CN106518070A - 一种多元系高压电活性压电陶瓷材料及其制备方法 - Google Patents

一种多元系高压电活性压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106518070A
CN106518070A CN201610912254.XA CN201610912254A CN106518070A CN 106518070 A CN106518070 A CN 106518070A CN 201610912254 A CN201610912254 A CN 201610912254A CN 106518070 A CN106518070 A CN 106518070A
Authority
CN
China
Prior art keywords
preparation
system high
piezoelectric ceramic
ceramic material
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610912254.XA
Other languages
English (en)
Other versions
CN106518070B (zh
Inventor
李坤
陈森
成炎炎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610912254.XA priority Critical patent/CN106518070B/zh
Publication of CN106518070A publication Critical patent/CN106518070A/zh
Application granted granted Critical
Publication of CN106518070B publication Critical patent/CN106518070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种多元系高压电活性压电陶瓷材料及其制备方法,属于非金属材料技术领域,所述材料的组成用通式xPb(Ni1/3Nb2/3)O3‑yPb(Zn1/3Sb2/3)O3‑zPb(Zn1/3Nb2/3)O3‑(1‑x‑y‑z)Pb1‑m‑nBamSrnTiAZr1‑AO3‑pWO3表示,其中0.01≤x≤0.14,0.01≤y≤0.07,0.005≤z≤0.10,0.02≤m≤0.16,0.02≤n≤0.12,0.42≤A≤0.53,0.002≤p≤0.015;所述材料的制备方法包括配料合成、预烧、球磨、造粒、成型、排胶、埋烧、焙银、极化,具有工艺步骤简单、重复性好、良品率高的优点;所制备的陶瓷样品性能与文献报道中同类的压电材料相比,压电应变常数d33和平面机电耦合系数Kp有明显的提高,易于工业大规模生产。

Description

一种多元系高压电活性压电陶瓷材料及其制备方法
技术领域
本发明属于非金属材料技术领域,主要涉及到压电电子器件和电致伸缩器件,特别涉及一种多元系高压电活性压电材料及其制备方法。
背景技术
作为无机非金属材料重要的组成部分——压电陶瓷,可以实现电能和机械能的相互转化,机械应力引起内部正负电荷中心产生相对位移,发生极化,从而在材料的两端表面出现符号相反的电荷,以产生压电效应。压电效应包括正压电效应和逆压电效应两个部分。正压电效应即在一定方向对介质施加力的作用,使之变形内部出现极化,同时在两个相对表面上出现正负相反的电荷,而当撤除外力后,它又会恢复到不带电状态的现象。逆压电效应则是当在电介质的极化方向上施加电场,电介质会产生形变,电场去掉后,形变消失的现象即为逆压电效应。这种独特的机电转换效应使得压电材料在工业生产和日常生活中有着广泛的应用。从最普通的压电谐振器,到压电点火器、压电蜂鸣器、压电倾斜仪、压电加速度计,以及在高科技领域中应用的压电SAW延迟器和振荡器等,我们都可以看到压电陶瓷的存在。除此之外,随着技术与工艺不断更新换代,高位移的新型压变压器、压电电致动器、用于主动减小振动和降低噪声的压电器件、医用微型压电陶瓷传感器等新的产品也不断产生。
目前,压电陶瓷的研究工作主要集中在三元、四元系的研究中,但获得高d33和Kp的体系尚不多见,特别是d33超过1000pC/N的基本没有。因此本发明旨在将Pb(Ni1/3Nb2/3)O3、Pb(Zn1/3Sb2/3)O3、Pb(Zn1/3Nb2/3)O3与以PZT为基础掺杂了Ba、Sr及少量W的PBSZT进行复合,研究一种具有优良压电和介电性能的多元系压电陶Pb(Ni1/3Nb2/3)O3-Pb(Zn1/3Sb2/3)O3-Pb(Zn1/ 3Nb2/3)O3-PbBaSrTiZrO3(PNN-PZS-PZN-PBSZT)。通过深入研究Pb(Ni1/3Nb2/3)O3、Pb(Zn1/ 3Sb2/3)O3、Pb(Zn1/3Nb2/3)O3的含量,Zr/Ti比和PZT中Ba、Sr、W的掺杂量对本体系陶瓷性能的影响,从而寻找出最佳的组成配方,以制备同时具有高d33和Kp的压电陶瓷驱动器材料。
发明内容
本发明的目的在于克服现有技术中的缺陷,提供一种高压电活性的,易于生产,良品率高的驱动器用多元系压电陶瓷材料。
解决上述问题所采用的方案是:
本发明首先提供一种高压电活性驱动器用多元系压电陶瓷材料,所述材料的组成用下述通式表示:
xPb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3-(1-x-y-z)Pb1-m- nBamSrnTiAZr1-AO3-pWO3,其中0.01≤x≤0.14,0.01≤y≤0.07,0.005≤z≤0.10,0.02≤m≤0.16,0.02≤n≤0.12,0.42≤A≤0.53,0.002≤p≤0.015。
其中0.01≤x≤0.04,0.01≤y≤0.05,0.01≤z≤0.02,0.12≤m+n≤0.19,0.43≤A≤0.44,0.002≤p≤0.015或者0.10≤x≤0.14,0.02≤y≤0.04,0.010≤z≤0.05,0.10≤m+n≤0.12,0.46≤A≤0.50,0.002≤p≤0.010时,材料的压电活性较高。
本发明还提供上述高压电活性驱动器用多元系压电陶瓷的制备方法,按照以下步骤进行:
(1)按材料的组成通式
xPb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3-(1-x-y-z)Pb1-m- nBamSrnTiAZr1-AO3-pWO3计算所需要的原料;再按照化学式NiNb2O6、ZnSb2O6、ZnNb2O6将氧化亚镍(NiO)、氧化锌(ZnO)、三氧化二锑(Sb2O3)、五氧化二铌(Nb2O5)与部分红丹(即四氧化三铅,又名铅丹,Pb3O4,所含铅量占材料总铅量的16%)、碳酸钡(BaCO3,所含钡量占材料总钡量14%)、碳酸锶(SrCO3,所含锶量占材料总锶量70%)装入球磨罐中进行混合,预烧,形成前驱体。此步骤确保了镍、锌离子在陶瓷晶胞中占据合适的位置,对提高最终压电陶瓷的性能至关重要。
(2)将步骤(1)中得到的前驱体球磨成粒径D50为0.5-0.8μm的粉体,烘干备用;
(3)按材料的组成通式
xPb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3-(1-x-y-z)Pb1-m- nBamSrnTiAZr1-AO3-pWO3将步骤(2)中得到的前驱体与剩余的Pb3O4、BaCO3、SrCO3、TiO2、ZrO2、WO3混合,进行二次预烧;
(4)将步骤(3)中得到的二次预烧料进行球磨,得到浆料;
(5)将步骤(4)中得到的粉料按常规压电陶瓷生产工艺进行造粒,成型,埋烧,焙银;
(6)将步骤(5)中得到的陶瓷样品进行极化,得到压电陶瓷样品。
步骤(1)中的预烧温度为850~1200℃,保温时间为2~4h。
步骤(1)、(2)、(4)中的球磨均在球磨机中进行,加入蒸馏水为分散介质和氧化锆球为球磨介质,氧化锆球与原料的质量比为3:1,球磨时间为4小时,转速为380r/min;烘干温度为150℃。
步骤(3)中二次预烧的温度为850-880℃,保温2~4h。
步骤(5)中的埋烧温度为1260~1310℃,保温1.5~3h。
步骤(8)中的极化在室温的硅油中进行,时间为1min。
与现有技术相比较,本发明具有如下有益效果:
(1)本发明采用二次预烧工艺,先将烧结活性相对较差的镍、锌元素的化合物与碱性较强的锶、钡的化合物混合预烧,以少量氧化铅为扩散促进剂,氧化铅的熔点较低,在预烧时可以产生液相,从而促进离子在高温条件下的扩散能力,有利于铌镍酸盐、锌锑酸盐或铌锌酸盐的形成。
(2)本发明经过大量的研究探索以及重复实验,结果表明,工艺步骤相对简单,复现性好,良品率高,易于工业大规模生产,所制备的陶瓷样品性能与文献报道中同类的压电材料相比,压电应变常数d33和平面机电耦合系数Kp有明显的提高。压电应变常数最高可达1100pC/N、机电耦合系数可达为0.72~0.80、室温相对介电常数为4000~7200。本发明制备的压电陶瓷材料可以用于制备压电振子、驱动器、压电蜂鸣器等领域,尤其适合经编纺织机大驱动力贾卡制造。
附图说明
图1为实施例2中不同Zr/Ti条件下制备的压电陶瓷材料的XRD图谱。
图2为实施例2中不同Zr/Ti条件下制备的压电陶瓷材料的SEM图谱;图中2a、2b、2c依次为Zr/Ti为57/43、56/44、55/45条件下制备的压电陶瓷材料的XRD图谱;左侧图和右侧图分别为在不同电镜大小下的结果,左侧均为×10000倍下,标尺大小均为1μm,右侧均为×5000倍下,标尺大小均为5μm。
图3为实施例2中不同烧结条件下制备的压电陶瓷材料的SEM图谱;图中3a、3b、3c的烧结温度依次为1260℃、1270℃、1280℃。左侧图和右侧图分别为不同电镜大小下的结果,左侧均为×10000倍下,标尺大小均为1μm,右侧均为×5000倍下,标尺大小均为5μm。
图4为实施例4中制备的压电陶瓷材料的介电温谱图谱。
具体实施方式
下面结合附图的实施例对本发明进一步说明,但本发明不限于这些实施例。
实施例1:
以生产0.25mol本发明产品为例,用化学式
0.01Pb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3-0.97Pb1-m- nBamSrnTi0.45Zr0.55O3-pWO3表示,其中x、y、z均为0.01,A为0.45,0.04≤m≤0.08,0.08≤n≤0.12,p=0.003。
(1)按照化学式NiNb2O6、ZnSb2O6、ZnNb2O6称取原料NiO、ZnO、Sb2O3、Nb2O5及部分Pb3O4、BaCO3、SrCO3(加入物质的铅量、钡量、锶量分别占各自元素摩尔总量的16%、14%和70%)装入球磨罐中进行混合,球磨介质为去离子水和氧化锆球,原料与氧化锆的质量比为1:3,在380r/min下球磨4h,150℃烘干。
(2)将步骤(1)中得到的混合粉料装入刚玉坩埚,压实、加盖,1150℃下预烧,保温3h,升温速率为3℃/min。并将得到的粉体球磨,球磨成粒径D50为0.5-0.8μm的粉体,步骤与工艺与步骤(1)相同。
(3)将步骤(2)得到的粉料按化学通式加入剩余的Pb3O4、BaCO3、SrCO3、TiO、ZrO、WO3进行球磨,步骤与工艺与步骤(1)相同。
(4)将步骤(3)中得到的粉料装入刚玉坩埚,压实、加盖,880℃下预烧,保温3h,升温速率为3℃/min。
(5)将步骤(4)得到的粉料装入球磨罐球磨,步骤与工艺与步骤(1)相同。
(6)将步骤(5)中得到的粉料加入浓度为5wt%的PVA溶液进行造粒,并在400MPa下压制成陶瓷胚体,其中粉体与PVA溶液的质量比为1:0.10。
(7)将步骤(6)中得到的陶瓷胚体在550℃下保温2h以进行有机物排除,得到排胶胚体。
(8)将步骤(7)中得到的排胶胚体放置在装有造粒后粉体的氧化铝坩埚中埋烧,按升温速率3℃/min升温到1270℃,保温1.5h,然后随炉冷却至室温,得到陶瓷。
(9)将步骤(8)得到的陶瓷打磨抛光,焙上银电极,在室温下于硅油中,加3kV/mm的电场,极化1min。
得到的样品按ANSI/IEEE标准进行测试,测得各样品的性能见表1。
表1.不同Ba、Sr含量对陶瓷电性能的影响
由表1可见,当0.16≤m+n≤0.20时,所制备的压电陶瓷性能较好,其中当m+n=0.18时性能更好,尤以m=0.08,n=0.10时所制备的压电陶瓷总体性能最佳。
由表1可见Pb(Ni1/3Nb2/3)O3、Pb(Zn1/3Sb2/3)O3、Pb(Zn1/3Nb2/3)O3含量均为0.01,A=0.45,Ba含量为0.04~0.08,Sr含量为0.08~0.12,所制备的压电陶瓷的体积密度基本都达到7.5g/cm3,结合XRD分析其致密度,发现样品致密度都在95%以上。压电应变常数d33,平面机电耦合系数Kp和厚度机电耦合系数Kt随着m+n的减小,都存在先增大后减小的趋势,但损耗tanδ和相对介电常数εr则呈现一直减小的趋势。所以本发明选择m=0.06~0.08,n=0.10~0.12。
实施例2:
以生产0.25mol本发明产品为例,用通式
0.01Pb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3-0.97Pb1-m- nBamSrnTiAZr1-AO3-pWO3表示,其中x、y、z均为0.01,m为0.06~0.08,n为0.10~0.12,A为0.42~0.45,p=0.003。
其制备和测试方法与实施例1相同,测得的各性能见表2。
表2.不同Ba、Sr含量下Zr/Ti比变化的陶瓷的电学性能
由表2可见,在Ba、Sr含量分别为0.08、0.12,0.08、0.10和0.06、0.12时,随着Zr/Ti比向着富锆方向的移动,压电陶瓷的体积密度ρ在逐渐减小而相对介电常数εr则逐渐增加;在Ba、Sr含量为0.06、0.10时,相对介电常数εr则逐渐减小。各Ba、Sr含量下压电应变常数d33、平面机电耦合系数Kp和厚度机电耦合系数Kt则呈现先增大后减小的情况,损耗tanδ则一直增大。
图1是按通式
0.01Pb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3-0.97Pb0.92Ba0.08Sr0.10TiAZr1-AO3-pWO3制备的不同Zr/Ti比的压电陶瓷材料的XRD图谱。由图1可知,本发明制备的样品均为纯洁的钙钛矿结构,无第二相生产。
图2是按通式
0.01Pb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3-0.97Pb0.92Ba0.08Sr0.10TiAZr1-AO3-pWO3制备的不同Zr/Ti比的压电陶瓷材料的SEM图谱。a、b、c依次为Zr/Ti为57/43、56/44、55/45。出图中可以看出所制备的陶瓷样品晶粒尺寸大小比较均一,晶粒尺寸约为5μm。
选择其中m=0.08,n=0.10,Zr/Ti为56/44的样品分别在1260℃、1270℃、1280℃进行烧结,各样品性能见表3。
表3.不同烧结温度下陶瓷的电学性能
从表3可以看出,随着烧结温度的提高,样品的各项性能都有所提高,只有损耗tanδ是在1270℃最低,为0.031。图3是在不同烧结温度下制备的压电陶瓷材料的SEM图谱,a、b、c的烧结温度依次为1260℃、1270℃、1280℃。随着烧结温度的提高,晶粒的生长越完全,晶粒尺寸逐渐变大,均匀性也越来越好,气泡也很少,在1280℃烧结的晶粒尺寸约在5μm左右。
实施例3:
以生产0.25mol本发明产品为例,用通式
xPb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3–(0.98-x)Pb0.82Ba0.08Sr0.10Ti0.435Zr0.555O3-pWO3表示,其中0.01≤x≤0.04,y、z均为0.01,m为0.08,n为0.10,A为0.44,p=0.003。
(1)按照化学式NiNb2O6、ZnSb2O6、ZnNb2O6称取原料NiO、ZnO、Sb2O3、Nb2O5及部分Pb3O4、BaCO3、SrCO3(分别占各自元素总量的16%、14%和70%)装入球磨罐中进行混料球磨介质为去离子水和氧化锆球,原料与氧化锆的质量比为1:3,在380转/min下球磨4h,150℃烘干。
(2)将步骤(1)中得到的粉料装入刚玉坩埚,压实、加盖,1200℃下预烧,保温3h,升温速率为3℃/min。并将得到的粉体球磨,步骤与工艺与步骤(1)相同。
(3)将步骤(2)得到的粉料按通式加入剩余Pb3O4、BaCO3、SrCO3、TiO、ZrO进行球磨,步骤与工艺与步骤(1)相同。
(4)将步骤(3)中得到的粉料装入刚玉坩埚,压实、加盖,880℃下预烧,保温3h,升温速率为3℃/min。
(5)将步骤(4)得到的粉料装入球磨罐球磨,步骤与工艺与步骤(1)相同。
(6)将步骤(5)中得到的粉料加入浓度为5wt%的PVA溶液进行造粒,并在400MPa下压制成陶瓷胚体,其中粉体与PVA溶液的质量比为1:0.10。
(7)将步骤(6)中得到的陶瓷胚体在550℃下保温2h以进行有机物排除,得到排胶胚体。
(8)将步骤(7)中得到的排胶胚体放置在装有造粒后粉体的氧化铝坩埚中埋烧,按升温速率3℃/min升温到1260℃,保温1.5h,然后随炉冷却至室温,得到陶瓷。
(9)将步骤(8)得到的陶瓷打磨抛光,焙上银电极,在室温下于硅油中,加3kV/mm的电场,极化1min。
得到的样品按ANSI/IEEE标准进行测试,测得各样品的性能见表4。
表4.不同Pb(Ni1/3Nb2/3)O3含量对陶瓷电性能的影响
由表4可见,随着Pb(Ni1/3Nb2/3)O3含量的逐渐增大,压电应变常数d33和相对介电常数εr都呈现先增加后减小的趋势,所不同的是压电应变常数d33在Pb(Ni1/3Nb2/3)O3含量为0.03时,达到最大值1100pC/N,而相对介电常数εr在Pb(Ni1/3Nb2/3)O3含量为0.02时,达到最大值5343。平面机电耦合系数Kp则表现出先减小后增大的情况,最高达到79%。损耗tanδ随着Pb(Ni1/3Nb2/3)O3含量的逐渐增大也随之变大。
实施例4:
以生产0.25mol本发明产品所用原料为例,用通式
xPb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3–(0.98-x)Pb0.82Ba0.08Sr0.10Ti0.435Zr0.555O3-pWO3表示,其中0.10≤x≤0.14,y为0.03,z为0.02,m为0.02,n为0.10,A为0.48,p=0.003。
实验方法和测试方法均实施例3相同,测试和计算结果见表5。
表5.不同Pb(Ni1/3Nb2/3)O3含量对陶瓷电性能的影响
掺杂量/x d33(pC/N) Kp Qm tanδ εr
0.10 683 0.62 388 0.021 5655
0.11 725 0.64 484 0.019 5964
0.12 838 0.65 332 0.025 6377
0.13 776 0.62 425 0.033 5835
0.14 727 0.60 507 0.034 5540
由表5可见,随着Pb(Ni1/3Nb2/3)O3含量的逐渐增大,压电应变常数d33、相对介电常数εr、平面机电耦合系数Kp都呈现先增加后减小的趋势,在Pb(Ni1/3Nb2/3)O3含量为0.12时,压电应变常数d33达到最大值838pC/N,相对介电常数εr达到最大值6377。品质因素呈现出一定的波动,在Pb(Ni1/3Nb2/3)O3含量为0.14时,达到最大507,损耗tanδ则表现出增大的趋势。
实施例5:
以生产0.25mol本发明产品所用原料为例,用通式
0.02Pb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-0.01Pb(Zn1/3Nb2/3)O3–(0.98-y)Pb0.82Ba0.08Sr0.10Ti0.44Zr0.56O3-pWO3表示,其中x为0.02,0.01≤y≤0.05,z为0.01,m为0.08,n为0.10,A为0.44,p=0.003。
实验方法和测试方法均实施例3相同,测试和计算结果见表6。
表6.不同Pb(Zn1/3Sb2/3)O3含量对陶瓷电性能的影响
掺杂量/y d33(pC/N) Kp Qm tanδ εr
0.01 923 0.71 115 0.037 5343
0.02 860 0.75 190 0.036 4885
0.03 678 0.60 68 0.032 4606
0.04 727 0.54 57 0.039 7178
0.05 682 0.50 82 0.045 6408
由表6可以发现,随着Pb(Zn1/3Sb2/3)O3含量的增加,压电应变常数d33和相对介电常数εr出现先减小后增加再减小的情况,总体来说是随着掺杂量的增加,压电性能是下降的,d33的最大值出现在掺杂量为0.01时,而εr的最大值则是在掺杂量为0.04时,达到7178;平面机电耦合系数Kp和品质因素Qm是先增加后减小,其中Kp的最大值为75%;损耗tanδ表现出先减小后增加的趋势,最小值出现在掺杂量为0.03时,为0.032。
图4为实施例5制备的材料的介电温谱图,由图4可知,本实施例制备的压电陶瓷的居里温度在150℃附近,且具有一定的弛豫特征。
实施例6:
以生产0.25mol本发明产品所用原料为例,用通式0.02Pb(Ni1/3Nb2/3)O3-0.01Pb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3–(0.97-z)Pb0.82Ba0.08Sr0.10Ti0.43Zr0.57O3-pWO3表示,其中x为0.02,y为0.01,0.01≤z≤0.04,m为0.08,n为0.10,A为0.43,p=0.003。
实验方法和测试方法均实施例3相同,测试和计算结果见表7。
表7.不同Pb(Zn1/3Nb2/3)O3含量对陶瓷电性能的影响
掺杂量/z d33(pC/N) Kp Qm tanδ εr
0.01 727 0.54 57 0.039 7178
0.02 634 0.68 59 0.027 4456
0.03 567 0.65 62 0.022 3743
0.04 530 0.61 69 0.021 3477
由表7可以看出,随着Pb(Zn1/3Nb2/3)O3含量含量的变化,陶瓷的压电应变常数d33、相对介电常数εr和损耗tanδ都逐渐减小,tanδ最小为0.021,平面机电耦合系数Kp先变大再减小,在掺杂量为0.02时,达到最大值为68%,品质因素Qm则没有什么大的变化。
实施例7:
在实施例3的基础上改变WO3的掺杂量,结果见表8。
表8.不同WO3掺杂量对陶瓷电性能的影响
由表可见,对比各Pb(Ni1/3Nb2/3)O3含量下不同WO3掺杂量可以看出,随着WO3掺杂量的增加,陶瓷的压电应变常数d33、相对介电常数εr、平面机电耦合系数Kp都呈现出先增大后减小的趋势。

Claims (10)

1.一种多元系高压电活性压电陶瓷材料,其特征在于,所述材料的组成用下述通式表示:
xPb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3
-(1-x-y-z)Pb1-m-nBamSrnTiAZr1-AO3-pWO3
其中0.01≤x≤0.14,0.01≤y≤0.07,0.005≤z≤0.10,0.02≤m≤0.16,0.02≤n≤0.12,0.42≤A≤0.53,0.002≤p≤0.015。
2.根据权利要求1所述的一种多元系高压电活性压电陶瓷材料,其特征在于,所述材料的组成中,
其中0.01≤x≤0.04,0.01≤y≤0.05,0.01≤z≤0.02,0.12≤m+n≤0.19,0.43≤A≤0.44,0.002≤p≤0.015。
3.根据权利要求1所述的一种多元系高压电活性压电陶瓷材料,其特征在于,所述材料的组成中,
0.10≤x≤0.14,0.02≤y≤0.04,0.010≤z≤0.05,0.10≤m+n≤0.12,0.46≤A≤0.50,0.002≤p≤0.010。
4.一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,按照如下步骤进行:
(1)按材料的组成通式
xPb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3-(1-x-y-z)Pb1-m-nBamSrnTiAZr1- AO3-pWO3计算所需要的原料;再按照化学式NiNb2O6、ZnSb2O6、ZnNb2O6将氧化亚镍、氧化锌、三氧化二锑、五氧化二铌与部分红丹、碳酸钡、碳酸锶装入球磨罐中进行混合,预烧,形成前驱体;
(2)将步骤(1)中得到的前驱体球磨成粒径D50为0.5-0.8μm的粉体,烘干备用;
(3)按材料的组成通式
xPb(Ni1/3Nb2/3)O3-yPb(Zn1/3Sb2/3)O3-zPb(Zn1/3Nb2/3)O3-(1-x-y-z)Pb1-m-nBamSrnTiAZr1- AO3-pWO3将步骤(2)中得到的前驱体与剩余的Pb3O4、BaCO3、SrCO3、TiO2、ZrO2、WO3混合,于850-880℃进行二次预烧,2~4小时;
(4)将步骤(3)中得到的二次预烧料进行球磨,得到浆料;
(5)将步骤(4)中得到的粉料按常规压电陶瓷生产工艺进行造粒,成型,埋烧,焙银;
(6)将步骤(5)中得到的陶瓷样品进行极化,得到压电陶瓷样品。
5.根据权利要求4所述的一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,步骤(1)中所述加入的红丹中的铅量占压电陶瓷材料总铅量的16%;所述加入的碳酸钡中的钡量占压电陶瓷材料总钡量14%;所述加入碳酸锶中的锶量占压电陶瓷材料总锶量70%;所述预烧温度为850~1200℃,保温时间为2~4h。
6.根据权利要求4所述的一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,步骤(2)中所述前驱体球磨成粒径D50为0.5-0.8μm的粉体。
7.根据权利要求4所述的一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,步骤(3)中所述二次预烧的温度为850-880℃,保温2~4h。
8.根据权利要求4所述的一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,步骤(5)中所述埋烧温度为1260~1310℃,保温1.5~3h。
9.根据权利要求4所述的一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,步骤(8)中所述的极化在室温的硅油中进行,时间为1min。
10.根据权利要求4所述的一种多元系高压电活性压电陶瓷材料的制备方法,其特征在于,所述的球磨均在球磨机中进行,加入蒸馏水为分散介质,氧化锆球为球磨介质,氧化锆球与原料的质量比为3:1,球磨时间为4小时,转速为380r/min;烘干温度为150℃。
CN201610912254.XA 2016-10-19 2016-10-19 一种多元系高压电活性压电陶瓷材料及其制备方法 Active CN106518070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610912254.XA CN106518070B (zh) 2016-10-19 2016-10-19 一种多元系高压电活性压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610912254.XA CN106518070B (zh) 2016-10-19 2016-10-19 一种多元系高压电活性压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106518070A true CN106518070A (zh) 2017-03-22
CN106518070B CN106518070B (zh) 2019-06-04

Family

ID=58332481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610912254.XA Active CN106518070B (zh) 2016-10-19 2016-10-19 一种多元系高压电活性压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106518070B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046807A (zh) * 2017-12-04 2018-05-18 郑州搜趣信息技术有限公司 一种稳定的压电陶瓷及其制备方法
CN111146329A (zh) * 2019-12-30 2020-05-12 平拓(上海)新材料科技有限公司 一种核电奥氏体焊缝检测用高介电压电材料及制备方法
CN111747740A (zh) * 2020-06-28 2020-10-09 安徽容知日新科技股份有限公司 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN114276131A (zh) * 2021-12-30 2022-04-05 湖南纳金新材料技术有限公司 一种中介电常数的微波介质陶瓷材料及制备其的方法
CN115894021A (zh) * 2022-12-26 2023-04-04 西安创研电子科技有限公司 一种高机械品质因数硬性压电陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315860A (ja) * 1996-05-28 1997-12-09 Toyota Central Res & Dev Lab Inc 圧電磁器組成物
CN1546427A (zh) * 2003-12-05 2004-11-17 中国科学院上海硅酸盐研究所 适合工业化生产的掺杂锑锰-锆钛酸铅基压电陶瓷材料及其制备方法
CN1659115A (zh) * 2002-06-05 2005-08-24 松下电器产业株式会社 压电陶瓷组合物和使用该组合物的积层压电装置及其制造方法
JP2006199524A (ja) * 2005-01-19 2006-08-03 Nec Tokin Corp 圧電磁器組成物
CN101948309A (zh) * 2010-08-20 2011-01-19 暨南大学 一种掺杂psmzt压电陶瓷及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315860A (ja) * 1996-05-28 1997-12-09 Toyota Central Res & Dev Lab Inc 圧電磁器組成物
CN1659115A (zh) * 2002-06-05 2005-08-24 松下电器产业株式会社 压电陶瓷组合物和使用该组合物的积层压电装置及其制造方法
CN1546427A (zh) * 2003-12-05 2004-11-17 中国科学院上海硅酸盐研究所 适合工业化生产的掺杂锑锰-锆钛酸铅基压电陶瓷材料及其制备方法
JP2006199524A (ja) * 2005-01-19 2006-08-03 Nec Tokin Corp 圧電磁器組成物
CN101948309A (zh) * 2010-08-20 2011-01-19 暨南大学 一种掺杂psmzt压电陶瓷及其制备方法和应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046807A (zh) * 2017-12-04 2018-05-18 郑州搜趣信息技术有限公司 一种稳定的压电陶瓷及其制备方法
CN111146329A (zh) * 2019-12-30 2020-05-12 平拓(上海)新材料科技有限公司 一种核电奥氏体焊缝检测用高介电压电材料及制备方法
CN111146329B (zh) * 2019-12-30 2023-09-19 平拓(上海)新材料科技有限公司 一种核电奥氏体焊缝检测用高介电压电材料及制备方法
