CN106526128A - 一种获取碎裂岩体强度参数的方法 - Google Patents

一种获取碎裂岩体强度参数的方法 Download PDF

Info

Publication number
CN106526128A
CN106526128A CN201610934527.0A CN201610934527A CN106526128A CN 106526128 A CN106526128 A CN 106526128A CN 201610934527 A CN201610934527 A CN 201610934527A CN 106526128 A CN106526128 A CN 106526128A
Authority
CN
China
Prior art keywords
rock mass
rock
value
index
gsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610934527.0A
Other languages
English (en)
Other versions
CN106526128B (zh
Inventor
冯文凯
刘志刚
易小宇
周强
王�琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201610934527.0A priority Critical patent/CN106526128B/zh
Publication of CN106526128A publication Critical patent/CN106526128A/zh
Application granted granted Critical
Publication of CN106526128B publication Critical patent/CN106526128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种获取碎裂岩体强度参数的方法,涉及力学领域,采用结构面表面等级SCR、结构面条件因子Jc、岩体基本质量指标BQ、岩体结构等级SR四个量化参数进行取值,通过以上方法得到的GSI值是一区间范围而非一定值,使结果更具有合理性,且通过中间参数RMR推导得出岩体基本质量指标BQ与D的关系式。相比前人的岩体波速法,BQ法不仅可以反映扰动前后岩体破碎程度的变化情况,而且对于不同岩性或相同岩性不同风化程度的岩体,BQ法可从强度特征上表现其受扰动程度的差异性,通过BQ法可全面、准确的对D量化取值。

Description

一种获取碎裂岩体强度参数的方法
技术领域
本发明涉及力学领域,具体给出了一种获取碎裂岩体强度参数的方法。
背景技术
目前在获取岩体力学参数的诸多方法中,最准确、最直接的方法就是现场原位试验,然而,由于原位试验周期长、费用高以及现场地质环境条件的复杂性,原位试验通常不易进行。室内试验又存在显著的尺寸效应,并且对于碎裂岩体,稍被扰动其力学性质即发生显著改变,因此,如何快速、可靠获取岩体的力学参数一直是岩体力学的重点研究课题。E.Hoek等通过大量试验研究提出了Hoek-Brown准则,成为迄今为止应用最广、影响最深的岩体强度准则,较好的解决了岩体力学参数取值问题。但Hoek-Brown准则中地质强度指标GSI与岩体扰动程度D的取值采用定性化描述存在一定的局限性,多年来国内外众多学者对GSI与D的取值方法进行改进,庐阳等建立GSI与BQ、岩块饱和单轴抗压强度、岩块天然纵波波速的数学关系式,但通过公式推导得到的GSI值仅与岩体波速相关,不能良好的反映结构面特征和岩体结构;孙金山等通过岩体扰动前后波速变化的关系式来表示扰动系数,但是仅通过岩体的波速变化不能完全反映岩体的受扰动程度,并且其假设扰动前后岩体的密度ρ不变显然不合理。
Hoek-Brown准则:
E.Hoek、E.T.Brown在1980年首次提出Hoek-Brown岩石强度准则,针对准则中的不足之处,E.Hoek于1992年提出改进后的Hoek-Brown岩体强度准则,并于2002年提出GSI参数新的取值方法,引入扰动参数D,也就是现在广泛应用的02版Hoek-Brown准则,即:
式中:σ1、σ3分别为岩体破坏时的最大最小主应力;σci为岩块的单轴抗压强度;mb为岩体Hoek-Brown常数,与完整岩块的mi相关;mi为完整岩块的Hoek-Brown常数;GSI为地质强度指标;D为岩体扰动参数;s,a为取决于岩体特征的系数。
与Mohr-Coulomb强度准则相比,当σt<σ3<σ3max时,Hoek-Brown准则曲线与Mohr-Coulomb强度准则曲线十分吻合,与之等效的岩体抗剪强度参数c与φ的计算公式为:
σ'3n=σ3maxc (7)
E.Hoek提出侧限应力上限值σ3max表达式如下:
边坡:
隧道:
式中:γ为岩体重度,h为岩质边坡高度或隧道埋深,σcm为岩体抗压强度,当σ3满足应力范围0<σ3<0.25σc时,岩体抗压强度σcm可表示为:
由以上分析可知,岩体力学参数获取的关键在于GSI与D的量化取值上。
发明内容
发明目的
本发明提供了一种获取碎裂岩体强度参数的方法,克服了以人为主观因素为主取值的缺点。
技术方案
为解决上述问题,本发明提供了一种获取碎裂岩体强度参数的方法,包括以下步骤:
S1.获取结构面表面等级SCR、结构面条件因子Jc和岩体结构等级SR三种参数;
S2.获取岩体完整性指数Kv:在测量点附近选取合适位置进行取芯钻探,并采用声波仪获取钻孔内岩体波速值,并根绝岩体波速的变化幅度划分相对扰动区与未扰动区,分别计算得出扰动区与为扰动区的岩体的完整性指数Kv;
S3.计算岩体基本质量指标BQu与BQud:根据岩体波速区分出扰动层与相对未扰动层,并分别取岩样做室内的单轴饱和抗压强度试验,得到其岩块的单轴饱和抗压强度Rc,将得到的Rc与Kv代入岩体质量指标计算公式中得到扰动层与相对未扰动层的岩体基本质量指标BQu与BQud;
S4.获取地质强度指标GSI:通过S1获取的SCR、Jc、SR与S3获取的BQu建立地质强度指标的取值表,通过GSI取值表得到的一区间范围值,减小GSI取值过程中的误差;
S5.计算岩体扰动程度D:通过E.Hoek的推导公式可知岩体变形模量Em与岩体扰动程度D的关系式,引入中间变量岩体质量指标RMR并将其代入E.Hoek的推导公式中,得到岩体扰动程度D与岩体变形模量Em的计算公式,并将S3中得到的BQu与BQud代入公式中计算得到岩体扰动程度D;
S6.获取岩体的抗剪强度参数c、φ:得到研究点岩体的mi值,并将其与GSI、D代入Hoek-Brown准则的计算公式11中,得到岩体的抗剪强度参数c、φ的区间范围值,如果需要取定值,则取区间的中间值为定值;
式中:BQud表示未扰动时的岩体基本质量指标,BQd表示扰动后的岩体基本质量指标;当岩体未受扰动时,BQd=BQud,D=0;当 时,D=1,表示岩体受扰动十分强烈。
作为优选,S1具体如下:对调查点的岩体进行精细化测量,得到岩体的风化程度、充填程度、胶结程度、粗糙程度、破碎程度的特征,再根据这些参数得到SCR、Jc、SR的取值。
本发明的有益效果如下:本发明采用岩体基本质量指标BQ、岩体结构等级SR、结构面表面等级SCR、结构面条件因子Jc四个因子对GSI进行量化取值,区间范围减小了取值过程中的主观误差,使GSI的取值更加合理,通过建立岩体基本质量指标BQ与扰动系数D的关系式,不仅从波速上反映岩体的受扰动程度,还可从强度上反映岩体受扰动程度的差异性,使扰动系数取值更为准确。本方法提出对GSI与D的量化参数方法,克服了以人为主观因素为主取值的缺点,有利于对岩体抗剪强度参数准确快速的取值。
附图说明
图1为岩体地质强度指标GSI取值表。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例:
①结构面表面等级SCR、结构面条件因子Jc、岩体结构等级SR的获取:对调查点的岩体进行精细化测量,得到岩体的风化程度、充填程度、胶结程度、粗糙程度、破碎程度等特征,根据这些参数得到SCR、Jc、SR的取值。
②岩体完整性指数Kv的获取:在测量点附近选取合适位置进行取芯钻探,并采用声波仪获取钻孔内岩体波速值,并根绝岩体波速的变化幅度划分相对扰动区与未扰动区,分别计算得出扰动区与为扰动区的岩体的完整性指数Kv。
③岩体基本质量指标BQu与BQud的计算:根据岩体波速区分出扰动层与相对未扰动层,并分别取岩样做室内的单轴饱和抗压强度试验,得到其岩块的单轴饱和抗压强度Rc,将得到的Rc与Kv代入岩体质量指标计算公式中得到扰动层与相对未扰动层的岩体基本质量指标BQu与BQud。
④地质强度指标GSI的获取:通过①获取的SCR、Jc、SR与③获取的BQu建立地质强度指标的取值表,通过GSI取值表得到的一区间范围值,减小了GSI取值过程中的误差,使结果更靠近工程实际。
⑤岩体扰动程度D的计算:通过E.Hoek的推导公式可知岩体变形模量Em与岩体扰动程度D的关系式,本方法中引入中间变量岩体质量指标RMR并将其代入E.Hoek的推导公式中,得到岩体扰动程度D与岩体变形模量Em的计算公式,并将③中得到的BQu与BQud代入公式中计算得到岩体扰动程度D。
⑥获取岩体的抗剪强度参数c、φ:通过E.Hoek的研究得到研究点岩体的mi值,并将其与GSI、D代入Hoek-Brown准则的计算公式11中,得到岩体的抗剪强度参数c、φ的区间范围值,如果需要取定值,则取区间的中间值为定值。
式中:BQud表示未扰动时的岩体基本质量指标,BQd表示扰动后的岩体基本质量指标。当岩体未受扰动时,BQd=BQud,D=0;当 时,D=1,表示岩体受扰动十分强烈。

Claims (2)

1.一种获取碎裂岩体强度参数的方法,其特征在于,包括以下步骤:
S1.获取结构面表面等级SCR、结构面条件因子Jc和岩体结构等级SR三种参数;
S2.获取岩体完整性指数Kv:在测量点附近选取合适位置进行取芯钻探,并采用声波仪获取钻孔内岩体波速值,并根绝岩体波速的变化幅度划分相对扰动区与未扰动区,分别计算得出扰动区与为扰动区的岩体的完整性指数Kv;
S3.计算岩体基本质量指标BQu与BQud:根据岩体波速区分出扰动层与相对未扰动层,并分别取岩样做室内的单轴饱和抗压强度试验,得到其岩块的单轴饱和抗压强度Rc,将得到的Rc与Kv代入岩体质量指标计算公式中得到扰动层与相对未扰动层的岩体基本质量指标BQu与BQud;
S4.获取地质强度指标GSI:通过S1获取的SCR、Jc、SR与S3获取的BQu建立地质强度指标的取值表,通过GSI取值表得到的一区间范围值,减小GSI取值过程中的误差;
S5.计算岩体扰动程度D:通过E.Hoek的推导公式可知岩体变形模量Em与岩体扰动程度D的关系式,引入中间变量岩体质量指标RMR并将其代入E.Hoek的推导公式中,得到岩体扰动程度D与岩体变形模量Em的计算公式,并将S3中得到的BQu与BQud代入公式中计算得到岩体扰动程度D;
S6.获取岩体的抗剪强度参数c、φ:得到研究点岩体的mi值,并将其与GSI、D代入Hoek-Brown准则的计算公式11中,得到岩体的抗剪强度参数c、φ的区间范围值,如果需要取定值,则取区间的中间值为定值;
式中:BQud表示未扰动时的岩体基本质量指标,BQd表示扰动后的岩体基本质量指标;当岩体未受扰动时,BQd=BQud,D=0;当 时,D=1,表示岩体受扰动十分强烈。
2.根据权利要求1所述的获取碎裂岩体强度参数的方法,其特征在于,S1具体如下:对调查点的岩体进行精细化测量,得到岩体的风化程度、充填程度、胶结程度、粗糙程度、破碎程度的特征,再根据这些参数得到SCR、Jc、SR的取值。
CN201610934527.0A 2016-10-25 2016-10-25 一种获取碎裂岩体强度参数的方法 Active CN106526128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610934527.0A CN106526128B (zh) 2016-10-25 2016-10-25 一种获取碎裂岩体强度参数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610934527.0A CN106526128B (zh) 2016-10-25 2016-10-25 一种获取碎裂岩体强度参数的方法

Publications (2)

Publication Number Publication Date
CN106526128A true CN106526128A (zh) 2017-03-22
CN106526128B CN106526128B (zh) 2019-12-31

Family

ID=58292817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610934527.0A Active CN106526128B (zh) 2016-10-25 2016-10-25 一种获取碎裂岩体强度参数的方法

Country Status (1)

Country Link
CN (1) CN106526128B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741488A (zh) * 2017-09-20 2018-02-27 西安工业大学 隧道施工期岩体完整性系数Kv的计算方法
CN108470100A (zh) * 2018-03-16 2018-08-31 四川大学 一种定量描述堆石料摩擦角的方差随围压变化规律的方法
CN109583003A (zh) * 2018-10-08 2019-04-05 成都理工大学 基于面裂多边形的碎裂结构岩体碎裂程度量化方法
CN109598015A (zh) * 2018-10-08 2019-04-09 成都理工大学 碎裂结构岩体碎裂程度分级评价方法
CN109598014A (zh) * 2018-10-08 2019-04-09 成都理工大学 基于线裂线段的碎裂结构岩体碎裂程度量化方法
CN109614630A (zh) * 2018-10-08 2019-04-12 成都理工大学 基于迹线节点的碎裂结构岩体碎裂程度量化方法
CN110847969A (zh) * 2019-10-29 2020-02-28 中国电建集团华东勘测设计研究院有限公司 一种适用于岩体条件地下洞室群变形分级预警指标的确定方法
CN111999469A (zh) * 2020-06-10 2020-11-27 中国科学院武汉岩土力学研究所 基于抗钻系数评价岩体等级的评价系统及方法
CN112014213A (zh) * 2020-09-02 2020-12-01 中南大学 一种岩石在三轴压缩条件下破坏准则的构建方法
CN114297824A (zh) * 2021-12-03 2022-04-08 山东科技大学 一种深部高应力硬岩板裂化岩爆释能支护体系设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621050A (zh) * 2012-02-29 2012-08-01 河南煤业化工集团研究院有限责任公司 一种基于地质强度指标的滤失系数的确定方法
CN102635351A (zh) * 2012-03-13 2012-08-15 河南理工大学 一种基于地质强度指标的水力压裂破裂压力的确定方法
CN102982244A (zh) * 2012-11-30 2013-03-20 北京交通大学 地质强度指标的模糊综合评判方法
CN105550441A (zh) * 2015-12-12 2016-05-04 山东科技大学 一种基于连续介质的工程岩体破裂劣化数值模拟方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621050A (zh) * 2012-02-29 2012-08-01 河南煤业化工集团研究院有限责任公司 一种基于地质强度指标的滤失系数的确定方法
CN102635351A (zh) * 2012-03-13 2012-08-15 河南理工大学 一种基于地质强度指标的水力压裂破裂压力的确定方法
CN102982244A (zh) * 2012-11-30 2013-03-20 北京交通大学 地质强度指标的模糊综合评判方法
CN105550441A (zh) * 2015-12-12 2016-05-04 山东科技大学 一种基于连续介质的工程岩体破裂劣化数值模拟方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUANG XIAOHU等: "QUANTIFICATION OF GEOLOGICAL STRENGTH INDEX BASED ON DISCONTINUITY VOLUME DENSITY OF ROCK MASSES", 《INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY》 *
M. CAI等: "Determination of residual strength parameters of jointed rock masses using the GSI system", 《INTERNATIONAL JOURNAL OF ROCK MECHANICS & MINING SCIENCES》 *
于加云等: "基于Hoek-Brown准则的岩体力学参数计算", 《采矿技术》 *
崔明等: "围岩扰动系数D的量化取值", 《中国矿业》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741488A (zh) * 2017-09-20 2018-02-27 西安工业大学 隧道施工期岩体完整性系数Kv的计算方法
CN108470100B (zh) * 2018-03-16 2019-09-06 四川大学 一种定量描述堆石料摩擦角的方差随围压变化规律的方法
CN108470100A (zh) * 2018-03-16 2018-08-31 四川大学 一种定量描述堆石料摩擦角的方差随围压变化规律的方法
CN109598015A (zh) * 2018-10-08 2019-04-09 成都理工大学 碎裂结构岩体碎裂程度分级评价方法
CN109598014A (zh) * 2018-10-08 2019-04-09 成都理工大学 基于线裂线段的碎裂结构岩体碎裂程度量化方法
CN109614630A (zh) * 2018-10-08 2019-04-12 成都理工大学 基于迹线节点的碎裂结构岩体碎裂程度量化方法
CN109614630B (zh) * 2018-10-08 2023-01-17 成都理工大学 基于迹线节点的碎裂结构岩体碎裂程度量化方法
CN109583003A (zh) * 2018-10-08 2019-04-05 成都理工大学 基于面裂多边形的碎裂结构岩体碎裂程度量化方法
CN109598015B (zh) * 2018-10-08 2023-06-06 成都理工大学 碎裂结构岩体碎裂程度分级评价方法
CN109598014B (zh) * 2018-10-08 2023-05-26 成都理工大学 基于线裂线段的碎裂结构岩体碎裂程度量化方法
CN109583003B (zh) * 2018-10-08 2023-04-18 成都理工大学 基于面裂多边形的碎裂结构岩体碎裂程度量化方法
CN110847969A (zh) * 2019-10-29 2020-02-28 中国电建集团华东勘测设计研究院有限公司 一种适用于岩体条件地下洞室群变形分级预警指标的确定方法
CN110847969B (zh) * 2019-10-29 2021-06-08 中国电建集团华东勘测设计研究院有限公司 一种适用于岩体条件地下洞室群变形分级预警指标的确定方法
CN111999469A (zh) * 2020-06-10 2020-11-27 中国科学院武汉岩土力学研究所 基于抗钻系数评价岩体等级的评价系统及方法
CN112014213B (zh) * 2020-09-02 2021-09-28 中南大学 一种岩石在三轴压缩条件下破坏准则的构建方法
CN112014213A (zh) * 2020-09-02 2020-12-01 中南大学 一种岩石在三轴压缩条件下破坏准则的构建方法
CN114297824A (zh) * 2021-12-03 2022-04-08 山东科技大学 一种深部高应力硬岩板裂化岩爆释能支护体系设计方法

Also Published As

Publication number Publication date
CN106526128B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN106526128A (zh) 一种获取碎裂岩体强度参数的方法
Wang et al. Investigation of the P-and S-wave velocity anisotropy of a Longmaxi formation shale by real-time ultrasonic and mechanical experiments under uniaxial deformation
CN105095631B (zh) 一种页岩各向异性岩石物理建模方法
CN110864966B (zh) 一种适用于裂缝型岩石的可压性评价方法
CN105221141B (zh) 一种泥页岩脆性指数预测方法
CN105044794B (zh) 一种核磁共振回波数据的压缩方法及装置
Pitilakis et al. The EUROSEISTEST strong‐motion database and web portal
CN105588883B (zh) 三维岩石力学参数获取方法和系统
Ma et al. Simulating strength parameters and size effect of stochastic jointed rock mass using DEM method
Cheng et al. Determination of damping ratios for soils using bender element tests
CN108828661B (zh) 基于地震脉冲响应谱测定场地卓越周期的方法
Yang et al. Correlation study between fracability and brittleness of shale-gas reservoir
CN106772680A (zh) 基于二维叠后地震资料微观裂缝表征确定方法和装置
Porcino et al. Laboratory determination of mechanical and hydraulic properties of chemically grouted sands
CN107450108A (zh) 甜点区的确定方法和装置
Li et al. Study on equivalent velocity pulse of nearfault ground motions
CN106644879A (zh) 一种确定岩心不同孔隙组分渗透率贡献值的方法及装置
CN107832513A (zh) 基于统计岩体力学的岩体工程参数计算方法及系统
Chenari et al. Site response of heterogeneous natural deposits to harmonic excitation applied to more than 100 case histories
CN109901238A (zh) 一种基于应力差电阻率实验的高应力地层电阻率校正方法
CN109459497A (zh) 一种含平行裂缝横向各向同性岩石的声波速度计算方法
CN108387711A (zh) Toc表征参数、脆性表征参数的确定方法和装置
Graizer Comment on “Comparison of time series and random‐vibration theory site‐response methods” by Albert R. Kottke and Ellen M. Rathje
Shuai et al. Effective elastic properties of rocks with transversely isotropic background permeated by a set of vertical fracture cluster
Rubino* et al. Seismic anisotropy in fractured low-permeability formations: The effects of hydraulic connectivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Feng Wenkai

Inventor after: Yi Xiaoyu

Inventor after: Wang Qi

Inventor after: Zhou Qiang

Inventor after: Liu Zhigang

Inventor before: Feng Wenkai

Inventor before: Liu Zhigang

Inventor before: Yi Xiaoyu

Inventor before: Zhou Qiang

Inventor before: Wang Qi

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant