CN106497613B - 一种微波制备氧化铁中高温煤气脱硫剂的方法 - Google Patents

一种微波制备氧化铁中高温煤气脱硫剂的方法 Download PDF

Info

Publication number
CN106497613B
CN106497613B CN201610916040.XA CN201610916040A CN106497613B CN 106497613 B CN106497613 B CN 106497613B CN 201610916040 A CN201610916040 A CN 201610916040A CN 106497613 B CN106497613 B CN 106497613B
Authority
CN
China
Prior art keywords
high temperature
desulfurizing agent
temperature gas
iron oxide
gas desulfurizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610916040.XA
Other languages
English (en)
Other versions
CN106497613A (zh
Inventor
冯宇
米杰
李阳
武蒙蒙
贾磊
鲍卫仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Run Chuan Environmental Protection Technology Co ltd
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610916040.XA priority Critical patent/CN106497613B/zh
Publication of CN106497613A publication Critical patent/CN106497613A/zh
Application granted granted Critical
Publication of CN106497613B publication Critical patent/CN106497613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • C10K1/26Regeneration of the purifying material contains also apparatus for the regeneration of the purifying material

Abstract

本发明公开了一种微波制备氧化铁中高温煤气脱硫剂的方法,是利用微波原位合成法,以草酸亚铁与红土载体混合制备得到脱硫剂前驱体,在微波环境下,先低温焙烧使脱硫剂前驱体分解,再于模拟德士古煤气气氛下低温恒温硫化,最后在含氧气氛下原位再生固化,得到新鲜的中高温煤气脱硫剂。本发明解决了硫化‑再生循环过程中出现的硫化活性降低和脱硫剂内部结构粉化的问题,制备的脱硫剂脱硫效率、硫容利用率和机械强度均得到了提高,经十次硫化/再生循环使用,脱硫效率依然保持在98%以上,机械强度达到165cN/cm左右。

Description

一种微波制备氧化铁中高温煤气脱硫剂的方法
技术领域
本发明属于煤化工脱硫剂制备技术领域,涉及一种中高温煤气脱硫剂的制备方法,特别是一种基于微波制备氧化铁脱硫剂的方法。
背景技术
煤炭资源的洁净转化与高效利用技术是我国经济、社会可持续发展和环境友好的重要能源利用技术,整体气化联合循环发电(IGCC)、熔融碳酸盐燃料电池(CMFC)等发电新技术及合成油、醇醚燃料的煤基多联产新工艺等由于具有热效率高、污染低等优点,已成为煤炭清洁高效利用的主要发展方向。然而,煤气化产物中硫化物的存在不仅腐蚀设备和管道,导致后续变换、重整、合成工艺中的催化剂中毒,排放到大气后,还会严重污染环境,在使用过程中必须净化脱除。与湿法脱硫相比,高温煤气干法脱硫工艺因具有脱硫效率高、脱硫精度高、操作简单的优点,显著提高了煤炭的利用效率以及热效率,被认为是最具潜力的煤气脱硫净化技术。因此,中高温煤气脱硫技术的研究与开发,是实现煤炭高效、洁净利用的关键,硫容高、再生快速和性能稳定脱硫剂的制备具有重要的理论意义和实用价值。
中高温煤气脱硫通过金属氧化物(氧化锌、氧化铁、氧化铜等)或与H2S反应生成金属硫化物来实现。其中,氧化铁脱硫剂天然资源十分丰富、原料来源方便、价格便宜,并且脱硫时硫容和反应性较高,脱硫率可达90%以上。因此,氧化铁脱硫剂由于其较低的经济成本和易于再生的特点被广泛应用。
微波作为一种非电离电磁能及一种新型的加热方式,被广泛应用于材料制备领域。微波加热具有高效节能、低反应活化能等优势,且不同的材料介质吸波能力存在差异,通过调节有关微波的参数可以有效控制合成材料的结构。微波加热的成功应用,可以获得结晶度高、粒径大小均匀、分散性更好的纳米粒子。微波不仅能加快某些反应的反应速率,而且具有促进离子迁移、扩散的能力,同时由于微波“体加热”的特性,可以减少焙烧过程中的烧结现象。因此,采用微波辐射作为脱硫和再生过程中的强化措施,可以有效降低硫化和再生过程的离子扩散阻力、提高反应速率。与传统方法相比,采用微波加热制备的催化剂不仅活性组分负载量大、分散度高,而且脱硫剂具有更丰富的内部孔结构,脱硫活性和反应性更高。
中高温煤气脱硫剂要适应工业应用的需求,除了要求脱硫剂有较长的硫化时间、较高的硫容、良好的机械强度外,还要经得住上百次的循环使用而硫容和反应性没有明显的衰减,这才是高温煤气脱硫技术的关键。但目前制约中高温煤气脱硫剂工业化的症结是脱硫剂结构不稳定,机械强度差、易粉化等引起的脱硫剂脱硫效率的降低和循环使用次数的减少,因此,选择合理的脱硫剂制备条件,保持硫容和机械强度的稳定性,是提高中高温煤气脱硫剂脱硫性能和循环使用性能的关键。
ZL 201410154584.8和ZL 201410176695.9公开了一种基于微波辐射的中高温煤气脱硫剂制备方法和一种利用微波固相合成法制备铁酸锌脱硫剂的方法,然而,这两种脱硫剂制备方法相对于理论硫容来说仍然较低,并且经过多次硫化再生之后,该脱硫剂孔隙结构被严重破坏,机械强度降低,造成脱硫剂硫化与再生循环的效率低下。
发明内容
本发明的目的是提供一种微波制备氧化铁中高温煤气脱硫剂的方法,以提高脱硫剂的硫容利用率和机械强度,解决氧化铁脱硫剂在硫化-再生循环过程中出现的硫化活性降低和脱硫剂内部结构粉化的问题。
本发明是利用微波原位合成法来制备氧化铁脱硫剂作为中高温煤气脱硫剂的,其具体制备方法是以草酸亚铁与红土载体混合制备得到脱硫剂前驱体,在微波环境下,先于250~350℃焙烧所述脱硫剂前驱体使其分解,再将分解的脱硫剂前驱体置于模拟德士古煤气气氛下,加热至350~450℃进行低温恒温硫化,得到脱硫剂前体,最后将脱硫剂前体在550~700℃的含氧气氛下进行原位再生固化,得到新鲜的中高温煤气脱硫剂。
优选地,本发明所述微波环境采用的微波频率为2450MHz,微波功率1000W。
其中,所述红土载体的用量为脱硫剂总质量的65~80%。
本发明是以可溶性亚铁盐与草酸为原料,固相合成所述草酸亚铁的,所述可溶性亚铁盐优选氯化亚铁。所述固相合成过程在球磨机中进行,将可溶性亚铁盐与草酸混合,研磨使其充分反应,并将反应产物在80~130℃烘干。
所述球磨机的球磨速率优选为300~550r/min。
同样,本发明将所述脱硫剂前驱体也在80~130℃进行烘干。
将所述脱硫剂前驱体在250~350℃进行低温微波焙烧时,前驱体中活性组分达到分解温度后,分解成氧化铁。
本发明优选是在氧气体积浓度为2~8%的含氧气氛中对所述脱硫剂前体进行微波原位再生固化的。进而,所述原位再生固化过程中,选择含氧气氛的氧化再生空速为2000~5000h-1
以本发明方法制备氧化铁脱硫剂具有以下优点:1)原位合成法基于金属硫化物的占位机制,可在制备过程中预留较金属氧化物晶体所需的更大的内部空间,避免硫氧置换和分子体积扩大造成的脱硫剂粉化、孔结构堵塞,使硫化和再生时传质速率增加,提高了脱硫剂的脱硫效率。2)原位合成法中金属草酸盐的分解可生成多级孔结构,丰富了脱硫剂的孔隙结构。3)微波加热能够均匀的“体加热”,从而使硫化和再生固化反应加速,提高脱硫效率。4)利用微波加热制备脱硫剂,可避免脱硫剂焙烧过程中的烧结,维持良好的孔隙结构,脱硫剂能保持较高的机械强度。
对本发明制备的氧化铁脱硫剂进行硫化实验,经过十次硫化/再生循环使用后,脱硫效率依然保持在98%以上,且能够保持较高的机械强度,达到165cN/cm左右。
具体实施方式
下述实施例仅为本发明的优选技术方案,并不用于对本发明进行任何限制。对于本领域技术人员而言,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1
称取3.98g四水氯化亚铁、2.52g二水合草酸,混合后在研钵中研磨1小时,再放入球磨机中,以350r/min的转速球磨2小时。将球磨产物在105℃下烘干2小时后,加入3.42g红土,继续在球磨机中球磨2小时,加水挤条,105℃烘干成型得到脱硫剂前驱体。将脱硫剂前驱体放入微波管式炉中,设置微波频率2450MHz,微波功率1000W,采用三段加热方式处理物料。先在空气气氛中升温至250℃使物料分解,到达目标温度后,转换为模拟德士古煤气气氛,升温到350℃,以1000h-1的硫化空速将物料硫化;硫化完全后,升温至550℃,转换成氧气体积浓度为2%的氮气-空气混合气体,以再生空速2000h-1进行微波再生固化,得到新鲜的氧化铁脱硫剂。
对上述制备的氧化铁脱硫剂性能进行评价,具体评价方法为:使用模拟德士古煤气在固定床上进行硫化试验,硫化温度500℃,空速2000h-1;之后使用氧气浓度2%的空气-氮气混合气体对脱硫剂进行再生,再生温度650℃,空速2000h-1。经过十次硫化/再生循环使用,检测脱硫剂的硫容为2.31g/100g脱硫剂,脱硫效率98.93%,机械强度160N/cm。
实施例2
称取3.98g四水氯化亚铁、2.52g二水合草酸,混合后在研钵中研磨1小时,再放入球磨机中,以400r/min的转速球磨2小时。将球磨产物在100℃下烘干2小时后,加入3.19g红土,继续在球磨机中球磨2小时,加水挤条,100℃烘干成型得到脱硫剂前驱体。将脱硫剂前驱体放入微波管式炉中,设置微波频率2450MHz,微波功率1000W,采用三段加热方式处理物料。先在空气气氛中升温至300℃使物料分解,到达目标温度后,转换为模拟德士古煤气气氛,升温到350℃,以1000h-1的硫化空速将物料硫化;硫化完全后,升温至600℃,转换成氧气体积浓度为3%的氮气-空气混合气体,以再生空速4000h-1进行微波再生固化,得到新鲜的氧化铁脱硫剂。
对上述制备的氧化铁脱硫剂性能进行评价,具体评价方法为:使用模拟德士古煤气在固定床上进行硫化试验,硫化温度500℃,空速2000h-1;之后使用氧气浓度2%的空气-氮气混合气体对脱硫剂进行再生,再生温度650℃,空速2000h-1。经过十次硫化/再生循环使用,检测脱硫剂的硫容为2.43g/100g脱硫剂,脱硫效率98.47%,机械强度165N/cm。
实施例3
称取3.98g四水氯化亚铁、2.52g二水合草酸,混合后在研钵中研磨1小时,再放入球磨机中,以450r/min的转速球磨2小时。将球磨产物在110℃下烘干2小时后,加入2.96g红土,继续在球磨机中球磨2小时,加水挤条,110℃烘干成型得到脱硫剂前驱体。将脱硫剂前驱体放入微波管式炉中,设置微波频率2450MHz,微波功率1000W,采用三段加热方式处理物料。先在空气气氛中升温至250℃使物料分解,到达目标温度后,转换为模拟德士古煤气气氛,升温到400℃,以1000h-1的硫化空速将物料硫化;硫化完全后,升温至620℃,转换成氧气体积浓度为4%的氮气-空气混合气体,以再生空速6000h-1进行微波再生固化,得到新鲜的氧化铁脱硫剂。
对上述制备的氧化铁脱硫剂性能进行评价,具体评价方法为:使用模拟德士古煤气在固定床上进行硫化试验,硫化温度500℃,空速2000h-1;之后使用氧气浓度2%的空气-氮气混合气体对脱硫剂进行再生,再生温度650℃,空速2000h-1。经过十次硫化/再生循环使用,检测脱硫剂的硫容为2.67g/100g脱硫剂,脱硫效率99.15%,机械强度180N/cm。
实施例4
称取3.98g四水氯化亚铁、2.52g二水合草酸,混合后在研钵中研磨1小时,再放入球磨机中,以500r/min的转速球磨2小时。将球磨产物在120℃下烘干2小时后,加入3.19g红土,继续在球磨机中球磨2小时,加水挤条,120℃烘干成型得到脱硫剂前驱体。将脱硫剂前驱体放入微波管式炉中,设置微波频率2450MHz,微波功率1000W,采用三段加热方式处理物料。先在空气气氛中升温至300℃使物料分解,到达目标温度后,转换为模拟德士古煤气气氛,升温到400℃,以1000h-1的硫化空速将物料硫化;硫化完全后,升温至700℃,转换成氧气体积浓度为8%的氮气-空气混合气体,以再生空速5000h-1进行微波再生固化,得到新鲜的氧化铁脱硫剂。
对上述制备的氧化铁脱硫剂性能进行评价,具体评价方法为:使用模拟德士古煤气在固定床上进行硫化试验,硫化温度500℃,空速2000h-1;之后使用氧气浓度2%的空气-氮气混合气体对脱硫剂进行再生,再生温度650℃,空速2000h-1。经过十次硫化/再生循环使用,检测脱硫剂的硫容为2.13g/100g脱硫剂,脱硫效率98.63%,机械强度170N/cm。

Claims (10)

1.一种微波制备氧化铁中高温煤气脱硫剂的方法,所述方法包括以草酸亚铁与红土载体混合制备得到脱硫剂前驱体;
其特征是还包括在微波环境下,先于250~350℃焙烧所述脱硫剂前驱体使其分解;再将分解的脱硫剂前驱体置于模拟德士古煤气气氛下,加热至350~450℃进行低温恒温硫化,得到脱硫剂前体;最后将脱硫剂前体在550~700℃的含氧气氛下原位再生固化,得到新鲜的中高温煤气脱硫剂。
2.根据权利要求1所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述微波环境采用的微波频率为2450MHz,微波功率1000W。
3.根据权利要求1所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述红土载体的用量为脱硫剂总质量的65~80%。
4.根据权利要求1所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述草酸亚铁是以可溶性亚铁盐与草酸为原料固相合成得到。
5.根据权利要求4所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述的可溶性亚铁盐为氯化亚铁。
6.根据权利要求4所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述固相合成在球磨机中进行,固相合成反应产物在80~130℃烘干。
7.根据权利要求6所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述球磨机的球磨速率为300~550r/min。
8.根据权利要求1所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是将所述脱硫剂前驱体在80~130℃进行烘干。
9.根据权利要求1所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述含氧气氛中的氧气体积浓度为2~8%。
10.根据权利要求1所述的制备氧化铁中高温煤气脱硫剂的方法,其特征是所述原位再生固化过程中含氧气氛的氧化再生空速为2000~5000h-1
CN201610916040.XA 2016-10-21 2016-10-21 一种微波制备氧化铁中高温煤气脱硫剂的方法 Active CN106497613B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610916040.XA CN106497613B (zh) 2016-10-21 2016-10-21 一种微波制备氧化铁中高温煤气脱硫剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610916040.XA CN106497613B (zh) 2016-10-21 2016-10-21 一种微波制备氧化铁中高温煤气脱硫剂的方法

Publications (2)

Publication Number Publication Date
CN106497613A CN106497613A (zh) 2017-03-15
CN106497613B true CN106497613B (zh) 2019-09-27

Family

ID=58319433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610916040.XA Active CN106497613B (zh) 2016-10-21 2016-10-21 一种微波制备氧化铁中高温煤气脱硫剂的方法

Country Status (1)

Country Link
CN (1) CN106497613B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380031A (zh) * 2018-02-12 2018-08-10 安徽海德化工科技有限公司 一种植物油脱硫设备所用脱硫剂的制备方法
CN108905959B (zh) * 2018-07-09 2021-02-23 太原理工大学 微波原位一步法制备ZnO/MCM-41脱硫剂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130151A (zh) * 1995-12-20 1996-09-04 湖北省化学研究所 转化吸收型常温精脱硫工艺
CN1281030A (zh) * 1999-07-16 2001-01-24 中国科学院化工冶金研究所 适用于炼焦或煤气生产过程中所产煤气的脱硫方法
CN1133731C (zh) * 2001-03-24 2004-01-07 太原理工大学 高温煤气氧化铁粗脱硫剂及制备
CN104437072A (zh) * 2014-11-21 2015-03-25 太原理工大学 一种中高温煤气脱硫剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002061A (ja) * 2005-06-22 2007-01-11 Mitsubishi Heavy Ind Ltd ガス浄化装置、ガス化システム及びガス化発電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130151A (zh) * 1995-12-20 1996-09-04 湖北省化学研究所 转化吸收型常温精脱硫工艺
CN1281030A (zh) * 1999-07-16 2001-01-24 中国科学院化工冶金研究所 适用于炼焦或煤气生产过程中所产煤气的脱硫方法
CN1133731C (zh) * 2001-03-24 2004-01-07 太原理工大学 高温煤气氧化铁粗脱硫剂及制备
CN104437072A (zh) * 2014-11-21 2015-03-25 太原理工大学 一种中高温煤气脱硫剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氧化铁中高温煤气脱硫剂硫化性能及其前驱体热过程动力学研究;胡天麒;《中国优秀硕士学位论文全文数据库》;中国学术期刊(光盘版)电子杂志社;20150915(第9期);第19、31-32、71页以及图3-3 *

Also Published As

Publication number Publication date
CN106497613A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN110085879B (zh) 一种Co9S8/硫氮共掺碳复合材料及其制备方法
CN106229519B (zh) 一种利用煤炭制备自掺杂双功能氧反应电催化剂的方法
CN102002402B (zh) 可再生锰系高温煤气脱硫剂的制备方法
CN101961644B (zh) 一种氯化物-碳质骨架复合吸附剂及其制备方法
CN105582932A (zh) 一种生物质合成气催化剂及其制备方法和应用
CN106497613B (zh) 一种微波制备氧化铁中高温煤气脱硫剂的方法
CN110474050A (zh) 一种掺杂型碳/硫化锰复合材料制备方法
CN114985014A (zh) 一种Zn-atz@COF-TD复合光催化材料的制备方法及其用途
CN113140717B (zh) 一种用于锂离子电池的海藻酸钠基双网络炭气凝胶负极材料制备方法
CN110801821A (zh) 高温脱除硫化氢复合吸附剂及其制备方法和应用
CN106145083B (zh) 一种球形空心碳壳的制备方法、球形空心碳壳及其应用
CN102703134B (zh) 一种利用微波辐射制备中高温煤气脱硫剂的方法
CN103754870B (zh) 一步活化法制备焦炭基成型活性炭的方法
CN110624548B (zh) 脱除煤液化油中杂原子的多级氧化铁催化剂的制备方法
CN108905959B (zh) 微波原位一步法制备ZnO/MCM-41脱硫剂的方法
CN106336910A (zh) 一种利用微波原位合成制备铁酸锌脱硫剂的方法
CN103274395A (zh) 一种可控粒径中间相炭微球的合成方法
CN103433055B (zh) 一种脱氧催化剂的制备方法及利用其进行脱氧的方法
CN107445161B (zh) 一种瓜子壳水热活性炭的制备方法
CN102517098A (zh) 适用于流化体系可再生锰系高温煤气脱硫剂的制备方法
CN113786703B (zh) 一种利用微波外场及工业废渣进行高效烟气吸附与净化的方法
CN105567995B (zh) 一种铜火法精炼使用的复合还原剂
CN108722327A (zh) 一种生物质膜式微波反应器及其应用于甲烷重整的实验装置和方法
CN102851085B (zh) 一种可再生钙系高温煤气脱硫剂
CN105755294B (zh) 一种铜冶炼的生物质炭复合还原剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211027

Address after: Room 217, 2nd floor, information port building, Gaoxin 3rd road, high tech Zone, Xi'an, Shaanxi 710000

Patentee after: Xi'an run Chuan Environmental Protection Technology Co.,Ltd.

Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Patentee before: Taiyuan University of Technology