CN106512921A - 一种改性二氧化硅纳米颗粒、制备方法及其应用 - Google Patents

一种改性二氧化硅纳米颗粒、制备方法及其应用 Download PDF

Info

Publication number
CN106512921A
CN106512921A CN201611079647.3A CN201611079647A CN106512921A CN 106512921 A CN106512921 A CN 106512921A CN 201611079647 A CN201611079647 A CN 201611079647A CN 106512921 A CN106512921 A CN 106512921A
Authority
CN
China
Prior art keywords
snps
gpts
silicon dioxide
preparation
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611079647.3A
Other languages
English (en)
Other versions
CN106512921B (zh
Inventor
王仕兴
付立康
彭金辉
张利波
张耕玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201611079647.3A priority Critical patent/CN106512921B/zh
Publication of CN106512921A publication Critical patent/CN106512921A/zh
Application granted granted Critical
Publication of CN106512921B publication Critical patent/CN106512921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种改性二氧化硅纳米颗粒、制备方法及其应用,属于纳米材料制备技术领域。将纳米二氧化硅颗粒与3‑氯丙基三乙氧基硅烷混合后,加入到无水乙醇溶液中,然后再加入氨水,回流反应后液固分离,取出固体物质用无水乙醇洗涤离心分离后真空干燥,将得到的产物标记为GPTS‑SNPs;将得到的GPTS‑SNPs加入到二甲基甲酰胺溶液中,加入甲基丙烯酰氧乙基三甲基氯化铵、4,4‑联吡啶和CuCl,回流反应后液固分离,取出固体物质用二甲基甲酰胺溶液洗涤离心分离后真空干燥,得到最终改性二氧化硅纳米颗粒,标记为CHClN‑SNPs。该改性二氧化硅纳米颗粒可用作吸附剂,吸附酸性浸出液中的金离子,材料成本低,工艺制备简单,易与水溶液分离,具有高吸附性且可重复使用。

