CN108983208B - 一种基于近场稀疏成像外推的目标rcs测量方法 - Google Patents

一种基于近场稀疏成像外推的目标rcs测量方法 Download PDF

Info

Publication number
CN108983208B
CN108983208B CN201810629585.1A CN201810629585A CN108983208B CN 108983208 B CN108983208 B CN 108983208B CN 201810629585 A CN201810629585 A CN 201810629585A CN 108983208 B CN108983208 B CN 108983208B
Authority
CN
China
Prior art keywords
field
target
scattering
sparse
phi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810629585.1A
Other languages
English (en)
Other versions
CN108983208A (zh
Inventor
孙超
常庆功
王亚海
胡大海
颜振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 41 Institute
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201810629585.1A priority Critical patent/CN108983208B/zh
Publication of CN108983208A publication Critical patent/CN108983208A/zh
Application granted granted Critical
Publication of CN108983208B publication Critical patent/CN108983208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于近场稀疏成像外推的目标RCS测量方法,采用稀疏重建算法进行目标高分辨成像,生成图像中非零像素即为目标的散射中心,避免了CLEAN算法迭代过程带来的积累误差问题,并且在稀疏字典构造过程中考虑天线方向图和距离衰减因素,提高了RCS测量的精度。

Description

一种基于近场稀疏成像外推的目标RCS测量方法
技术领域
本发明涉及微波测量相关技术领域,具体的说,是涉及一种基于近场稀疏成像外推的目标RCS测量方法。
背景技术
雷达散射截面(RCS)测量对于设计和评估武器装备的隐身性能非常重要。常规的RCS测量方法主要包括室外RCS测量、紧缩场测量和室内微波暗室测量,均已发展到相当成熟的阶段。大型室外场和紧缩场均可以满足目标RCS远场测量条件,但是室外场受天气和环境的影响较大,获得高精度数据代价巨大,且保密性不好;紧缩场要求很高的加工精度,使得系统的代价非常昂贵。室内微波暗室测量具有很强的抗干扰性,保密性好,测试效率高,但室内微波暗室的空间有限,对于电大尺寸目标往往难以满足远场测量条件。
针对室内微波暗室RCS测量不满足远场条件的问题,国内外开展了许多利用近场散射数据来获得目标RCS的研究工作。目前的测量方法在提取目标散射中心时,需要通过CLEAN算法迭代提取强散射中心信息,由此引起的积累误差将降低散射中心位置和强度信息的提取精度,此外,现有方法并未考虑天线方向图和距离衰减对回波功率造成的影响,RCS外推结果存在一定的误差。
发明内容
本发明为了解决上述问题,提出了一种基于近场稀疏成像外推的目标RCS测量方法,采用稀疏重建算法进行目标高分辨成像,生成图像中非零像素即为目标的散射中心,避免了CLEAN算法迭代过程带来的积累误差问题,并且在稀疏字典构造过程中考虑天线方向图和距离衰减因素,提高了RCS测量的精度。
为了实现上述目的,本发明采用如下技术方案:
一种基于近场稀疏成像外推的目标RCS测量方法,包括如下步骤:
步骤1:设定近场测量参数:包括近场测量的测试频率、测试角度、天线到转台中心的距离R0,确定测试天线方向图参数G2(θ,f)。
步骤2:根据设定的近场测量的测试频率、测试角度、天线到转台中心距离R0和天线方向图参数构建反映目标实际散射特性的稀疏字典。
步骤3:在近场测试条件下,根据设定的测量参数检测不同频率、不同方位角度下的空暗室和目标近场散射信号数据,所述近场散射信号数据包括幅度和相位信息。
步骤4:在与步骤3同样的测试条件下,利用转台获得不同频率、不同方位角度下的空暗室和定标体散射数据,所述近场散射信号数据包括幅度和相位信息。
步骤5:将步骤3和4测量的近场散射信号数据进行预处理。
步骤6:将处理后的数据利用稀疏重建算法分别生成目标高分辨图像和定标体高分辨图像。
步骤7:根据步骤6生成的目标高分辨图像和定标体高分辨图像分别计算目标的远场散射场和定标体的重建散射场。
步骤8:通过定标体的RCS根据计算的目标体的远场散射数据和定标体的重建散射场计算目标体的RCS。
进一步的,所述步骤2构建反映目标实际散射特性的稀疏字典的方法具体为:将二维近场散射信号数据矩阵和二维成像场景散射系数矩阵按列重排为一维列向量,并将近场散射信号数据采用矩阵表示:
Enear=ΦA
Enear表示近场散射信号数据列向量,A表示成像场景散射系数γ列向量,Φ表示稀疏字典,将第i个二维成像场景位置对应散射中心的单位幅度近场散射信号数据列向量作为稀疏字典的第i个列向量构建稀疏字典Φ。
进一步的,所述步骤4预处理为滤除噪声和干扰,所述预处理的方法为背景对消和软件时域门方法。
进一步的,所述步骤6利用稀疏重建算法生成目标高分辨图像和定标体高分辨图像的方法为:
步骤601:构建目标矩阵Φ1,目标矩阵Φ1是稀疏字典的同型矩阵,初始化目标矩阵Φ1为空,初始化剩余能量为近场散射信号的初始能量,设定剩余信号能量阈值为近场散射信号的初始能量的0.05;
步骤602:求解剩余信号与稀疏字典Φ中列向量最大相关系数的位置索引,并将所述位置索引在稀疏字典Φ中对应的向量更新到目标矩阵Φ1相应的位置,将所述稀疏字典Φ中对应的向量置零;
步骤603:根据目标矩阵Φ1计算成像场景散射系数A,然后根据成像场景散射系数A计算剩余信号能量,将剩余信号能量与设定的剩余信号能量阈值比较,如果剩余信号能量高于阈值,执行步骤602,否则执行步骤604;
步骤604:稀疏重建过程结束,计算得到的A即为生成的高分辨图像。
进一步的,所述步骤7具体为:由步骤6生成的目标体高分辨图像和定标体高分辨图像中的非零像素对应提取出来的目标强散射中心,利用这些散射中心分别重构目标的远场散射场和定标体的重建散射场。
一种基于近场稀疏成像外推的目标RCS的测量系统,包括:
用于设定近场测量参数的装置。
用于根据设定的近场测量的测试频率、测试角度、天线到转台中心距离R0和天线方向图参数构建反映目标实际散射特性的稀疏字典的装置。
用于测量近场散射信号数据的测量装置。
用于将近场散射信号数据进行预处理的装置。
用于将处理后的数据利用稀疏重建算法分别生成目标高分辨图像和定标体高分辨图像的装置。
用于将目标高分辨图像和定标体高分辨图像分别计算目标的远场散射场和定标体的重建散射场的装置。
用于通过定标体的RCS根据计算的目标体的远场散射数据和定标体的重建散射场计算目标体的RCS的装置。
与现有技术相比,本发明的有益效果为:
(1)相比于传统基于转台成像的RCS外推方法,本发明避免了CLEAN算法迭代过程中因误差积累带来的RCS外推精度降低问题,同时考虑天线方向图和距离衰减因素,进一步提高了RCS测量精度。
(2)本发明在采样数据不满足奈奎斯特采样定律或存在数据缺损情况下,依然能够保证RCS外推精度。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。
图1是本发明的近场测量系统模型图;
图2是本发明的基于近场稀疏成像外推的目标RCS测量方法的流程图。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下述实施例为本申请的一种典型的实施方式,如图2所示,一种基于近场稀疏成像外推的目标RCS测量方法,包括如下步骤:
步骤1:确定近场关键参数:包括天线到转台中心的距离R0和测试天线方向图参数。测试天线方向图参数可通过查找说明或进行测试获取,天线到转台中心的距离R0可通过一维距离像直接获得。
步骤2:根据近场测量的测试频率、测试角度、天线到转台中心距离R0和天线方向图参数构建反映目标实际散射特性的稀疏字典。
步骤3:在不满足远场测试条件下,利用转台获得不同频率、不同方位角度下的空暗室和目标散射数据,包括幅度和相位信息。
步骤4:在同样的测试条件下,利用转台获得不同频率、不同方位角度下的空暗室和定标体散射数据,包括幅度和相位信息。
步骤5:将步骤3和4测量的散射数据进行预处理。
步骤6:利用稀疏重建算法生成目标体高分辨图像和定标体高分辨图像。
步骤7:根据步骤6生成的目标体高分辨图像和定标体高分辨图像分别计算目标体的远场散射数据和定标体的重建散射场。
步骤8:通过定标体的RCS根据计算的目标体的远场散射数据和定标体的重建散射场计算目标体的RCS。
所述步骤2构建反映目标实际散射特性的稀疏字典的方法具体为:
如图1所示,由于收发天线放置的很近,因此双站角很小,可以近似为单站系统。单站系统通过接收天线获得的目标近场散射信号为:
Figure BDA0001700153620000051
如图1所示θ是转台相对于初始位置的转角,目标上的散射中心相对于转台中心的位置坐标为(x,y),目标上的散射中心对应的目标散射系数为γ(x,y),f表示发射频率,R表示目标散射点(x,y)到天线的距离,c表示光速,G2(θ,f)为测试天线方向图参数,D表示待成像区域。
将二维近场散射信号数据矩阵和二维成像场景散射系数矩阵按列重排为一维列向量,将公式(1)表示成矩阵形式:
Enear=ΦA
Enear表示近场散射信号数据列向量,A表示成像场景散射系数γ列向量,Φ表示稀疏字典,将第i个二维成像场景位置对应散射中心的单位幅度近场散射信号数据列向量作为稀疏字典的第i个列向量构建稀疏字典Φ。稀疏字典Φ中的第i个列向量
Figure BDA0001700153620000052
表示为:
Figure BDA0001700153620000053
其中,vec[]表示列向量化。
所述步骤5预处理为滤除噪声和干扰,所述预处理的方法为背景对消和软件时域门方法。
所述步骤6利用稀疏重建算法生成目标高分辨图像和定标体高分辨图像的方法为:
步骤601:构建目标矩阵Φ1,目标矩阵Φ1是稀疏字典的同型矩阵,初始化目标矩阵Φ1为空,初始化剩余能量为近场散射信号的初始能量,设定剩余信号能量阈值为近场散射信号的初始能量的0.05;
步骤602:求解剩余信号与稀疏字典Φ中列向量最大相关系数的位置索引,并将所述位置索引在稀疏字典Φ中对应的向量更新到目标矩阵Φ1相应的位置,将所述稀疏字典Φ中对应的向量置零;
步骤603:根据目标矩阵Φ1计算成像场景散射系数A,然后根据成像场景散射系数A计算剩余信号能量,将剩余信号能量与设定的剩余信号能量阈值比较,如果剩余信号能量高于阈值,执行步骤602,否则执行步骤604;
步骤604:稀疏重建过程结束,计算得到的A即为生成的高分辨图像。
在高频区,目标散射信号可以表示为若干强散射中心散射信号的和,这体现了目标信号的空域稀疏特性,因而可以利用稀疏重建算法实现目标图像的高分辨重构,本实施例步骤6的具体过程为:
(1)初始化剩余信号r0=Enear,迭代次数n=1,目标矩阵Φ1为空;
(2)求解最大相关系数的位置索引,即
Figure BDA0001700153620000061
其中
Figure BDA0001700153620000062
为稀疏字典Φ的第i个列向量;
(3)将稀疏字典Φ中ind对应的向量
Figure BDA0001700153620000063
更新到目标矩阵Φ1中,并将字典Φ中的
Figure BDA0001700153620000064
置零;
(4)求解投影系数:
Figure BDA0001700153620000065
其中H表示共轭转置,并更新剩余信号rn=Enear1A;
(5)n=n+1,重复过程(2)至过程(4),直到剩余信号能量小于初始信号能量的0.05,得到目标矩阵Φ1。由目标矩阵Φ1计算得到的A即为生成的高分辨图像。
进一步的,所述步骤7具体为:
目标RCS远场数据是目标的各散射中心随频率和方位的变化,步骤6生成的目标体高分辨图像和定标体高分辨图像中的非零像素对应提取出来的目标强散射中心,利用这些散射中心分别重构目标的远场散射场和定标体的重建散射场,通过如下公式计算:
Figure BDA0001700153620000066
其中,fmin和fmax分别为发射频率的最小值和最大值,Θ表示转角θ的范围,An表示第n个散射中心的强度,(xn,yn)为第n个散射中心的坐标位置,N为生成高分辨图像中非零像素的个数。
所述步骤8,通过定标体的RCS根据计算的目标体的远场散射数据和定标体的重建散射场计算目标体的RCS。通过公式(4)计算的目标的远场散射场为Efar(f,θ),定标体的重建散射场为E0(f,θ),通过如下公式计算目标RCS:
Figure BDA0001700153620000071
其中,σ为被测目标的RCS,σ0为定标体的RCS。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (5)

1.一种基于近场稀疏成像外推的目标RCS测量方法,其特征在于,包括如下步骤:
步骤1:设定近场测量参数:包括近场测量的测试频率、测试角度、天线到转台中心的距离R0,确定测试天线方向图参数G2(θ,f);
步骤2:根据设定的近场测量的测试频率、测试角度、天线到转台中心距离R0和天线方向图参数构建反映目标实际散射特性的稀疏字典;
步骤3:在近场测试条件下,根据设定的测量参数检测不同频率、不同方位角度下的空暗室和目标近场散射信号数据;
步骤4:在与步骤3同样的测试条件下,利用转台获得不同频率、不同方位角度下的空暗室和定标体散射数据;
步骤5:将步骤3和4测量的散射数据进行预处理;
步骤6:将处理后的数据利用稀疏重建算法分别生成目标高分辨图像和定标体高分辨图像;具体方法为:
步骤601:构建目标矩阵Φ1,目标矩阵Φ1是稀疏字典的同型矩阵,初始化目标矩阵Φ1为空,初始化剩余能量为近场散射信号的初始能量,设定剩余信号能量阈值为近场散射信号的初始能量的0.05;
步骤602:求解剩余信号与稀疏字典Φ中列向量最大相关系数的位置索引,并将所述位置索引在稀疏字典Φ中对应的向量更新到目标矩阵Φ1相应的位置,将所述稀疏字典Φ中对应的向量置零;
步骤603:根据目标矩阵Φ1计算成像场景散射系数γ列向量A,然后根据A计算剩余信号能量,将剩余信号能量与设定的剩余信号能量阈值比较,如果剩余信号能量高于阈值,执行步骤602,否则执行步骤604;
步骤604:稀疏重建过程结束,计算得到的A即为生成的高分辨图像;
步骤7:根据步骤6生成的目标高分辨图像和定标体高分辨图像分别计算目标的远场散射场和定标体的重建散射场;
步骤8:通过定标体的RCS根据计算的目标的远场散射数据和定标体的重建散射场计算目标的RCS。
2.如权利要求1所述的一种基于近场稀疏成像外推的目标RCS测量方法,其特征在于:
所述步骤2构建反映目标实际散射特性的稀疏字典的方法具体为:将二维近场散射信号数据矩阵和二维成像场景散射系数矩阵按列重排为一维列向量,并将近场散射信号数据采用矩阵表示:
Enear=ΦA
Enear表示近场散射信号数据列向量,A表示成像场景散射系数γ列向量,Φ表示稀疏字典,将第i个二维成像场景位置对应散射中心的单位幅度近场散射信号数据列向量作为稀疏字典的第i个列向量构建稀疏字典Φ。
3.如权利要求1所述的一种基于近场稀疏成像外推的目标RCS测量方法,其特征在于:所述步骤4预处理为滤除噪声和干扰,所述预处理的方法为背景对消和软件时域门方法。
4.如权利要求1所述的一种基于近场稀疏成像外推的目标RCS测量方法,其特征在于:所述步骤7具体为:由步骤6生成的目标高分辨图像和定标体高分辨图像中的非零像素对应提取出来的目标强散射中心,利用这些强散射中心分别重构目标的远场散射场和定标体的重建散射场。
5.一种基于近场稀疏成像外推的目标RCS的测量系统,其特征在于,包括:
用于设定近场测量参数的装置;
用于根据设定的近场测量的测试频率、测试角度、天线到转台中心距离R0和天线方向图参数构建反映目标实际散射特性的稀疏字典的装置;
用于测量近场散射信号数据的测量装置;
所述近场散射信号数据的测量方式为:在不满足远场测试条件下,利用转台获得不同频率、不同方位角度下的空暗室和目标散射数据,包括幅度和相位信息;在同样的测试条件下,利用转台获得不同频率、不同方位角度下的空暗室和定标体散射数据,包括幅度和相位信息;
用于将近场散射信号数据进行预处理的装置;
用于将处理后的数据利用稀疏重建算法分别生成目标高分辨图像和定标体高分辨图像的装置;具体步骤为:
步骤601:构建目标矩阵Φ1,目标矩阵Φ1是稀疏字典的同型矩阵,初始化目标矩阵Φ1为空,初始化剩余能量为近场散射信号的初始能量,设定剩余信号能量阈值为近场散射信号的初始能量的0.05;
步骤602:求解剩余信号与稀疏字典Φ中列向量最大相关系数的位置索引,并将所述位置索引在稀疏字典Φ中对应的向量更新到目标矩阵Φ1相应的位置,将所述稀疏字典Φ中对应的向量置零;
步骤603:根据目标矩阵Φ1计算成像场景散射系数γ列向量A,然后根据A计算剩余信号能量,将剩余信号能量与设定的剩余信号能量阈值比较,如果剩余信号能量高于阈值,执行步骤602,否则执行步骤604;
步骤604:稀疏重建过程结束,计算得到的A即为生成的高分辨图像;
用于将目标高分辨图像和定标体高分辨图像分别计算目标的远场散射场和定标体的重建散射场的装置;
用于通过定标体的RCS根据计算的目标的远场散射数据和定标体的重建散射场计算目标的RCS的装置。
CN201810629585.1A 2018-06-19 2018-06-19 一种基于近场稀疏成像外推的目标rcs测量方法 Active CN108983208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810629585.1A CN108983208B (zh) 2018-06-19 2018-06-19 一种基于近场稀疏成像外推的目标rcs测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810629585.1A CN108983208B (zh) 2018-06-19 2018-06-19 一种基于近场稀疏成像外推的目标rcs测量方法

Publications (2)

Publication Number Publication Date
CN108983208A CN108983208A (zh) 2018-12-11
CN108983208B true CN108983208B (zh) 2020-10-09

Family

ID=64540631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810629585.1A Active CN108983208B (zh) 2018-06-19 2018-06-19 一种基于近场稀疏成像外推的目标rcs测量方法

Country Status (1)

Country Link
CN (1) CN108983208B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109444844B (zh) * 2019-01-04 2020-08-28 北京环境特性研究所 一种提取目标散射中心特征的方法和装置
CN110068799B (zh) * 2019-04-22 2022-04-22 电子科技大学 一种稀疏邻域中心保持rcs序列特征提取方法
CN112230221A (zh) * 2020-09-24 2021-01-15 电子科技大学 一种基于三维稀疏成像的rcs测量方法
CN115561725B (zh) * 2022-10-26 2023-04-14 南京航空航天大学 一种近场外推远场rcs的测量方法
CN116540200B (zh) * 2023-05-09 2023-11-10 南京航空航天大学 一种近场预测远场rcs的优化测量方法
CN116577785A (zh) * 2023-07-12 2023-08-11 南京纳特通信电子有限公司 外场对地目标rcs成像与测量设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526562A (zh) * 2016-10-17 2017-03-22 西北工业大学 一种基于天线方向图修正计算目标rcs的方法
CN106569191A (zh) * 2016-10-17 2017-04-19 西北工业大学 一种利用高分辨率成像获取目标rcs的方法
CN106872951A (zh) * 2017-01-03 2017-06-20 北京环境特性研究所 一种基于压缩感知的暗室宽带rcs测量方法
CN107092017A (zh) * 2017-06-05 2017-08-25 中国电子科技集团公司第四十研究所 一种基于近场mimo成像的rcs外推方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526562A (zh) * 2016-10-17 2017-03-22 西北工业大学 一种基于天线方向图修正计算目标rcs的方法
CN106569191A (zh) * 2016-10-17 2017-04-19 西北工业大学 一种利用高分辨率成像获取目标rcs的方法
CN106872951A (zh) * 2017-01-03 2017-06-20 北京环境特性研究所 一种基于压缩感知的暗室宽带rcs测量方法
CN107092017A (zh) * 2017-06-05 2017-08-25 中国电子科技集团公司第四十研究所 一种基于近场mimo成像的rcs外推方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"THz RCS Measurement System";Liu Wei et al.;《The 11th IEEE International Conference on Electronic Measurement & Instruments》;20131231;第741-744页 *
"基于组稀疏表示的二维全极化散射中心提取";张肖 等;《电光与控制》;20160229;第23卷(第2期);第26-30页 *

Also Published As

Publication number Publication date
CN108983208A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108983208B (zh) 一种基于近场稀疏成像外推的目标rcs测量方法
CN102253376B (zh) 一种基于二维微波成像的低散射共形天线rcs测试方法
CN108872985B (zh) 一种近场圆周sar快速三维成像方法
CN109061323B (zh) 一种采用球面幅度扫描的近场天线测量方法
CN109375171B (zh) 一种基于正交匹配追踪算法的声源定位方法
CN107632210B (zh) 一种太赫兹天线平面近场测量系统
Cano-Fácila et al. New reflection suppression method in antenna measurement systems based on diagnostic techniques
CN106569191A (zh) 一种利用高分辨率成像获取目标rcs的方法
CN107783092B (zh) 基于链条关系式的近场后向rcs测量系统及方法
CN111142105A (zh) 复杂运动目标isar成像方法
CN109917361B (zh) 一种基于双基雷达的三维未知场景成像方法
Tulgar et al. Improved pencil back-projection method with image segmentation for far-field/near-field SAR imaging and RCS extraction
CN114415140A (zh) 基于近场平面扫描三维波数域成像的目标rcs测量方法
CN107092017A (zh) 一种基于近场mimo成像的rcs外推方法
CN110879391B (zh) 基于电磁仿真和弹载回波仿真的雷达图像数据集制作方法
CN115792835A (zh) 基于探头补偿和相位中心补正的目标rcs近场测量方法
CN103076608B (zh) 轮廓增强的聚束式合成孔径雷达成像方法
Chen et al. Direct wave removal in anechoic chamber range imaging from planar scanned data
CN106526547A (zh) 基于InSAR技术的直线扫描近场RCS测试杂波抑制方法
CN115201821A (zh) 基于强目标成像对消的小目标检测方法
CN111735996A (zh) 一种用于数学吸波暗室构建的多径干扰抑制方法及装置
CN109085584B (zh) 基于高自由度的多输入多输出钻孔雷达高效率成像方法
CN107765230B (zh) 链条关系式在近场测量系统的近场到远场变换中的应用方法
Morales et al. Comparison of echo reduction techniques for one-single cut antenna measurements
Tian et al. Examination of spherical antenna far-field scattering suppression through electromagnetic simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant