CN106540745A - 表面有机分子修饰的二氧化钛及其制备方法与应用 - Google Patents

表面有机分子修饰的二氧化钛及其制备方法与应用 Download PDF

Info

Publication number
CN106540745A
CN106540745A CN201610873846.5A CN201610873846A CN106540745A CN 106540745 A CN106540745 A CN 106540745A CN 201610873846 A CN201610873846 A CN 201610873846A CN 106540745 A CN106540745 A CN 106540745A
Authority
CN
China
Prior art keywords
organic molecule
titanium dioxide
modification
dehydrated alcohol
distilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610873846.5A
Other languages
English (en)
Inventor
黄新文
吴爱琴
杨兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610873846.5A priority Critical patent/CN106540745A/zh
Publication of CN106540745A publication Critical patent/CN106540745A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • B01J31/0238Amines with a primary amino group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种表面有机分子修饰的二氧化钛,其制备方法为:在反应容器中,加入长链线性有机化合物、无水乙醇A、钛酸四丁酯,搅拌5~15min,再加入蒸馏水A搅拌10~20min,接着升温至170~180℃反应13~15h,之后冷却至室温,反应液经过滤,滤饼用无水乙醇B、蒸馏水B洗涤,烘干制得表面有机分子修饰的二氧化钛,可应用于光催化降解染料废水中的有机污染物;本发明二氧化钛光催化剂的有机分子表面修饰效果较好,提高了催化剂的光催化活性,且催化剂结构并未发生变化,表面修饰的有机分子完好,催化剂能够脱附再生,具有很好的重复利用价值和巨大的实际意义。

