CN106526547B - 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法 - Google Patents

基于InSAR技术的直线扫描近场RCS测试杂波抑制方法 Download PDF

Info

Publication number
CN106526547B
CN106526547B CN201611131827.1A CN201611131827A CN106526547B CN 106526547 B CN106526547 B CN 106526547B CN 201611131827 A CN201611131827 A CN 201611131827A CN 106526547 B CN106526547 B CN 106526547B
Authority
CN
China
Prior art keywords
height
target
linear scanning
scattering source
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611131827.1A
Other languages
English (en)
Other versions
CN106526547A (zh
Inventor
吕鸣
高超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Environmental Features
Original Assignee
Beijing Institute of Environmental Features
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Environmental Features filed Critical Beijing Institute of Environmental Features
Priority to CN201611131827.1A priority Critical patent/CN106526547B/zh
Publication of CN106526547A publication Critical patent/CN106526547A/zh
Application granted granted Critical
Publication of CN106526547B publication Critical patent/CN106526547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

公开了基于InSAR技术的直线扫描近场RCS测试杂波抑制方法,涉及电磁散射测量、信号特征控制技术领域。本发明的方法包括:分别在两个高度条件下对目标进行直线扫描,获取目标的两个二维像;根据两次直线扫描的高度差和两个二维像的相位差,确定目标的每个散射源的高度;基于目标的每个散射源的高度,在高度向对目标进行滤波,将滤波后的散射源进行重构得到杂波抑制后的目标RCS。利用InSAR技术对目标进行直线扫描近场,能够快速高效地获取回波数据;通过利用在两个高度采集数据的相位信息进行干涉处理,能够实现在一定高度范围内的相位解缠,从而唯一的确定散射源高度。本发明能够进行竖向空间滤波从而实现抑制场地杂散回波、提高测试精度的目的。