CN111747740A (zh) * 2020-06-28 2020-10-09 安徽容知日新科技股份有限公司 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN111747740B (zh) * 2020-06-28 2022-06-10 安徽容知日新科技股份有限公司 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN114276131A (zh) * 2021-12-30 2022-04-05 湖南纳金新材料技术有限公司 一种中介电常数的微波介质陶瓷材料及制备其的方法
CN115894021A (zh) * 2022-12-26 2023-04-04 西安创研电子科技有限公司 一种高机械品质因数硬性压电陶瓷材料及其制备方法
CN115894021B (zh) * 2022-12-26 2024-01-16 西安创研电子科技有限公司 一种高机械品质因数硬性压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN106518070B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
Liu et al. Large strain and temperature-insensitive piezoelectric effect in high-temperature piezoelectric ceramics
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN103787658B (zh) 无铅压电铌酸钾钠基光-电多功能材料及制备方法
JP2008537724A (ja) 高出力圧電セラミック用組成物
CN101186502A (zh) 一种铌酸钾钠基无铅压电陶瓷的制备方法
Perumal et al. Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions
CN104876567A (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
US20130162108A1 (en) Piezoelectric ceramic and piezoelectric device
Yan et al. Large enhancement of transduction coefficient in PZN-PZT energy harvesting system through introducing low-εr PIN relaxor
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN111269009A (zh) 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
US8231803B2 (en) Piezoelectric ceramic and piezoelectric ceramic composition
CN107226698A (zh) 一种应用于水声换能器的压电陶瓷材料及制备方法
CN104230333A (zh) 一种高温压电陶瓷材料及其制备方法
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN103524129B (zh) 一种超声发射型换能器用压电陶瓷材料及其制备方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
KR20130083218A (ko) 비납계 압전 세라믹스 및 그 제조 방법
Zhao et al. Improved Piezoelectricity in (K 0.44 Na 0.52 Li 0.04)(Nb 0.91 Ta 0.05 Sb 0.04) O 3-x Bi 0.25 Na 0.25 NbO 3 Lead-Free Piezoelectric Ceramics
JP2011195382A (ja) 圧電磁器およびそれを用いた圧電素子
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法
CN115353385A (zh) 一种增强无铅压电陶瓷热稳定性的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant