和汞离子进行定性、定量检测中的应用。
8.根据权利要求7所述的应用,其特征在于,所述的对水中铜离子、银离子和汞离子进行定性、定量检测时,所述的结构通式I代表的探针与铜离子、银离子和汞离子反应生成结构通式Ⅱ代表的化合物,结构的变化导致紫外吸收以及颜色的变化,结构通式Ⅱ如下所示:
9.一种利用如权利要求1-6任一所述的探针对水中铜离子、银离子和汞离子进行定性检测的方法,其特征在于,包括以下步骤:
肉眼观测:将1-1000μL 1mM探针MCFP溶于3mL待测水样中,探针浓度为0.33-333.33μM,放置0-120min,观察颜色变化;若颜色变暗,呈现出类似蓝色或紫色的颜色变化,则说明待检测的水被铜离子或银离子或汞离子污染;或
紫外-可见光检测:将1-1000μL 1mM探针溶于3mL待测水样中,探针浓度为0.33-333.33μM,通过测试其“紫外-可见光”吸收变化来确定待测水样中的铜离子、银离子、汞离子浓度;“紫外-可见光”吸收变化越大,则说明所述的待测水样被铜离子或银离子或汞离子污染越严重。
10.一种利用如权利要求1-6任一所述的探针对水中铜离子、银离子和汞离子进行定量检测的方法,其特征在于,包括以下步骤:
a、以铜离子、或银离子、或汞离子浓度为横坐标,601nm处与485nm处紫外-可见光吸收强度的比值为纵坐标做标准曲线;
b、将1-1000μL 1mM探针溶于3mL待检测的水中,探针浓度为0.33-333.33μM,通过测试其“紫外-可见光”吸收变化来确定待检测的水中的铜离子、银离子、汞离子浓度;在时间一定的条件下,“紫外-可见光”吸收强度可分别对应不同的铜离子、银离子、汞离子浓度,从而实现定量检测。
CN201610875021.7A 2016-09-30 2016-09-30 一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法 Expired - Fee Related CN106565758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610875021.7A CN106565758B (zh) 2016-09-30 2016-09-30 一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610875021.7A CN106565758B (zh) 2016-09-30 2016-09-30 一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法

Publications (2)

Publication Number Publication Date
CN106565758A true CN106565758A (zh) 2017-04-19
CN106565758B CN106565758B (zh) 2019-07-02

Family

ID=58532627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610875021.7A Expired - Fee Related CN106565758B (zh) 2016-09-30 2016-09-30 一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法

Country Status (1)

Country Link
CN (1) CN106565758B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304780A (zh) * 2022-08-04 2022-11-08 上海师范大学 金属-有机多孔框架(MOFs)材料的制备方法及性能检测

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715919A (zh) * 2005-07-12 2006-01-04 大连理工大学 细胞锌离子检测用的氟硼染料荧光探针
CN101004422A (zh) * 2007-01-16 2007-07-25 大连理工大学 细胞内镉离子检测用氟硼染料荧光探针
CN101851500A (zh) * 2010-05-05 2010-10-06 大连理工大学 汞离子检测用氟硼染料荧光探针
CN102086206A (zh) * 2009-12-03 2011-06-08 大连理工大学 一类荧光探针及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715919A (zh) * 2005-07-12 2006-01-04 大连理工大学 细胞锌离子检测用的氟硼染料荧光探针
CN101004422A (zh) * 2007-01-16 2007-07-25 大连理工大学 细胞内镉离子检测用氟硼染料荧光探针
CN102086206A (zh) * 2009-12-03 2011-06-08 大连理工大学 一类荧光探针及其制备方法和用途
CN101851500A (zh) * 2010-05-05 2010-10-06 大连理工大学 汞离子检测用氟硼染料荧光探针

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANYU CHENG ET AL.: "A highly sensitive and selective hypochlorite fluorescent probe based on oxidation of hydrazine via free radical mechanism", 《DYES AND PIGMENTS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304780A (zh) * 2022-08-04 2022-11-08 上海师范大学 金属-有机多孔框架(MOFs)材料的制备方法及性能检测
CN115304780B (zh) * 2022-08-04 2023-06-13 上海师范大学 金属-有机多孔框架(MOFs)材料的制备方法及性能检测

Also Published As

Publication number Publication date
CN106565758B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
Wang et al. A naked-eye and ratiometric near-infrared probe for palladium via modulation of a π-conjugated system of cyanines
Yuan et al. A rational approach to tuning the p K a values of rhodamines for living cell fluorescence imaging
İncel et al. Smart phone assisted detection and quantification of cyanide in drinking water by paper based sensing platform
CN106008343B (zh) 基于萘酰亚胺的汞离子荧光探针及其制备方法和应用
Peralta-Domínguez et al. A Schiff base derivative from cinnamaldehyde for colorimetric detection of Ni2+ in water
Jiang et al. An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg 2+ detection and imaging applications
Zhang et al. Highly selective fluorescence enhancement chemosensor for Hg2+ based on rhodamine and its application in living cells and aqueous media
CN105802608B (zh) 一种荧光探针的制备方法及其在铝离子检测中的应用
Chao et al. A ratiometric fluorescence probe for monitoring cyanide ion in live cells
Li et al. Monitoring of Au (III) species in plants using a selective fluorescent probe
Chen et al. A depropargylation-triggered spontaneous cyclization based fluorescent “turn-on” chemodosimeter for the detection of palladium ions and its application in live-cell imaging
Jin et al. A bi-functionalized metal-organic framework based on N-methylation and Eu3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for aniline in urine
CN104819970A (zh) 一种超分子配合物荧光探针测定水中多菌灵的方法
Yan et al. Synthesis and spectral analysis of fluorescent probes for Ce4+ and OCl− ions based on fluorescein Schiff base with amino or hydrazine structure: application in actual water samples and biological imaging
Zhang et al. A FRET-based fluorescent probe for mercury ions in water and living cells
Wang et al. A rhodamine derivative as selective fluorescent and colorimetric chemosensor for mercury (II) in buffer solution, test strips and living cells
Li et al. 1, 8-Naphthalimide derived dual-functioning fluorescent probe for “turn-off” and ratiometric detection of Cu2+ based on two distinct mechanisms in different concentration ranges
Zhang et al. A new naphthalimide-picolinohydrazide derived fluorescent “turn-on” probe for hypersensitive detection of Al3+ ions and applications of real water analysis and bio-imaging
CN106518763B (zh) 一种选择性比率式检测氰根离子的荧光探针及其合成方法与应用
Wu et al. Switch-type near-infrared fluorescent probes for Hg2+ based on rhodamines
Wang et al. Electrospun nanofiber-based indicatorpaper sensing platform for fluorescence and visualization detection of norfloxacin
CN106397319A (zh) 一种比率式检测肼的荧光探针及其合成方法与应用
CN106565758A (zh) 一种可用于简便检测水中铜、汞和银离子的氟硼吡咯类探针及其合成方法
CN109456260A (zh) 2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚衍生物、其制备方法及应用
CN108484479A (zh) 一种咔唑基双光子荧光探针及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190702