Description

基于InSAR技术的直线扫描近场RCS测试杂波抑制方法
技术领域
本发明涉及电磁散射测量、信号特征控制技术,特别涉及基于InSAR技术的直线扫描近场RCS测试杂波抑制方法。
背景技术
以下对本发明的相关技术背景进行说明,但这些说明并不一定构成本发明的现有技术。
进行外场RCS测试时,需要对场地背景杂散回波进行控制以提高测试精度。由于场地、设备等方面因素的制约,一般无法通过矢量背景对消的方法达到抑制场地杂散回波的目的,而采取软/硬件距离门的方法降低背景。其基本原理都是基于先验的目标空间分布信息进行空间滤波提高接收信号的信噪比。通过三维成像获取目标的三维空间散射分布之后,可以对目标区之外的杂散波源进行抑制。但这种方法的测试的时间成本极高而在实际应用中限制较大。因此,目前主要利用距离向或横向信息进行空间滤波。
发明内容
本发明的目的在于提出基于InSAR技术的直线扫描近场RCS测试杂波抑制方法,能够进行竖向空间滤波,从而实现抑制场地杂散回波、提高测试精度的目的。
本发明基于InSAR技术的直线扫描近场RCS测试杂波抑制方法,包括如下步骤:
S1、分别在两个高度条件下对目标进行直线扫描,获取目标的两个二维像;
S2、根据两次直线扫描的高度差Δh和两个二维像的相位差Δφ,确定目标的每个散射源的高度;
S3、基于目标的每个散射源的高度,在高度向对目标进行滤波,将滤波后的散射源进行重构得到杂波抑制后的目标RCS;
其中,Δφ小于360°。
优选地,两次直线扫描的高度差Δh满足如下关系:
式中,Δh为两次直线扫描的高度差,λ为入射电磁波波长,R0为扫描天线沿其指向方向距离目标的距离,Dh为目标在高度方向的最大尺寸,单位为m。
优选地,步骤S2之前进一步包括:按照如下方法确定两次直线扫描的高度和两个二维像的相位与散射源的高度之间的关系:
根据扫描天线的位置以及目标的空间分布,分别确定两次直线扫描的高度与散射源的高度之间的关系:
分别确定两个二维像的相位与散射源的高度之间的关系:
两个二维像的相位与散射源的高度之间的关系:
式中,h1、h2分别为两次直线扫描的高度,φ1、φ2分别为两个二维像的相位,r1、r2分别为两次直线扫描时天线与散射源的距离,(x0,y0,z0)为散射源的坐标,λ为入射电磁波波长,(p,-R0,h1)为高度h1条件下天线在扫描坐标系的坐标,(p,-R0,h2)为高度h2条件下天线在扫描坐标系的坐标,单位为m;扫描坐标系以目标所在位置为坐标原点,以扫描移动方向X轴、以天线指向为Y轴、以目标的高度方向为Z轴。
优选地,扫描天线沿其指向方向到目标的距离R0不小于目标最大几何尺寸的10倍。
优选地,将公式2和公式3分别转化为:
步骤S2中按照如下关系确定散射源的高度:
式中,Δh为两次直线扫描的高度差,Δφ为散射源在两个二维像的相位差,单位为m;Δh=h1-h2、Δφ=φ12,或者Δh=h2-h1、Δφ=φ21
优选地,步骤S3包括:
将散射源高度与目标实际高度之间的差值不大于预设阈值的散射源标记为有效散射源、散射源高度与目标实际高度之间的差值大于预设阈值的散射源标记为杂波;
滤除所述杂波,并以所述有效散射源进行重构得到杂波抑制后的目标RCS。
本发明基于InSAR技术的直线扫描近场RCS测试杂波抑制方法包括:分别在两个高度条件下对目标进行直线扫描,获取目标的两个二维像;根据两次直线扫描的高度差和两个二维像的相位差,确定目标的每个散射源的高度;基于目标的每个散射源的高度,在高度向对目标进行滤波,将滤波后的散射源进行重构得到杂波抑制后的目标RCS。利用InSAR技术对目标进行直线扫描近场,能够快速高效地获取回波数据;通过利用在两个高度采集数据的相位信息进行干涉处理,能够实现在一定高度范围内的相位解缠,从而唯一的确定散射源高度。本发明能够进行竖向空间滤波从而实现抑制场地杂散回波、提高测试精度的目的。
附图说明
通过以下参照附图而提供的具体实施方式部分,本发明的特征和优点将变得更加容易理解,在附图中:
图1是本发明基于InSAR技术的直线扫描近场RCS测试杂波抑制方法的流程图;
图2是本发明基于InSAR技术的直线扫描近场RCS测试杂波抑制方法的示意图。
具体实施方式
下面参照附图对本发明的示例性实施方式进行详细描述。对示例性实施方式的描述仅仅是出于示范目的,而绝不是对本发明及其应用或用法的限制。
如图1所示,本发明基于InSAR技术的直线扫描近场雷达散射截面(Radar Cross-Section,RCS)测试杂波抑制方法,包括如下步骤:
S1、分别在两个高度条件下对目标进行直线扫描,获取目标的两个二维像;
S2、根据两次直线扫描的高度差Δh和两个二维像的相位差Δφ,确定目标的每个散射源的高度;
S3、基于目标的每个散射源的高度,在高度向对目标进行滤波,将滤波后的散射源进行重构得到杂波抑制后的目标RCS。
回波数据的二维像信息中包含了散射的幅度和相位信息,相位信息与雷达系统的工作频率、目标相对雷达的纵向距离和高度差有关。在实际RCS测试中,由于二维像的幅度和相位信息均为已知,因此可以反推出散射源的高度信息。但由于相位的周期性变化,一个幅度值对应多个相位信息,因此按照上述方式所得到的高度信息并不唯一,即出现相位缠绕现象。例如,在某一高度下扫描得到的回波数据,其相位值可能是a1,也有可能是a1+n×360°,其中n为整数。本发明基于合成孔径雷达干涉(Synthetic Aperture RadarInterferometry,InSAR)技术进行直线扫描,通过利用不同高度上采集数据的相位信息进行干涉处理,实现在一定的高度范围内的相位解缠,从而能够唯一的确定散射源高度。
在图2示出的实施例中,以目标所在位置为坐标原点O,以扫描移动方向X轴、以天线指向为Y轴、以目标的高度方向为Z轴建立扫描坐标系,图中点A(x0,y0,z0)代表目标上的任意一个散射源,h1、h2分别为两次直线扫描的高度,r1、r2分别为两次直线扫描时天线与散射源的距离,(x0,y0,z0)为散射源的坐标,(p,-R0,h1)为高度h1条件下天线在扫描坐标系的坐标,(p,-R0,h2)为高度h2条件下天线在扫描坐标系的坐标。在对目标进行直线扫描时,天线沿着X轴指向的方向对目标进行扫描。
当两次直线扫描得到的两个二维像的相位差大于等于360°时,基于该两次扫描的回波数据计算得到的散射源的高度仍然不是唯一的,导致相位缠绕。为此,本发明在两个高度条件下对目标进行直线扫描时,要求两个二维像的相位差Δφ小于360°。在实际测试过程中,可以依次获取多个高度条件下的扫描回波数据,并从中选择相位差Δφ小于360°的一组回波数据计算散射源的高度。当然,为了减小扫描次数、提高测试效率,本领域技术人员也可以设计合适的扫描高度,使得所得回波数据的相位差Δφ小于360°。
当两次直线扫描的高度差越大,所得回波数据的相位差越大。当两次所得回波数据的相位差大于等于360°时,仍然会出现上述的相位缠绕现象。为了避免相位缠绕,在本发明的一些实施例中,两次直线扫描的高度差Δh满足如下关系:
式中,Δh为两次直线扫描的高度差,λ为入射电磁波波长,R0为扫描天线沿其指向方向距离目标的距离,Dh为目标在高度方向的最大尺寸,单位为m。
为了便于测试和计算,本领域技术人员可以根据实际条件选择合适的同恒等条件进而建立相位信息与扫描高度差之间的对应关系,本发明基于相位信息与扫描高度差之间的对应关系即可反推出散射源的高度信息,对该对应关系的建立方式、以及具体函数形式不做具体限定。在一些实施例中,步骤S2之前进一步包括:按照如下方法确定两次直线扫描的高度和两个二维像的相位与散射源的高度之间的关系:
根据扫描天线的位置以及目标的空间分布,分别确定两次直线扫描的高度与散射中心的高度之间的关系:
分别确定两个二维像的相位与散射中心的高度之间的关系:
两个二维像的相位与散射源的高度之间的关系:
式中,h1、h2分别为两次直线扫描的高度,φ1、φ2分别为两个二维像的相位,r1、r2分别为两次直线扫描时天线与散射中心的距离,(x0,y0,z0)为散射中心的坐标,λ为入射电磁波波长,(p,-R0,h1)为高度h1条件下天线在扫描坐标系的坐标,(p,-R0,h2)为高度h2条件下天线在扫描坐标系的坐标,单位为m;扫描坐标系以目标所在位置为坐标原点,以扫描移动方向X轴、以天线指向为Y轴、以目标的高度方向为Z轴。
由于散射源天线在扫描坐标系的横坐标和纵坐标、天线天线在扫描坐标系的坐标均为已知,因此根据两个二维像的相位、结合上述公式6即可唯一确定散射源的高度。
当扫描天线沿其指向方向到目标的距离R0远大于散射中心到目标的距离时,例如扫描天线沿其指向方向到目标的距离R0不小于目标最大几何尺寸的10倍时,可以将公式2和公式3分别转化为公式7和公式8。本发明中的几何尺寸是指目标沿任意一个方向的长度,最大几何尺寸是指目标沿着各个方向的长度的最大值。
因此,步骤S2中可以按照如下关系确定散射源的高度:
式中,Δh为两次直线扫描的高度差,Δφ为散射源在两个二维像的相位差,单位为m;Δh=h1-h2、Δφ=φ12,或者Δh=h2-h1、Δφ=φ21
本发明中,确定散射源的高度之后,可以根据散射源的高度与目标的实际高度进行竖向空间滤波以实现杂波抑制的目的。优选地,步骤S3包括:
将散射源高度与目标实际高度之间的差值不大于预设阈值的散射源标记为有效散射源、散射源高度与目标实际高度之间的差值大于预设阈值的散射源标记为杂波;
滤除所述杂波,并以所述有效散射源进行重构得到杂波抑制后的目标RCS。
与现有技术相比,本发明能够唯一确定散射源的高度,抑制高度向上与目标存在明显差异的散射源,从而降低场地背景回波,达到杂波抑制的目的。测试速度快速、效率高效、准确性和精确性好。
虽然参照示例性实施方式对本发明进行了描述,但是应当理解,本发明并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对所述示例性实施方式做出各种改变。

Claims (5)

1.基于InSAR技术的直线扫描近场RCS测试杂波抑制方法,其特征在于包括如下步骤:
S1、分别在两个高度条件下对目标进行直线扫描,获取目标的两个二维像;
S2、根据两次直线扫描的高度差Δh和两个二维像的相位差Δφ,确定目标的每个散射源的高度;
S3、基于目标的每个散射源的高度,在高度向对目标进行滤波,将滤波后的散射源进行重构得到杂波抑制后的目标RCS;
其中,Δφ小于360°;
在步骤S2之前,按照如下方法确定两次直线扫描的高度和两个二维像的相位与散射源的高度之间的关系:
根据扫描天线的位置以及目标的空间分布,分别确定两次直线扫描的高度与散射源的高度之间的关系:
分别确定两个二维像的相位与散射源的高度之间的关系:
两个二维像的相位与散射源的高度之间的关系:
式中,h1、h2分别为两次直线扫描的高度,φ1、φ2分别为两个二维像的相位,r1、r2分别为两次直线扫描时天线与散射源的距离,(x0,y0,z0)为散射源的坐标,λ为入射电磁波波长,(p,-R0,h1)为高度h1条件下天线在扫描坐标系的坐标,(p,-R0,h2)为高度h2条件下天线在扫描坐标系的坐标,单位为m;扫描坐标系以目标所在位置为坐标原点,以扫描移动方向为X轴、以天线指向为Y轴、以目标的高度方向为Z轴。
2.如权利要求1所述的直线扫描近场RCS测试杂波抑制方法,其特征在于,两次直线扫描的高度差Δh满足如下关系:
式中,Δh为两次直线扫描的高度差,λ为入射电磁波波长,R0为扫描天线沿其指向方向距离目标的距离,Dh为目标在高度方向的最大尺寸,单位为m。
3.如权利要求1所述的直线扫描近场RCS测试杂波抑制方法,其特征在于,扫描天线沿其指向方向到目标的距离R0不小于目标最大几何尺寸的10倍。
4.如权利要求3所述的直线扫描近场RCS测试杂波抑制方法,其特征在于,将公式2和公式3分别转化为:
步骤S2中按照如下关系确定散射源的高度:
式中,Δh为两次直线扫描的高度差,Δφ为散射源在两个二维像的相位差,单位为m;Δh=h1-h2、Δφ=φ12,或者Δh=h2-h1、Δφ=φ21
5.如权利要求1所述的直线扫描近场RCS测试杂波抑制方法,其特征在于,步骤S3包括:
将散射源高度与目标实际高度之间的差值不大于预设阈值的散射源标记为有效散射源、散射源高度与目标实际高度之间的差值大于预设阈值的散射源标记为杂波;
滤除所述杂波,并以所述有效散射源进行重构得到杂波抑制后的目标RCS。
CN201611131827.1A 2016-12-09 2016-12-09 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法 Active CN106526547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611131827.1A CN106526547B (zh) 2016-12-09 2016-12-09 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611131827.1A CN106526547B (zh) 2016-12-09 2016-12-09 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法

Publications (2)

Publication Number Publication Date
CN106526547A CN106526547A (zh) 2017-03-22
CN106526547B true CN106526547B (zh) 2019-02-05

Family

ID=58342974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611131827.1A Active CN106526547B (zh) 2016-12-09 2016-12-09 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法

Country Status (1)

Country Link
CN (1) CN106526547B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445303B (zh) * 2018-03-08 2020-06-26 北京环境特性研究所 一种近场电磁散射特性模拟方法
CN108663665B (zh) * 2018-04-03 2020-03-31 北京环境特性研究所 一种确定紧缩场的不确定度的方法及装置
CN113075657B (zh) * 2021-03-31 2023-01-13 北京环境特性研究所 一种散射源高度的测试方法及检测装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701380B2 (en) * 2007-03-07 2010-04-20 Chirp Corporation Beam phase modulation for improved synthetic aperture detection and estimation
CN103018739B (zh) * 2011-09-20 2014-07-09 中国科学院电子学研究所 一种校正多通道幅相误差的微波三维成像方法
CN103675781B (zh) * 2012-09-25 2016-05-18 中国航天科工集团第二研究院二〇七所 一种准确的近场回波获取方法
CN104730503B (zh) * 2015-03-18 2017-06-13 中国科学院电子学研究所 确定高分辨率sar参考目标rcs对定标影响的方法及补偿方法
CN105044721B (zh) * 2015-07-21 2018-03-30 电子科技大学 机载正前视扫描雷达角超分辨方法
CN105259547A (zh) * 2015-10-30 2016-01-20 武汉大学 一种舰船稳定散射结构分析方法
CN105334501B (zh) * 2015-11-27 2018-08-24 北京环境特性研究所 一种用于强散射源诊断的射线关联分析方法

Also Published As

Publication number Publication date
CN106526547A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN109116320B (zh) 一种基于雷达回波信号的海浪特征参数提取方法
Bai et al. High resolution ISAR imaging of targets with rotating parts
CN106526547B (zh) 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法
CN107102324B (zh) 一种近景微波成像方法及系统
CN108983208B (zh) 一种基于近场稀疏成像外推的目标rcs测量方法
CN108872985A (zh) 一种近场圆周sar快速三维成像方法
CN109856635A (zh) 一种csar地面动目标重聚焦成像方法
CN105676218A (zh) 一种基于双频干涉的太赫兹雷达目标三维成像方法
CN105929397B (zh) 基于正则化的偏置相位中心天线成像方法
Tulgar et al. Improved pencil back-projection method with image segmentation for far-field/near-field SAR imaging and RCS extraction
CN110554377B (zh) 基于多普勒中心偏移的单通道sar二维流场反演方法及系统
CN110596706B (zh) 一种基于三维图像域投射变换的雷达散射截面积外推方法
CN114252878A (zh) 一种基于逆合成孔径雷达对运动目标进行成像及横向定标的方法
CN108594196A (zh) 一种目标散射中心参数提取方法及装置
Parker et al. Preliminary experimental results for RF tomography using distributed sensing
CN112305541A (zh) 一种基于抽样序列长度约束条件下的sar成像方法
CN106897985B (zh) 一种基于可见度分类的多角度sar图像融合方法
Bati et al. Advanced radar cross section clutter removal algorithms
Demirci et al. Wide‐field circular SAR imaging: An empirical assessment of layover effects
CN109959933A (zh) 一种基于压缩感知的多基线圆迹合成孔径雷达成像方法
Wu et al. Near-field holographic microwave imaging using data collected over cylindrical apertures
Klare et al. DisasterManagement with the MIMO Radar MIRA-CLE Ka: Measurements of a Slowly MovingWall
CN108375769B (zh) 一种结合sar成像和isar成像的雷达成像方法
CN104167019B (zh) 一种sar图像精确度计算方法
Welsh et al. Multistatic 3D SAR imaging with coarse elevation and azimuth sampling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant