CN106484020A - 低压差线性稳压电路 - Google Patents

低压差线性稳压电路 Download PDF

Info

Publication number
CN106484020A
CN106484020A CN201611109175.1A CN201611109175A CN106484020A CN 106484020 A CN106484020 A CN 106484020A CN 201611109175 A CN201611109175 A CN 201611109175A CN 106484020 A CN106484020 A CN 106484020A
Authority
CN
China
Prior art keywords
single tube
low
load
pipe
regulating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611109175.1A
Other languages
English (en)
Inventor
张翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allwinner Technology Co Ltd
Original Assignee
Allwinner Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allwinner Technology Co Ltd filed Critical Allwinner Technology Co Ltd
Priority to CN201611109175.1A priority Critical patent/CN106484020A/zh
Publication of CN106484020A publication Critical patent/CN106484020A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters

Abstract

本发明一种低压差线性稳压电路,用于输出负载电压,其包括:差分输入级,用于将采集的所述负载电压与接收的参考信号进行比较,并对所述负载电压相对于所述参考信号的误差进行放大;电流源负载,由相连的第一单管和第二单管组成,用于为所述差分输入级提供负载;调整管,与所述第二单管相连接,用于根据所述误差调整所述负载电压;第一电容,一端与所述调整管相连接,另一端与所述第二单管相连接;电流沉,与所述调整管相连接;第二电容,一端与所述调整管相连接,另一端与所述电流沉相连接。本发明应用于LDO电源,具有电路结构简单、负载响应速度快、成本低等特点。

Description

低压差线性稳压电路
技术领域
本发明涉及电源管理领域,具体涉及一种低压差线性稳压电路。
背景技术
低压差线性稳压器因具有成本低、噪音低,静态电流小等优点而广泛应用于SoC芯片的电源管理中。图2示出了负载跳变现象的示意图,负载电流发生跳变时负载电压发生瞬间下冲或过冲的现象,在实际应用中,传统的LDO电源电路通常需要在低压差线性稳压器外部需要连接μF级的大电容。图1是传统低压差线性稳压器的电路结构图,如图1所示,低压差线性稳压器10包括误差放大器AMP、调整管MP和大电容Cout。当负载电流发生跳变时,通过大电容Cout为低压差线性稳压器10提供负载跳变所需要的瞬态电流,从而得到稳定的负载电压。但是,片外大电容不仅增加了系统的体积和成本,而且其自身带来的寄生电感会影响LDO电路的环路稳定性。另一种现有技术是在低压差线性稳压电路的输出端增加额外的摆率增强电路来改善负载响应,而摆率增强电路的结构复杂,且因使用较多元件而带来了成本高的问题。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供低压差线性稳压电路,提高了负载的瞬态响应,克服了传统低压差线性稳压电路需要片外电容的缺陷。
本发明解决其技术问题所采用的技术方案是:
本发明提供了一种低压差线性稳压电路,所述低压差线性稳压电路用于输出负载电压,其包括差分输入级、电流源负载、调整管、第一电容、第二电容和电流沉。
所述差分输入级用于将采集的所述负载电压与接收的参考信号进行比较,并对所述负载电压相对于所述参考信号的误差进行放大;
所述电流源负载由相连的第一单管和第二单管组成,用于为所述差分输入级提供负载;
所述调整管与所述第二单管相连接,用于根据所述误差调整所述负载电压;
所述第一电容的一端与所述调整管相连接,另一端与所述第二单管相连接;
所述电流沉与所述调整管相连接;
所述第二电容的一端与所述调整管相连接,另一端与所述电流沉相连接。
进一步,所述调整管是N型场效应管,其栅极与所述第二单管相连接,其源极与所述第一电容、所述电流沉和所述第二电容相连接。
进一步,所述第一单管和所述第二单管是P型场效应管,两者通过栅极相连接,所述第二单管的漏极与所述调整管相连接,所述第二单管的栅极与所述第一电容相连接。
进一步,所述电流沉是N型场效应管,其漏极与所述调整管相连接,其栅极与所述第二电容相连接。
进一步,所述低压差线性稳压电路还包括偏置电流源,所述偏置电流源与所述差分输入级相连接,以提供所述差分输入级正常工作时所需的偏置电流;所述偏置电流源与所述电流沉相连接,以提供所述电流沉正常工作时所需要的偏置电流。
进一步,所述偏置电流源包括第一N型场效应管和第二N型场效应管,两者通过栅极相互连接,其中,所述第二N型场效应管的漏极与所述差分输入级相连接,栅极与所述电流沉相连接。
进一步,所述差分输入级至少包括一对对管。
进一步,所述差分输入级只包括一对对管时,所述对管为N型场效应管,所述对管的栅极作为接收所述负载电压和所述参考信号的差分输入端,所述对管的源极相连接。
进一步,所述第一电容为pF级或者nF级。
进一步,所述第二电容为pF级或者nF级。
本发明提供的低压差线性稳压电路,当负载电压瞬间下冲时,通过所述第一电容将负载电压迅速耦合到电流源负载的第二单管,并驱动调整管进行补偿,从而快速响应了负载的变化;当负载电压瞬间过冲时,通过所述第二电容将负载电压迅速耦合到电流沉,电流沉将调整管的电流吸收到地,从而快速响应了负载的变化。本发明复用电流源负载的第二单管、调整管的作用,通过第一电容的耦合作用,无需片外电容即实现了负载电压下冲时的负载瞬态响应,通过第二电容的耦合作用以及电流沉的作用,无需片外电容即实现了负载电压过冲时的负载瞬态响应。本发明相比现有设计省去了额外的增强电路,具有电路结构简单、负载响应速度快、成本低等优点。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是传统低压差线性稳压器的电路结构图;
图2是负载跳变现象的示意图;
图3是本发明一实施方式的低压差线性稳压电路的具体电路图。
具体实施方式
现结合附图,对本发明的较佳实施例作详细说明。
图3示出了本发明一实施方式的低压差线性稳压电路的具体电路图,如图3所示,低压差线性稳压电路6用于输出负载电压VOUT,其包括差分输入级64、电流源负载62、调整管MP、第一电容C1、第二电容C2和电流沉M6。
差分输入级64用于将采集的负载电压VOUT与接收的参考信号VREF进行比较,并对负载电压VOUT相对于参考信号VREF的误差进行放大。在本实施方式中,差分输入级64至少包括一对对管,当差分输入级64包括一对对管时,所述对管为N型场效应管,该对管的源极相连接,该对管的栅极作为接收负载电压VOUT和参考信号VREF的差分输入端。在其他实施方式中,差分输入级64也可以包括两对对管,其中一对对管为N型场效应管,另一对对管为P型场效应管,只是电路的连接方式稍作改变,即可实现本发明中此差分输入级的作用。在其他实施方式中,差分输入级64的场效应管可使用P型场效应管或者三极管替代N型场效应管,只是电路的连接方式稍作改变,即可实现本发明中此差分输入级的作用。
在本实施方式中,低压差线性稳压电路6还包括偏置电流源66,偏置电流源66与差分输入级64相连接,以提供差分输入级64正常工作时所需要的偏置电流;偏置电流源66与电流沉M6相连接,以接收偏置电流。在本实施方式中,偏置电流源66包括第一N型场效应管M4和第二N型场效应管M5,两者通过栅极相互连接,其中,偏置电流源66的第二N型场效应管M5的漏极与差分输入级64相连接,第二N型场效应管M5的栅极与电流沉M6相连接。
电流源负载62由相连的第一单管M2和第二单管M3组成,用于为差分输入级64提供负载,其中,第二单管M3与差分输入级64相连,第一单管M2与差分输入级64相连。在本实施方式中,第一单管M2和第二单管M3是P型场效应管,两者通过栅极相连接,两者的源极皆连接电源,第二单管M3的漏极与调整管MP相连接,第二单管M3的栅极与第一电容C1相连接。在其他实施方式中,第一单管M2和第二单管M3可使用N型场效应管,也可使用三极管替代P型场效应管,只是电路的连接方式稍作改变,即可实现本发明中此电流源负载的作用。
调整管MP与第二单管M3相连接,用于根据差分输入级64放大后的误差调整负载电压VOUT。在本实施方式中,调整管MP是N型场效应管,其栅极与第二单管M3的漏极相连接,其源极与第一电容C1、电流沉M6和第二电容C2相连接,其漏极连接电源。第二单管M3是P型场效应管,第二单管M3的漏极与调整管MP的栅极相连接。本实施方式采用NMOS管作为调整管MP,相对于采用PMOS管提高了低压差线性稳压电路的负载响应速度。在其他实施方式中,调整管MP可使用P型场效应管,也可使用三极管替代N型场效应管,只是电路的连接方式稍作改变,即可实现本发明中此调整管的作用。
第一电容C1的一端与调整管MP相连接,另一端与第二单管M3相连接。在本实施方式中,第一电容C1的一端与调整管MP的源极相连接,另一端与第二单管M3的栅极相连接。第一电容C1可集成于芯片中,在本实施方式中,第一电容C1为pF级或者nF级。
电流沉M6与MP调整管相连接。在本实施方式中,电流沉M6是N型场效应管,其漏极与调整管MP相连接,其栅极与第二电容C2相连接。在本实施方式中,偏置电流源包括一对N型场效应管,该对N型场效应管通过栅极相连接;在其他实施方式中,偏置电流源可省去该对N型场效应管,也可使用P型场效应管或者三极管替代N型场效应管,只是电路的连接方式稍作改变,即可实现本发明中此偏置电流源的作用。在本实施方式中,电流沉M6的栅极与偏置电流源66的N型场效应管的栅极相连接,以接收偏置电流,即电流沉M6的栅极与差分输入级64复用偏置电流源66,从而节省了电路资源;在其他实施方式中,电流沉M6也可与差分输入级64分别连接不同的偏置电流源。
第二电容C2的一端与调整管MP相连接,另一端与电流沉M6相连接。第二电容C2可集成于芯片中,在本实施方式中,第二电容C2为pF级或者nF级。
本说明书所记载的一对场效应管是指参数相同的两个场效应管。
在实际工作时,低压差线性稳压电路6形成快反馈通道和慢反馈通道。慢反馈通道是指由差分输入级64、电流源负载62、调整管MP和偏置电流源66形成的反馈环路,该反馈环路的调整时间较长;快反馈通道是指由第一电容C1、第二电容C2、电流沉M6、调整管MP、偏置电流源66和电流源负载62的第二单管M3形成的耦合反馈环路。其中,慢反馈通路与快反馈通路复用调整管MP、偏置电流源66和电流源负载62的第二单管M3。
当负载发生跳变,快反馈通道迅速响应负载的变化,对负载电压VOUT进行调节。低压差线性稳压电路6通过如下过程响应了负载的瞬态变化:当负载电压VOUT瞬间下冲时,第一电容C1将下冲的负载电压VOUT迅速耦合到第二单管M3的栅极,第二单管M3栅极的电压减小引起其漏极电流的增加,其增加的漏极电流使得调整管MP栅极电流增加。调整管MP栅极动态电流对栅极内部寄生电容充电,调整管MP栅极电位提高,从而提高了负载电压VOUT,在不需要额外的增强电路的前提下,实现了负载电压下冲的瞬态补偿。当负载电压VOUT瞬间上冲时,第二电容C2将上冲的负载电压VOUT迅速耦合到电流沉M6的栅极,并由电流沉M6将调整管MP输出的多余的电流吸收到地,从而形成对负载电压VOUT的下拉,减小了负载电压VOUT的过冲。
在上述负载瞬态响应过程完成后,慢反馈通道对负载电压进行重新调整。差分输入级64形成的反馈环路的工作过程如下:差分输入级64工作时,其两端栅极分别接收负载电压VOUT和参考电压VREF,将负载电压VOUT与参考电压VREF之间的误差放大后输出至调整管MP的栅极,使得调整管MP调节漏极电位,从而输出稳定的负载电压VOUT。
综上所述,本发明提供的低压差线性稳压电路相对于现有技术增加了快反馈通道,当负载电压瞬间下冲时,通过第一电容将负载电压迅速耦合到电流源负载的第二单管,并驱动调整管进行补偿,从而快速响应了负载的变化;当负载电压瞬间过冲时,通过第二电容将负载电压迅速耦合到电流沉,电流沉将调整管的电流吸收到地,从而快速响应了负载的变化。本发明复用电流源负载的第二单管、调整管,通过第一电容的耦合作用,实现了负载电压下冲时的负载瞬态响应,通过第二电容的耦合作用以及电流沉的作用,实现了负载电压过冲时的负载瞬态响应。本发明提供的低压差线性稳压电路应用于LDO电源电路中,实现了无需片外大电容即可响应负载瞬态变化,具有电路结构简单、响应速度快、成本低等优点。
应当理解的是,以上实施例仅用以说明本发明的技术方案,而非对其限制,对本领域技术人员来说,可以对上述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而所有这些修改和替换,都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种低压差线性稳压电路,用于输出负载电压,其特征在于,包括:
差分输入级,用于将采集的所述负载电压与接收的参考信号进行比较,并对所述负载电压相对于所述参考信号的误差进行放大;
电流源负载,由相连的第一单管和第二单管组成,用于为所述差分输入级提供负载;
调整管,与所述第二单管相连接,用于根据所述误差调整所述负载电压;
第一电容,一端与所述调整管相连接,另一端与所述第二单管相连接;
电流沉,与所述调整管相连接;及
第二电容,一端与所述调整管相连接,另一端与所述电流沉相连接。
2.根据权利要求1所述的低压差线性稳压电路,其特征在于,所述调整管是N型场效应管,其栅极与所述第二单管相连接,其源极与所述第一电容、所述电流沉和所述第二电容相连接。
3.根据权利要求1所述的低压差线性稳压电路,其特征在于,所述第一单管和所述第二单管是P型场效应管,两者通过栅极相连接,所述第二单管的漏极与所述调整管相连接,所述第二单管的栅极与所述第一电容相连接。
4.根据权利要求1所述的低压差线性稳压电路,其特征在于,所述电流沉是N型场效应管,其漏极与所述调整管相连接,其栅极与所述第二电容相连接。
5.根据权利要求1所述的低压差线性稳压电路,其特征在于,所述低压差线性稳压电路还包括偏置电流源,所述偏置电流源与所述差分输入级相连接,以提供所述差分输入级正常工作时所需的偏置电流;所述偏置电流源与所述电流沉相连接,以提供所述电流沉正常工作时所需要的偏置电流。
6.根据权利要求5所述的低压差线性稳压电路,其特征在于,所述偏置电流源包括第一N型场效应管和第二N型场效应管,两者通过栅极相互连接,其中,所述第二N型场效应管的漏极与所述差分输入级相连接,栅极与所述电流沉相连接。
7.根据权利要求1或2或3或4或5或6所述的低压差线性稳压电路,其特征在于,所述差分输入级至少包括一对对管。
8.根据权利要求7所述的低压差线性稳压电路,其特征在于,所述差分输入级只包括一对对管时,所述对管为N型场效应管,所述对管的栅极作为接收所述负载电压和所述参考信号的差分输入端,所述对管的源极相连接。
9.根据权利要求1所述的低压差线性稳压电路,其特征在于,所述第一电容为pF级或者nF级。
10.根据权利要求1所述的低压差线性稳压电路,其特征在于,所述第二电容为pF级或者nF级。
CN201611109175.1A 2016-12-06 2016-12-06 低压差线性稳压电路 Pending CN106484020A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611109175.1A CN106484020A (zh) 2016-12-06 2016-12-06 低压差线性稳压电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611109175.1A CN106484020A (zh) 2016-12-06 2016-12-06 低压差线性稳压电路

Publications (1)

Publication Number Publication Date
CN106484020A true CN106484020A (zh) 2017-03-08

Family

ID=58275570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611109175.1A Pending CN106484020A (zh) 2016-12-06 2016-12-06 低压差线性稳压电路

Country Status (1)

Country Link
CN (1) CN106484020A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656569A (zh) * 2017-10-10 2018-02-02 杭州百隆电子有限公司 一种带隙基准源
CN109951079A (zh) * 2018-12-27 2019-06-28 西安紫光国芯半导体有限公司 一种使稳压器快速进入工作点的方法及电路
CN112034924A (zh) * 2020-08-10 2020-12-04 唯捷创芯(天津)电子技术股份有限公司 一种自适应快速响应的ldo电路及其芯片
CN112346506A (zh) * 2020-01-07 2021-02-09 成都华微电子科技有限公司 一种无需片外电容的ldo电路
CN113342113A (zh) * 2021-06-25 2021-09-03 上海料聚微电子有限公司 具有防过冲保护功能的ptat电压产生电路
CN115857604A (zh) * 2023-03-03 2023-03-28 上海维安半导体有限公司 一种适用于低压差线性稳压器的自适应电流跃变电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090195290A1 (en) * 2007-01-25 2009-08-06 Farhood Moraveji Method and apparatus for overshoot and undershoot errors correction in analog low dropout regulators
CN102707757A (zh) * 2012-06-05 2012-10-03 电子科技大学 一种动态电荷放电电路以及集成该电路的ldo
CN102830742A (zh) * 2012-09-14 2012-12-19 邹磊 一种低压差线性稳压器
CN103399607A (zh) * 2013-07-29 2013-11-20 电子科技大学 集成摆率增强电路的高psr低压差线性稳压器
JP2015118452A (ja) * 2013-12-17 2015-06-25 セイコーインスツル株式会社 ボルテージレギュレータ
CN104950976A (zh) * 2015-05-20 2015-09-30 泰斗微电子科技有限公司 一种基于摆率增强的稳压电路
CN105183064A (zh) * 2015-10-09 2015-12-23 上海华虹宏力半导体制造有限公司 Ldo电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090195290A1 (en) * 2007-01-25 2009-08-06 Farhood Moraveji Method and apparatus for overshoot and undershoot errors correction in analog low dropout regulators
CN102707757A (zh) * 2012-06-05 2012-10-03 电子科技大学 一种动态电荷放电电路以及集成该电路的ldo
CN102830742A (zh) * 2012-09-14 2012-12-19 邹磊 一种低压差线性稳压器
CN103399607A (zh) * 2013-07-29 2013-11-20 电子科技大学 集成摆率增强电路的高psr低压差线性稳压器
JP2015118452A (ja) * 2013-12-17 2015-06-25 セイコーインスツル株式会社 ボルテージレギュレータ
CN104950976A (zh) * 2015-05-20 2015-09-30 泰斗微电子科技有限公司 一种基于摆率增强的稳压电路
CN105183064A (zh) * 2015-10-09 2015-12-23 上海华虹宏力半导体制造有限公司 Ldo电路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656569A (zh) * 2017-10-10 2018-02-02 杭州百隆电子有限公司 一种带隙基准源
CN107656569B (zh) * 2017-10-10 2022-11-25 杭州百隆电子有限公司 一种带隙基准源
CN109951079A (zh) * 2018-12-27 2019-06-28 西安紫光国芯半导体有限公司 一种使稳压器快速进入工作点的方法及电路
CN112346506A (zh) * 2020-01-07 2021-02-09 成都华微电子科技有限公司 一种无需片外电容的ldo电路
CN112034924A (zh) * 2020-08-10 2020-12-04 唯捷创芯(天津)电子技术股份有限公司 一种自适应快速响应的ldo电路及其芯片
CN112034924B (zh) * 2020-08-10 2023-02-24 唯捷创芯(天津)电子技术股份有限公司 一种自适应快速响应的ldo电路及其芯片
CN113342113A (zh) * 2021-06-25 2021-09-03 上海料聚微电子有限公司 具有防过冲保护功能的ptat电压产生电路
CN115857604A (zh) * 2023-03-03 2023-03-28 上海维安半导体有限公司 一种适用于低压差线性稳压器的自适应电流跃变电路

Similar Documents

Publication Publication Date Title
CN106484020A (zh) 低压差线性稳压电路
CN103399607B (zh) 集成摆率增强电路的高psr低压差线性稳压器
US10591938B1 (en) PMOS-output LDO with full spectrum PSR
CN102096434B (zh) 一种基于大摆率误差放大器的高精度高速ldo电路
CN103838286B (zh) 一种快速瞬态响应、高稳定性的低压差线性稳压器
CN101847028B (zh) 一种超低功耗的动态补偿电路及应用该电路的线性调节器
CN105334900B (zh) 快速瞬态响应低压差线性稳压器
CN106774580B (zh) 一种快速瞬态响应高电源抑制比的ldo电路
CN202486643U (zh) 高带宽低压差线性稳压源及系统级芯片
CN105138064A (zh) 一种高带宽高电源纹波抑制比的低压差线性稳压器电路
CN104181972B (zh) 一种具有高电源抑制比特性的低压差线性稳压器
CN104063003B (zh) 一种集成摆率增强电路的低功耗无片外电容ldo
CN106940579A (zh) 低压差线性稳压器及其频率补偿方法
US9927828B2 (en) System and method for a linear voltage regulator
CN102681581A (zh) 一种基于大摆率误差放大器的高精度高速ldo电路
CN101308391A (zh) 一种高精度低压差线性稳压电路
CN102880219A (zh) 一种具有动态补偿特性的线性稳压器
CN111176358B (zh) 一种低功耗低压差线性稳压器
CN101281410A (zh) 利用双向非对称缓冲器结构提高性能的ldo电路
CN115328254B (zh) 一种基于多种频率补偿方式的高瞬态响应ldo电路
WO2015117130A1 (en) Buffer circuits and methods
CN102880218A (zh) 宽输入范围的线性稳压器
CN104617483A (zh) 一种带宽补偿的超高速激光驱动器电路和驱动器芯片
CN103412602A (zh) 一种无电容型低压差线性稳压器
CN106094966A (zh) 一种宽频高电源抑制比的线性稳压器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170308