Description

表面有机分子修饰的二氧化钛及其制备方法与应用
(一)技术领域
本发明涉及一种表面有机分子修饰的二氧化钛及其制备方法与应用。
(二)背景技术
在众多环境污染治理技术中,以半导体氧化物TiO2为催化剂的多相光催化降解污染物已成为一种热门、高效、理想的治理技术。其催化原理主要为光催化剂TiO2受到能量大于其禁带宽度(Eg)的光照射时,诱发电子(e-)和空穴(h+),进而在表面形成·OH,进一步与有机物发生一系列的自由基反应从而使之降解,但是同时存在电子与空穴的复合,光催化效率较低。
为了进一步提高TiO2光催化反应的活性和选择性,提高光量子产率,将其激发波长扩张到可见光区,提高光能利用率和光催化效率,已有研究对二氧化钛进行修饰、掺杂和复合等,如稀土氧化物复合,钨、镧等金属离子修饰,Ag、Au、Pt等贵金属沉积以及Bi、I等两种元素共同修饰等。然而,国内外对TiO2表面有机分子(如长链线性胺和酸)修饰及其光催化性能的影响研究并不活跃深入。
(三)发明内容
针对目前已有对二氧化钛进行修饰、掺杂和复合的不足,本发明提出对二氧化钛表面进行不同有机分子(如长链线性胺和酸)修饰的方法,以提高二氧化钛光催化效率和重复利用价值。
本发明采用如下技术方案:
一种表面有机分子修饰的二氧化钛,其制备方法为:
在反应容器中,加入长链线性有机化合物、无水乙醇A、钛酸四丁酯,搅拌5~15min,再加入蒸馏水A搅拌10~20min,接着升温至170~180℃反应14h,之后冷却至室温(20~30℃),反应液经过滤,滤饼用无水乙醇B、蒸馏水B洗涤,烘干(60~70℃)制得表面有机分子修饰的二氧化钛。
所述的长链线性有机化合物为十二胺、十八胺、十一酸或十二烷二酸。
所述的长链线性有机化合物与无水乙醇A、钛酸四丁酯、蒸馏水A的投料体积比为2~4:9~11:2~4:1,优选3:10:3:1。
所述的“无水乙醇A”、“无水乙醇B”没有特殊的含义,标记为“A”、“B”只是用于区分不同操作步骤中所用到无水乙醇;“蒸馏水A”、“蒸馏水B”与之同理。
本发明制得的表面有机分子修饰的二氧化钛粉体材料,利用X射线粉末衍射(XRD)、红外光谱(FT-IR)、高分辨率的透射电镜(HRTEM)对其进行分析表征。其中基体二氧化钛为纳米锐钛矿型,呈长条片状,长10~30nm、宽5~15nm,晶粒的平均厚度为7~11nm,粒度比较均匀,颗粒表面较为光滑,颗粒之间界面明显,有机分子表面修饰效果较好。
本发明制得的表面有机分子修饰的二氧化钛可作为光催化剂应用于光催化降解染料废水中的有机污染物(具体例如典型的偶氮染料甲基橙)的反应中。
本发明的有益效果主要体现在:二氧化钛光催化剂的有机分子表面修饰效果较好,提高了催化剂的光催化活性,且催化剂结构并未发生变化,表面修饰的有机分子完好。催化剂能够脱附再生,具有很好的重复利用价值和巨大的实际意义。
(四)附图说明
图1:实施例1中不同有机分子修饰纳米TiO2的XRD图谱;
图2:实施例1中不同有机分子修饰纳米TiO2的红外光谱;
图3:实施例2中不同有机分子修饰纳米TiO2光催化降解甲基橙后的红外光谱;
图4:实施例1中不同有机分子修饰纳米TiO2的HRTEM照片;
图5:实施例2中不同有机分子修饰纳米TiO2对吸附平衡的影响对比;
图6:实施例2中不同有机分子修饰纳米TiO2对光催化降解甲基橙效能的影响对比。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1
不同有机分子修饰纳米TiO2的制备
在4个水热釜中,各自分别加入6mL的长链线性有机化合物(4个水热釜分别对应加入十二胺、十八胺、十一酸、十二烷二酸)和20mL的无水乙醇,再加入6mL的钛酸四丁酯,混合磁力搅拌10min后,再加入2mL的蒸馏水继续搅拌20min,然后将反应釜升温至180℃反应14h,之后冷却至室温,过滤,滤饼用无水乙醇和蒸馏水进行多次洗涤后,烘干制得4种不同有机分子修饰纳米TiO2样品。
利用X射线粉末衍射(XRD)、红外光谱(FT-IR)、高分辨率的透射电镜(HRTEM)对所得样品进行分析表征。
实施例2
通过降解甲基橙来评价实施例1中制备的不同有机分子修饰纳米TiO2样品的光催化性能,测试方法如下:
在500mL烧杯中加入200mL浓度为50μmol/L甲基橙溶液和40mg的TiO2粉末进行电磁搅拌和避光反应,每隔10min取出少量的混合液离心分离,取其上层清液用分光光度计测其全波长的吸光度,测试完成后混合液再次倒入反应体系中,直到最大吸收峰处的吸光度值不再变化达到吸附平衡。然后在吸附平衡的基础上进行光催化降解实验,该降解以100w的汞灯作为光源,降解反应在密闭的XPA-2(G8)型光催化反应仪里进行。在光催化反应仪中,光源距液面15cm,同时进行电磁搅拌和水冷,并保持反应温度在25℃。整个光催化反应时间为90min,每隔10min取出少量的混合液离心分离,取其上层清液用分光光度计测其全波长的吸光度。
不同有机分子修饰纳米TiO2对吸附平衡的影响对比
由图5可知,十二胺、十八胺、十一酸和十二烷二酸修饰的TiO2吸附平衡时间分别为4.8h、5.2h、3.5h、3.8h,而P25的吸附平衡时间为0.5h,从而可知有机分子修饰的TiO2吸附甲基橙达到平衡所需要的时间远大于P25吸附平衡时间。有机分子修饰的TiO2吸附甲基橙的性能,与其所需要的吸附平衡时间相符合,吸附所需平衡时间越长,吸附效果越佳,并且均优于P25对甲基橙的吸附性能。
不同有机分子修饰纳米TiO2对光催化降解甲基橙效能的影响对比
由图6可以看出,在同样的实验条件光照下,实验用的四种不同的有机分子修饰的TiO2在相同条件下的降解效率不同,比较甲基橙的残留率发现,降解效率由大到小的顺序为:十八胺修饰的TiO2>十二胺胺修饰的TiO2>十二烷二酸修饰的TiO2>十一酸修饰的TiO2>P25,这与上述得出的吸附性能结果相一致。由实验结果可得,与P25样品的光催化活性相比,上述修饰的有机分子均能提高催化剂的光催化活性,十八胺修饰的TiO2光降解甲基橙的效率约为十一酸修饰的TiO2光降解甲基橙效率的4.16倍。
根据附图以及综上所述,本发明中不同有机分子修饰二氧化钛均为纯锐钛矿型TiO2,具有较高的催化活性。并且有机分子修饰纳米TiO2颗粒表面较为光滑,颗粒粒径均匀,颗粒之间界面明显。光催化降解甲基橙后,有机分子修饰的纳米TiO2的特征吸收峰与未降解前基本一致,说明发生光催化降解甲基橙后,催化剂结构并未发生变化,表面修饰的有机分子完好。由此可知本发明有机分子修饰纳米TiO2催化剂不但能够脱附再生,且光催化降解效能良好、重复利用价值高。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也包括本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (4)

1.一种表面有机分子修饰的二氧化钛,其特征在于,所述表面有机分子修饰的二氧化钛按如下方法制备得到:
在反应容器中,加入长链线性有机化合物、无水乙醇A、钛酸四丁酯,搅拌5~15min,再加入蒸馏水A搅拌10~20min,接着升温至170~180℃反应13~15h,之后冷却至室温,反应液经过滤,滤饼用无水乙醇B、蒸馏水B洗涤,烘干制得表面有机分子修饰的二氧化钛;
所述的长链线性有机化合物为十二胺、十八胺、十一酸或十二烷二酸;
所述的长链线性有机化合物与无水乙醇A、钛酸四丁酯、蒸馏水A的投料体积比为2~4:9~11:2~4:1。
2.如权利要求1所述的表面有机分子修饰的二氧化钛,其特征在于,所述的长链线性有机化合物与无水乙醇A、钛酸四丁酯、蒸馏水A的投料体积比为3:10:3:1。
3.如权利要求1所述的表面有机分子修饰的二氧化钛在光催化降解染料废水中有机污染物的应用。
4.如权利要求3所述的应用,其特征在于,所述的有机污染物为偶氮染料甲基橙。
CN201610873846.5A 2016-09-30 2016-09-30 表面有机分子修饰的二氧化钛及其制备方法与应用 Pending CN106540745A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610873846.5A CN106540745A (zh) 2016-09-30 2016-09-30 表面有机分子修饰的二氧化钛及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610873846.5A CN106540745A (zh) 2016-09-30 2016-09-30 表面有机分子修饰的二氧化钛及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN106540745A true CN106540745A (zh) 2017-03-29

Family

ID=58368205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610873846.5A Pending CN106540745A (zh) 2016-09-30 2016-09-30 表面有机分子修饰的二氧化钛及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106540745A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754754A (zh) * 2017-09-19 2018-03-06 浙江工业大学 一种海绵钛负载氧化铝颗粒的复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607194A (zh) * 2009-07-22 2009-12-23 西南科技大学 锐钛矿型二氧化钛/蒙脱石纳米复合材料的制备方法
CN103706347A (zh) * 2013-12-09 2014-04-09 上海应用技术学院 一种TiO2微球及其制备方法
CN103771504A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种二氧化钛光催化剂的合成方法
CN104909403A (zh) * 2015-05-22 2015-09-16 济南大学 一种二氧化钛纳米片的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607194A (zh) * 2009-07-22 2009-12-23 西南科技大学 锐钛矿型二氧化钛/蒙脱石纳米复合材料的制备方法
CN103771504A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种二氧化钛光催化剂的合成方法
CN103706347A (zh) * 2013-12-09 2014-04-09 上海应用技术学院 一种TiO2微球及其制备方法
CN104909403A (zh) * 2015-05-22 2015-09-16 济南大学 一种二氧化钛纳米片的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BINGHUI WU ET AL.: ""Nonaqueous Production of Nanostructured Anatase with High-Energy Facets"", 《J.AM.CHEM.SOC》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754754A (zh) * 2017-09-19 2018-03-06 浙江工业大学 一种海绵钛负载氧化铝颗粒的复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Jiao et al. AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: High efficient separation of photogenerated charge carriers
Hamdy et al. Surface Ti3+-containing (blue) titania: A unique photocatalyst with high activity and selectivity in visible light-stimulated selective oxidation
Pan et al. Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed {0 0 1} facets: Catalyst deactivation and regeneration
Yurdakal et al. Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water
Li et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution
Liu et al. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation
Koca et al. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution
Chhor et al. Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen
Umer et al. Montmorillonite dispersed single wall carbon nanotubes (SWCNTs)/TiO2 heterojunction composite for enhanced dynamic photocatalytic H2 production under visible light
Li et al. Low-temperature preparation and characterization of nanocrystalline anatase TiO2
CN105032464B (zh) 氮化碳‑钛酸镍复合材料及其制备方法与应用
CN106268734A (zh) 一种水分散性三元混晶纳米二氧化钛光催化剂的制备方法
Wang et al. Enhancement of pyridine derivatives containing symmetrical substituents on the photocatalytic degradation of phenol and antibiotics by Er-Fe-TiO2
Liu et al. PEG-assisted hydrothermal synthesis of BiOCl with enhanced photocatalytic performance
CN106391066B (zh) 一种快速高效降解罗丹明b的复合光催化剂及其制备方法
Krishnakumar et al. Gelatin-assisted g-TiO2/BiOI heterostructure nanocomposites for azo dye degradation under visible light
CN109174145A (zh) 一种碳化二钼/二氧化钛复合光催化剂及其制备方法和应用
Kočí et al. Photocatalytic hydrogen production from methanol over Nd/TiO2
An et al. Synthesis and characterization of thermally stable nanotubular TiO2 and its photocatalytic activity
Chen et al. Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction
CN110252410A (zh) 一种三元复合光催化剂、其制备方法及应用
Xu et al. Fabrication of Bi2O3 QDs decorated TiO2/BiOBr dual Z-scheme photocatalysts for efficient degradation of gaseous toluene under visible-light
Cui et al. Facile one-step “polymerization-exfoliation” route to crystalline graphitic carbon nitride nanosheets for increased photocatalytic hydrogen evolution
Feng et al. Enhanced photo-degradation of gaseous toluene over MnOx/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system
Lu et al. Improved visible-light activities of rutile nanorod by comodifying highly dispersed surface plasmon resonance Au nanoparticles and Hf groups for aerobic selective alcohol oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329