Description

一种改性二氧化硅纳米颗粒、制备方法及其应用
技术领域
本发明涉及一种改性二氧化硅纳米颗粒、制备方法及其应用,属于纳米材料制备技术领域。
背景技术
黄金是一种兼具商品和货币双重属性的特殊产品,在应对金融危机、保障国家经济安全中具有不可替代的作用。我国黄金的生产原料来源于黄金矿山、有色金属工业副产物,其中矿山产金占据较大比例,2014年达到368.364吨,占全国总产量的81.53%。不论是在金的分析测定还是在其湿法冶炼过程中,对金的分离富集都是必不可少的。吸附分离富集法由于选择性好、操作简单等特点而普遍受到重视。目前应用较广泛的吸附剂有纳米二氧化硅、活性炭、聚氨酯泡沫塑料、螯合树脂等。为了适应各种目的和要求,人们研究开发新型吸附剂的努力从未间断过。其中,二氧化硅纳米材料由于具有高比表面积、成本廉价、易于合成改性、绿色环保等优点,是吸附剂材料的理想之选。
发明内容
针对上述现有技术存在的问题及不足,本发明提供一种改性二氧化硅纳米颗粒、制备方法及其应用。该改性二氧化硅纳米颗粒可用作吸附剂,吸附酸性浸出液中的金离子,材料成本低,工艺制备简单,易与水溶液分离,具有高吸附性且可重复使用。本发明通过以下技术方案实现。
一种改性二氧化硅纳米颗粒,其结构式为:
,式中为纳米二氧化硅颗粒。
一种改性二氧化硅纳米颗粒的制备方法,其具体步骤如下:
(1)将纳米二氧化硅颗粒与3-氯丙基三乙氧基硅烷混合后,加入到无水乙醇溶液中,然后再加入氨水,回流反应后液固分离,取出固体物质用无水乙醇洗涤离心分离后真空干燥,将得到的产物标记为GPTS-SNPs;
(2)将步骤(1)得到的GPTS-SNPs加入到二甲基甲酰胺溶液中,加入甲基丙烯酰氧乙基三甲基氯化铵、4,4-联吡啶和CuCl,回流反应后液固分离,取出固体物质用二甲基甲酰胺溶液洗涤离心分离后真空干燥,得到最终改性二氧化硅纳米颗粒,标记为CHClN-SNPs。
所述步骤(1)中3-氯丙基三乙氧基硅烷与纳米二氧化硅颗粒液固比为2:1~4:1ml/g,无水乙醇溶液与纳米二氧化硅颗粒液固比为15:1~17:1ml/g,氨水与纳米二氧化硅颗粒液固比为1:1.2~1:1.3ml/g。
所述步骤(2)中二甲基甲酰胺溶液与GPTS-SNPs液固比为35:1~45:1ml/g,甲基丙烯酰氧乙基三甲基氯化铵与GPTS-SNPs液固比为4:1~6:1ml/g,4,4-联吡啶与GPTS-SNPs的质量比为1:15~1:25,CuCl与GPTS-SNPs的质量比为1:35~1:45。
所述步骤(1)中在60~70℃条件下回流反应20~30h。
所述步骤(2)中在65~75℃条件下回流反应30~40h。
该改性二氧化硅纳米颗粒能在酸性浸出液中吸附分离金的应用。
上述的有机试剂和无机试剂都为市购的分析纯。
本发明制备得到的改性二氧化硅纳米颗粒吸附剂主要用于从酸性浸出液中吸附分离金离子,与现有技术相比,具有如下优点:
(1)对金离子有较高的吸附量。
(2)本发明的制备方法简捷、成本较低。
(3)本发明的二氧化硅纳米颗粒吸附剂无毒无害,性能稳定,易于分离,可重复利用,对环境不造成二次污染。
(4)具有较好的应用与经济价值。
综上所述,本发明的吸附分离金的二氧化硅纳米颗粒CHClN-SNPs在金离子的吸附分离方面具有很大的潜力。
具体实施方式
下面结合具体实施方式,对本发明作进一步说明。
实施例1
该改性二氧化硅纳米颗粒,其结构式为:
,式中为纳米二氧化硅颗粒。
该改性二氧化硅纳米颗粒的制备方法,其具体步骤如下:
(1)将液固比为2:1ml/g纳米二氧化硅颗粒与3-氯丙基三乙氧基硅烷混合后,按照无水乙醇溶液与纳米二氧化硅颗粒液固比为15:1ml/g加入到无水乙醇溶液中,然后按照氨水与纳米二氧化硅颗粒液固比为1:1.2ml/g再加入氨水,在60℃条件下回流反应20h后液固分离,取出固体物质用无水乙醇洗涤离心分离后真空干燥,将得到的产物标记为GPTS-SNPs;
(2)按照液固比为35:1ml/g将步骤(1)得到的GPTS-SNPs加入到二甲基甲酰胺溶液中,加入甲基丙烯酰氧乙基三甲基氯化铵、4,4-联吡啶和CuCl,其中甲基丙烯酰氧乙基三甲基氯化铵与GPTS-SNPs液固比为4:1ml/g,4,4-联吡啶与GPTS-SNPs的质量比为1:15,CuCl与GPTS-SNPs的质量比为1:35,在65℃的条件下回流反应30h后液固分离,取出固体物质用二甲基甲酰胺溶液洗涤离心分离后真空干燥,得到最终改性二氧化硅纳米颗粒,标记为CHClN-SNPs。
吸附金离子性能测定:
取20mgCHClN-SNPs吸附剂投入初始浓度为100mg/L的金离子溶液中震荡吸附1h后,离心分离吸附剂,用ICP-OES测定滤液中剩余金离子浓度为24.4mg/L,吸附率为75.6%。将吸附过金离子的吸附剂在硫脲溶液(10wt%)中搅拌洗涤3h,然后用蒸馏水洗涤4次,最后将吸附剂在60℃下真空干燥12h。取上述吸附剂20mg投入初始浓度为100mg/L的金离子溶液中震荡吸附1h后,离心分离吸附剂,用ICP-OES测定滤液中剩余金离子浓度为25.6mg/L,吸附率为77.4%。说明本发明的吸附分离金的二氧化硅纳米颗粒CHClN-SNPs可循环利用。
实施例2
该改性二氧化硅纳米颗粒,其结构式为:
,式中为纳米二氧化硅颗粒。
该改性二氧化硅纳米颗粒的制备方法,其具体步骤如下:
(1)将液固比为3:1ml/g纳米二氧化硅颗粒与3-氯丙基三乙氧基硅烷混合后,按照无水乙醇溶液与纳米二氧化硅颗粒液固比为16:1ml/g加入到无水乙醇溶液中,然后按照氨水与纳米二氧化硅颗粒液固比为1:1.3ml/g再加入氨水,在65℃条件下回流反应25h后液固分离,取出固体物质用无水乙醇洗涤离心分离后真空干燥,将得到的产物标记为GPTS-SNPs;
(2)按照液固比为40:1ml/g将步骤(1)得到的GPTS-SNPs加入到二甲基甲酰胺溶液中,加入甲基丙烯酰氧乙基三甲基氯化铵、4,4-联吡啶和CuCl,其中甲基丙烯酰氧乙基三甲基氯化铵与GPTS-SNPs液固比为5:1ml/g,4,4-联吡啶与GPTS-SNPs的质量比为1:20,CuCl与GPTS-SNPs的质量比为1:40,在70℃的条件下回流反应35h后液固分离,取出固体物质用二甲基甲酰胺溶液洗涤离心分离后真空干燥,得到最终改性二氧化硅纳米颗粒,标记为CHClN-SNPs。
吸附金离子性能测定:
取20mgCHClN-SNPs吸附剂投入初始浓度为100mg/L的金离子溶液中震荡吸附1h后,离心分离吸附剂,用ICP-OES测定滤液中剩余金离子浓度为19.5mg/L,吸附率为80.5%。将吸附过金离子的吸附剂在硫脲溶液(10wt%)中搅拌洗涤3 h,然后用蒸馏水洗涤4次,最后将吸附剂在60℃下真空干燥12h。取上述吸附剂20mg投入初始浓度为100mg/L的金离子溶液中震荡吸附1h后,离心分离吸附剂,用ICP-OES测定滤液中剩余金离子浓度为20.1mg/L,吸附率为79.9%。说明本发明的吸附分离金的二氧化硅纳米颗粒CHClN-SNPs可循环利用。
实施例3
该改性二氧化硅纳米颗粒,其结构式为:
,式中为纳米二氧化硅颗粒。
该改性二氧化硅纳米颗粒的制备方法,其具体步骤如下:
(1)将液固比为4:1ml/g纳米二氧化硅颗粒与3-氯丙基三乙氧基硅烷混合后,按照无水乙醇溶液与纳米二氧化硅颗粒液固比为17:1ml/g加入到无水乙醇溶液中,然后按照氨水与纳米二氧化硅颗粒液固比为1:1.3ml/g再加入氨水,在70℃条件下回流反应30h后液固分离,取出固体物质用无水乙醇洗涤离心分离后真空干燥,将得到的产物标记为GPTS-SNPs;
(2)按照液固比为45:1ml/g将步骤(1)得到的GPTS-SNPs加入到二甲基甲酰胺溶液中,加入甲基丙烯酰氧乙基三甲基氯化铵、4,4-联吡啶和CuCl,其中甲基丙烯酰氧乙基三甲基氯化铵与GPTS-SNPs液固比为6:1ml/g,4,4-联吡啶与GPTS-SNPs的质量比为1:25,CuCl与GPTS-SNPs的质量比为1:45,在75℃的条件下回流反应40h后液固分离,取出固体物质用二甲基甲酰胺溶液洗涤离心分离后真空干燥,得到最终改性二氧化硅纳米颗粒,标记为CHClN-SNPs。
吸附金离子性能测定:
取20mgCHClN-SNPs吸附剂投入初始浓度为100mg/L的金离子溶液中震荡吸附1h后,离心分离吸附剂,用ICP-OES测定滤液中剩余金离子浓度为25.6mg/L,吸附率为74.4%。将吸附过金离子的吸附剂在硫脲溶液(10wt%)中搅拌洗涤3h,然后用蒸馏水洗涤4次,最后将吸附剂在60℃下真空干燥12h。取上述吸附剂20mg投入初始浓度为100mg/L的金离子溶液中震荡吸附1h后,离心分离吸附剂,用ICP-OES测定滤液中剩余金离子浓度为25.9mg/L,吸附率为74.1%。说明本发明的吸附分离金的二氧化硅纳米颗粒CHClN-SNPs可循环利用。
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (7)

1.一种改性二氧化硅纳米颗粒,其特征在于:其结构式为:
,式中为纳米二氧化硅颗粒。
2.一种根据权利要求1所述的改性二氧化硅纳米颗粒的制备方法,其特征在于具体步骤如下:
(1)将纳米二氧化硅颗粒与3-氯丙基三乙氧基硅烷混合后,加入到无水乙醇溶液中,然后再加入氨水,回流反应后液固分离,取出固体物质用无水乙醇洗涤离心分离后真空干燥,将得到的产物标记为GPTS-SNPs;
(2)将步骤(1)得到的GPTS-SNPs加入到二甲基甲酰胺溶液中,加入甲基丙烯酰氧乙基三甲基氯化铵、4,4-联吡啶和CuCl,回流反应后液固分离,取出固体物质用二甲基甲酰胺溶液洗涤离心分离后真空干燥,得到最终改性二氧化硅纳米颗粒,标记为CHClN-SNPs。
3.根据权利要求2所述的权利要求1所述的改性二氧化硅纳米颗粒的制备方法,其特征在于:所述步骤(1)中3-氯丙基三乙氧基硅烷与纳米二氧化硅颗粒液固比为2:1~4:1ml/g,无水乙醇溶液与纳米二氧化硅颗粒液固比为15:1~17:1ml/g,氨水与纳米二氧化硅颗粒液固比为1:1.2~1:1.3ml/g。
4.根据权利要求2所述的权利要求1所述的改性二氧化硅纳米颗粒的制备方法,其特征在于:所述步骤(2)中二甲基甲酰胺溶液与GPTS-SNPs液固比为35:1~45:1ml/g,甲基丙烯酰氧乙基三甲基氯化铵与GPTS-SNPs液固比为4:1~6:1ml/g,4,4-联吡啶与GPTS-SNPs的质量比为1:15~1:25,CuCl与GPTS-SNPs的质量比为1:35~1:45。
5.根据权利要求2所述的权利要求1所述的改性二氧化硅纳米颗粒的制备方法,其特征在于:所述步骤(1)中在60~70℃条件下回流反应20~30h。
6.根据权利要求2所述的权利要求1所述的改性二氧化硅纳米颗粒的制备方法,其特征在于:所述步骤(2)中在65~75℃条件下回流反应30~40h。
7.根据权利要求1至6任意一项所述的权利要求1所述的改性二氧化硅纳米颗粒能在酸性浸出液中吸附分离金的应用。
CN201611079647.3A 2016-11-30 2016-11-30 一种改性二氧化硅纳米颗粒、制备方法及其应用 Active CN106512921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611079647.3A CN106512921B (zh) 2016-11-30 2016-11-30 一种改性二氧化硅纳米颗粒、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611079647.3A CN106512921B (zh) 2016-11-30 2016-11-30 一种改性二氧化硅纳米颗粒、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106512921A true CN106512921A (zh) 2017-03-22
CN106512921B CN106512921B (zh) 2018-10-23

Family

ID=58353500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611079647.3A Active CN106512921B (zh) 2016-11-30 2016-11-30 一种改性二氧化硅纳米颗粒、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106512921B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855019A (zh) * 2018-05-29 2018-11-23 华中科技大学 一种漂浮型分散固相萃取吸附剂的制备方法及应用
CN109554114A (zh) * 2018-12-26 2019-04-02 闽江学院 一种快干疏水漆及其制备方法
CN110105328A (zh) * 2019-04-01 2019-08-09 昆明理工大学 一种硫辛酸改性的金离子吸附剂、制备方法及其应用
CN114849677A (zh) * 2022-06-10 2022-08-05 重庆大学 一种磷酸根吸附材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136319A1 (en) * 2008-12-03 2010-06-03 Keio University Method for forming mesoporous silica layer, its porous coating, anti-reflection coating, and optical member
CN102525828A (zh) * 2011-12-16 2012-07-04 天津大学 聚甲基丙烯酰氧乙基三甲基氯化铵—甲基丙烯酸甲酯—二氧化硅义齿基托材料及制备方法
KR101373228B1 (ko) * 2012-01-18 2014-03-12 인하대학교 산학협력단 다목적 단분산성 중공형 메조포러스 실리카 입자의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136319A1 (en) * 2008-12-03 2010-06-03 Keio University Method for forming mesoporous silica layer, its porous coating, anti-reflection coating, and optical member
CN102525828A (zh) * 2011-12-16 2012-07-04 天津大学 聚甲基丙烯酰氧乙基三甲基氯化铵—甲基丙烯酸甲酯—二氧化硅义齿基托材料及制备方法
KR101373228B1 (ko) * 2012-01-18 2014-03-12 인하대학교 산학협력단 다목적 단분산성 중공형 메조포러스 실리카 입자의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNJIE YIN等: "Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers", 《COLLOIDS AND SURFACES A: PHYSICOCHEM. ENG. ASPECTS》 *
姜立忠等: "甲基丙烯酰氧基三甲氧基硅烷改性SiO2 的制备", 《北京化工大学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855019A (zh) * 2018-05-29 2018-11-23 华中科技大学 一种漂浮型分散固相萃取吸附剂的制备方法及应用
CN109554114A (zh) * 2018-12-26 2019-04-02 闽江学院 一种快干疏水漆及其制备方法
CN110105328A (zh) * 2019-04-01 2019-08-09 昆明理工大学 一种硫辛酸改性的金离子吸附剂、制备方法及其应用
CN114849677A (zh) * 2022-06-10 2022-08-05 重庆大学 一种磷酸根吸附材料及其制备方法
CN114849677B (zh) * 2022-06-10 2024-01-26 重庆大学 一种磷酸根吸附材料及其制备方法

Also Published As

Publication number Publication date
CN106512921B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN106512921A (zh) 一种改性二氧化硅纳米颗粒、制备方法及其应用
Shu et al. Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis
Nkinahamira et al. Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers
Guibal et al. Competitive sorption of platinum and palladium on chitosan derivatives
CN106582535A (zh) 一种改性二氧化硅纳米颗粒吸附剂、制备方法及其应用
CN106861631B (zh) 功能化中空介孔二氧化硅纳米微球及其制备方法与在吸附重金属离子中的应用
Lu et al. Magnetic chitosan–based adsorbent prepared via Pickering high internal phase emulsion for high-efficient removal of antibiotics
Xu et al. Synthesis, characterization and application of a novel silica based adsorbent for boron removal
CN105903438B (zh) 一种凹凸棒土与氧化石墨烯复合的吸附剂及其制备方法
CN103432996A (zh) 一种可吸附水中污染物的氧化石墨烯磁性介孔氧化硅复合材料的制备方法
Chatterjee et al. Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads
CN106824071A (zh) 一种用于Cr(VI)吸附去除的C@SiO2空心球的制备方法
CN106732384A (zh) 一种改性二氧化硅纳米颗粒、制备方法以及应用
CN106040162B (zh) 一种表面改性二氧化硅材料及其制备方法和应用
CN103191582B (zh) 一种去除水溶液中二价铜离子的方法
CN108262026A (zh) 一种改性二氧化硅纳米吸附剂及其制备方法和应用
CN106944005A (zh) 一种深度去除水中微量氟的树脂基纳米复合吸附剂及其制备方法和应用
Hu et al. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector
CN103265100A (zh) 一种铁铝复合高效吸附絮凝剂及其制备方法和应用
CN106693924B (zh) 一种纳米二氧化硅吸附剂、制备方法及其应用
An et al. Effective recovery of AuCl4− using D301 resin functionalized with ethylenediamine and thiourea
CN108579683B (zh) 一种磺基化金属有机骨架UIO-66@mSi-SO3H材料的应用
US20230125135A1 (en) Lanthanum-iron-loaded carbon nanotube film for environmental restoration, preparation and application thereof
CN107583620A (zh) 一种壳聚糖基金属离子吸附剂及其制备方法
CN104289200B (zh) 一种磁性hacc/氧化多壁碳纳米管吸附剂的制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant