CN106486281B - 各向异性纳米晶NdFeB致密永磁体的制备方法 - Google Patents

各向异性纳米晶NdFeB致密永磁体的制备方法 Download PDF

Info

Publication number
CN106486281B
CN106486281B CN201610914659.7A CN201610914659A CN106486281B CN 106486281 B CN106486281 B CN 106486281B CN 201610914659 A CN201610914659 A CN 201610914659A CN 106486281 B CN106486281 B CN 106486281B
Authority
CN
China
Prior art keywords
densification
permanent magnet
powder
ndfeb
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610914659.7A
Other languages
English (en)
Other versions
CN106486281A (zh
Inventor
马毅龙
李兵兵
孙建春
李春红
邵斌
郭东林
陈登明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Wentong electromechanical Co.,Ltd.
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201610914659.7A priority Critical patent/CN106486281B/zh
Publication of CN106486281A publication Critical patent/CN106486281A/zh
Application granted granted Critical
Publication of CN106486281B publication Critical patent/CN106486281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开一种各向异性纳米晶NdFeB致密永磁体的制备方法,首先按照Nd11.5Fe81.5Zr1B6的摩尔比制备合金粉末,在所述Nd11.5Fe81.5Zr1B6合金粉末加入其重量1.5‑2%的锌粉并混合均匀,然后将混合粉末热压成致密块体,然后将所述致密块体进行热变形,当所述热变形的形变量达到65‑70%时结束形变即得各向异性纳米晶NdFeB致密永磁体,本发明采用添加合金元素Zr,利用磁悬浮熔炼及真空甩带技术制得非晶Nd11.5Fe81.5Zr1B6条带,将其与适量纳米Zn粉末混合,采用热变形技术,制备出了各向异性纳米晶Nd‑Fe‑B磁体,提高了NdFeB合金的c轴取向,制得的各向异性NdFeB致密磁体所含稀土较少,矫顽力较高,具有优异的综合永磁性能,且不含有重稀土元素和战略性元素Co,所用原料成本低廉。

Description

各向异性纳米晶NdFeB致密永磁体的制备方法
技术领域
本发明涉及磁性材料制备技术领域,具体涉及一种各向异性纳米晶NdFeB致密永磁体的制备方法。
背景技术
随着近年来稀土资源的紧缺与稀土价格的快速提高,无稀土或贫稀土永磁的制备逐渐成为研究的热点,NdFeB合金作为第三代永磁材料,具有优异的磁性能,广泛应用于电子、汽车及国防工业等众多领域。近年来随着电子信息、电动汽车等环境友好型产业的快速发展以及稀土资源的紧缺,贫稀土永磁材料引起了人们的广泛关注。
目前使用的烧结Nd-Fe-B磁体具有高的剩磁和矫顽力,但其稀土含量较高,尤其是含有较多重稀土元素,同时还有大量战略性元素Co等,另一种被广泛使用的粘结磁体,多是利用纳米晶低稀土NdFeB磁粉制得,这种磁粉具有稀土含量低,生产成本较低,但此类磁粉是各向同性,利用其制得的磁体也是各向同性的,剩磁较低。因此研究开发一种同时具有较低含量的稀土元素并具有较高剩磁的磁性材料的制备方法具有重要的实际意义。
发明内容
为解决以上技术问题,本发明提供一种各向异性纳米晶NdFeB致密永磁体的制备方法。
技术方案如下:一种各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于按以下方法进行:
步骤一、按照Nd11.5Fe81.5Zr1B6的摩尔比制备合金粉末;
步骤二、在所述Nd11.5Fe81.5Zr1B6合金粉末中加入其重量1.5-2%的锌粉并混合均匀,然后将混合粉末热压成致密块体;
步骤三、将所述致密块体进行热变形,当所述热变形的形变量达到65-70%时结束形变即得各向异性纳米晶NdFeB致密永磁体。
采用以上技术方案通过添加了Zr元素和适量锌粉来提高NdFeB合金的c轴取向,从而进一步提高其综合磁性能,利用该方法制备的各向异性纳米晶NdFeB致密永磁体具有较好的各向异性,较高的剩磁和矫顽力,且稀土含量低,不含重稀土元素和战略性元素Co。
作为优选:上述Nd11.5Fe81.5Zr1B6合金粉末由以下步骤制得:制备Nd11.5Fe81.5Zr1B6合金铸锭,将所述合金铸锭制成合金薄带,然后将所述合金薄带研磨成所述Nd11.5Fe81.5Zr1B6合金粉末即可。
采用磁悬浮熔炼法反复熔炼三次后即得所述Nd11.5Fe81.5Zr1B6合金铸锭。采用该方案多次熔炼可有效提升合金铸锭的均匀性。
制备所述合金薄带的方法为熔体快淬法,快淬过程中通入氩气,辊轮转速为30m/s。
步骤一中所述Nd11.5Fe81.5Zr1B6合金粉末的粒径为150-200μm。
步骤二中所述热压温度为680-750℃,压力为500-600MPa,保温保压2-5min。
步骤三中所述热变形的温度为750-850℃,变形速度为0.5-0.7%/s,同时施加40-60MPa的载荷。
上述锌粉为纳米锌粉。
有益效果:本发明采用添加合金元素Zr,利用磁悬浮熔炼及真空甩带技术制得非晶Nd11.5Fe81.5Zr1B6条带,将其与适量纳米Zn粉末混合,采用热变形技术,制备出了各向异性纳米晶Nd-Fe-B磁体,提高了NdFeB合金的c轴取向,进而提高综合磁性能,且制得的各向异性NdFeB致密磁体所含稀土较少,矫顽力较高,具有优异的综合永磁性能,制备工艺简单,适于规模生产。常规的各向异性NdFeB永磁材料一般需要13.5-14.5%(摩尔比)的稀土元素,而本发明所制备的磁体稀土含量为11.5%(摩尔比),且不含有重稀土元素和战略性元素Co,所用原料成本低廉。
附图说明
图1为实施例1中的致密块体的退磁曲线;
图2为试验样品Ⅰ的X射线衍射图;
图3为试验样品Ⅰ的退磁曲线;
图4为试验样品Ⅱ的X射线衍射图;
图5为试验样品Ⅱ的退磁曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例1,试验样品Ⅰ,一种各向异性纳米晶NdFeB致密永磁体的制备方法,按以下步骤制备:
步骤一、按照Nd11.5Fe81.5Zr1B6的摩尔比配置合金原料,利用磁悬浮熔炼法制成合金铸锭,并将所述合金铸锭反复熔炼三次,使合金铸锭成分均匀,然后将所述合金铸锭破碎成小块后采用熔体快淬法制成合金薄带,快淬过程中充入氩气,真空甩带,辊轮转速30m/s,将所述合金薄带在手套箱中研磨成150μm的Nd11.5Fe81.5Zr1B6合金粉末,
步骤二、利用电弧蒸发法制得纳米锌粉,然后将所制得的纳米锌粉加入所述Nd11.5Fe81.5Zr1B6合金粉末中,所述纳米锌粉加入量为所述Nd11.5Fe81.5Zr1B6合金粉末重量的1.5%,将两种粉末混合均匀后放入硬质合金模具中,然后利用真空热压炉在680℃,600MPa条件下保温保压2min热压为致密块体,此时致密块体的退磁曲线如图1所示;
步骤三、将所述致密块体放置于热压机上下压头间的石墨垫块上,并将所述致密块体加热至750℃,施加40MPa的载荷,以0.5%/s的变形速度进行热变形,当形变量达到65%时结束变形即制得各向异性纳米晶NdFeB致密永磁体,如图2和3所示,热变形后的NdFeB致密永磁体具有明显的c轴取向,剩磁得到明显改善,且具有较高的矫顽力。
实施例2,试验样品Ⅱ,一种各向异性纳米晶NdFeB致密永磁体的制备方法,按以下步骤制备:
步骤一、按照Nd11.5Fe81.5Zr1B6的摩尔比配置金属原料,利用磁悬浮熔炼制成合金铸锭,并将所述合金铸锭反复熔炼三次,使合金铸锭成分均匀,然后将所述合金铸锭破碎后采用熔体快淬法制成合金薄带,快淬过程中充入氩气,真空甩带,辊轮转速30m/s,将所述合金薄带在手套箱中研磨成粒径为200μm的Nd11.5Fe81.5Zr1B6合金粉末;
步骤二、利用电弧蒸发法制得球形的纳米锌颗粒,并将所制得的纳米锌颗粒加入所述Nd11.5Fe81.5Zr1B6合金粉末中,所述纳米锌颗粒加入量为所述Nd11.5Fe81.5Zr1B6合金粉末重量的2%,将两种粉末混合均匀后放入硬质合金模具中,利用真空热压炉在750℃,500MPa条件下保温保压5min热压为致密块体;
步骤三、将所述致密块体放置于热压机上下压头间的石墨垫块上,并将所述致密块体加热至850℃,施加60MPa的载荷,以0.7%/s的变形速度进行热变形,当形变量达到70%时结束变形即制得各向异性纳米晶NdFeB致密永磁体。如图4和图5所示,按实施例2所述方法制备的试验样品Ⅱ具有明显c轴取向,剩磁得到明显改善,且仍具有较高的矫顽力。
下面用试验数据来进一步说明本发明的效果。
试验样品:分别由实施例1和实施例2制得的试验样品Ⅰ和试验样品Ⅱ;
对照品:按照Nd11.5Fe82.5B6的摩尔比配置金属原料,利用磁悬浮熔炼获得合金铸锭,并反复熔炼三次,使合金铸锭成分均匀,将熔炼的合金铸锭破碎后用溶体快淬法制成合金薄带,快淬过程中充入氩气,辊轮转速30m/s,将所述合金薄带在手套箱中研磨成200μm钕铁硼合金粉末,将所述钕铁硼合金粉末放入硬质合金模具中,利用真空热压炉在680℃,600MPa条件下保温保压2min将所述钕铁硼合金粉末热压为致密块体,将所述致密块体放置于热压机上下压头间的石墨垫块上,并将所述致密块体加热至850℃,施加40MPa的载荷,以0.5%/s的速度进行热形变,形变量为65%时结束变形即获得所述对照品。
分别测试试验样品Ⅰ、试验样品Ⅱ和对照品的剩磁和矫顽力,试验结果如表1所示。
表1剩磁和矫顽力
组别 剩磁(T) 矫顽力(Oe)
试验样品Ⅰ 1.06 7020
试验样品Ⅱ 1.01 6800
对照品 0.62 760
从表1中可以看出,添加了Zr和Zn的试样样品Ⅰ和试验样品Ⅱ的剩磁和矫顽力显著大于没添加Zr和Zn的对照品,因此添加适量Zr和纳米锌粉可显著提高NdFeB合金的剩磁和矫顽力。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (6)

1.一种各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于按以下方法进行:
步骤一、按照Nd11.5Fe81.5Zr1B6的摩尔比制备合金粉末,所述Nd11.5Fe81.5Zr1B6合金粉末的粒径为150-200μm;
步骤二、在所述Nd11.5Fe81.5Zr1B6合金粉末中加入其重量1.5-2%的锌粉并混合均匀,然后将混合粉末热压成致密块体;
步骤三、将所述致密块体进行热变形,当所述热变形的形变量达到65-70%时结束形变即得各向异性纳米晶NdFeB致密永磁体;
所述Nd11.5Fe81.5Zr1B6合金粉末由以下步骤制得:制备Nd11.5Fe81.5Zr1B6合金铸锭,将所述合金铸锭制成合金薄带,然后将所述合金薄带研磨成所述Nd11.5Fe81.5Zr1B6合金粉末即可。
2.根据权利要求1所述的各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于:采用磁悬浮熔炼法反复熔炼三次后即得所述Nd11.5Fe81.5Zr1B6合金铸锭。
3.根据权利要求1或2所述的各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于:制备所述合金薄带的方法为熔体快淬法,快淬过程中通入氩气,辊轮转速为30m/s。
4.根据权利要求1所述的各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于:步骤二中所述热压温度为680-750℃,压力为500-600MPa,保温保压2-5min。
5.根据权利要求1所述的各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于:步骤三中所述热变形的温度为750-850℃,变形速度为0.5-0.7%/s,同时施加40-60MPa的载荷。
6.根据权利要求1所述的各向异性纳米晶NdFeB致密永磁体的制备方法,其特征在于:所述锌粉为纳米锌粉。
CN201610914659.7A 2016-10-20 2016-10-20 各向异性纳米晶NdFeB致密永磁体的制备方法 Active CN106486281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610914659.7A CN106486281B (zh) 2016-10-20 2016-10-20 各向异性纳米晶NdFeB致密永磁体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610914659.7A CN106486281B (zh) 2016-10-20 2016-10-20 各向异性纳米晶NdFeB致密永磁体的制备方法

Publications (2)

Publication Number Publication Date
CN106486281A CN106486281A (zh) 2017-03-08
CN106486281B true CN106486281B (zh) 2017-12-15

Family

ID=58270957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610914659.7A Active CN106486281B (zh) 2016-10-20 2016-10-20 各向异性纳米晶NdFeB致密永磁体的制备方法

Country Status (1)

Country Link
CN (1) CN106486281B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716462A (en) * 1995-06-30 1998-02-10 Kabushiki Kaisha Toshiba Magnetic material and bonded magnet
CN101425355A (zh) * 2008-07-31 2009-05-06 中国计量学院 一种Pr/Nd基双相纳米复合永磁材料及其块体的制备方法
CN103928204A (zh) * 2014-04-10 2014-07-16 重庆科技学院 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN104064301A (zh) * 2014-07-10 2014-09-24 北京京磁电工科技有限公司 一种钕铁硼磁体及其制备方法
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716462A (en) * 1995-06-30 1998-02-10 Kabushiki Kaisha Toshiba Magnetic material and bonded magnet
CN101425355A (zh) * 2008-07-31 2009-05-06 中国计量学院 一种Pr/Nd基双相纳米复合永磁材料及其块体的制备方法
CN103928204A (zh) * 2014-04-10 2014-07-16 重庆科技学院 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN104064301A (zh) * 2014-07-10 2014-09-24 北京京磁电工科技有限公司 一种钕铁硼磁体及其制备方法
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法

Also Published As

Publication number Publication date
CN106486281A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN103106991B (zh) 基于晶界重构的高矫顽力高稳定性钕铁硼磁体及制备方法
CN101521069B (zh) 重稀土氢化物纳米颗粒掺杂烧结钕铁硼永磁的制备方法
CN100365745C (zh) 稀土铁系双相纳米晶复合永磁材料的制备方法
CN102496437B (zh) 各向异性纳米晶复相致密化块体钕铁硼永磁材料的制备方法
CN105489334B (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN104733146B (zh) 稀土类磁铁
CN104575920B (zh) 稀土永磁体及其制备方法
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN101499346A (zh) 一种高工作温度和高耐蚀性烧结钕铁硼永磁体
CN103903823A (zh) 一种稀土永磁材料及其制备方法
CN107564645B (zh) 一种具有低剩磁温度系数高温用钐钴永磁材料及制备方法
WO2019114487A1 (zh) 稀土永磁材料及其制备方法
CN101901658B (zh) 晶界相改性的烧结钕铁硼稀土永磁材料及其制备方法
CN109616310A (zh) 一种高矫顽力烧结钕铁硼永磁材料及其制造方法
CN104078175A (zh) 一种钐钴基纳米晶永磁体材料及其制备方法
CN102610346B (zh) 一种新型无稀土纳米复合永磁材料及其制备方法
CN107424695A (zh) 一种双合金纳米晶稀土永磁体及其制备方法
CN101265529A (zh) 块状纳米晶SmCo系永磁材料的制备方法
CN101236815B (zh) 一种耐高温R-Fe-B系烧结永磁材料及其制造方法
CN103586465B (zh) 一种Sm-Co基纳米磁性材料的制备方法
CN105355412A (zh) 一种硫化处理获得高磁性烧结钕铁硼的方法
CN103680919A (zh) 一种高矫顽力高强韧高耐蚀烧结钕铁硼永磁体的制备方法
CN101786163B (zh) 高性能室温磁致冷纳米块体材料的制备方法
CN106548843A (zh) 稀土永磁材料及其制备方法
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210118

Address after: 401121 3-2-2, building 1, 224 Wuling Road, Yubei District, Chongqing

Patentee after: Chongqing Wentong electromechanical Co.,Ltd.

Address before: 401120 No.20, East Road, University Town, Shapingba District, Chongqing

Patentee before: Chongqing University of Science & Technology