CN106442047A - 一种石墨中金属离子检测的前处理方法 - Google Patents

一种石墨中金属离子检测的前处理方法 Download PDF

Info

Publication number
CN106442047A
CN106442047A CN201610796911.9A CN201610796911A CN106442047A CN 106442047 A CN106442047 A CN 106442047A CN 201610796911 A CN201610796911 A CN 201610796911A CN 106442047 A CN106442047 A CN 106442047A
Authority
CN
China
Prior art keywords
solution
graphite
absorbance
metal
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610796911.9A
Other languages
English (en)
Inventor
嵇明翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201610796911.9A priority Critical patent/CN106442047A/zh
Publication of CN106442047A publication Critical patent/CN106442047A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners
    • G01N2021/725Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners for determining of metalloids, using Beilstein type reaction

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开一种石墨中金属离子检测的前处理方法,其称取石墨,加入EDTA溶液,加热,定容得待测溶液;配制空白溶液;采用火焰原子吸收光谱分析法测定金属离子含量对应的吸光度,绘制成待检测金属离子浓度‑金属元素吸光度的标准曲线;采用相同方法对待测溶液和空白溶液进行检测,测试其中金属离子对应的吸光度,以标准曲线为依据读取待测溶液吸光度对应的金属离子浓度,扣除空白溶液的干扰,通过换算即可得到待检测石墨中的金属元素含量。本发明中对石墨中金属元素游离为金属离子的处理方式是利用了EDTA的酸性和络合作用来完成,处理方式高效、简便;采用火焰原子吸收光谱分析法,提高了检测效率,前处理原料来源广泛,无毒无害,检测成本低。

Description

一种石墨中金属离子检测的前处理方法
技术领域
本发明属于锂离子电池技术领域,具体是一种石墨中金属离子检测的前处理方法。
背景技术
一直以来,石墨作为一种重要的工业原料,具有耐高温性,导电性,导热性,润滑性和化学稳定性,为人们所广泛的使用。但石墨中不可避免的含有一些微量金属杂质并以多种形式存在着。这些杂质或多或少会影响着石墨制品的性能和在实际生产中的应用。于是,准确测定石墨中的金属元素的含量是十分有必要的。
微波消解法和高温灼烧是人们通常使用的前处理方法,但这些方法都有其一定的弊端。微波消解需要使用高浓度强氧化性的酸液,操作过程十分危险,并极易发生迸溅导致测量结果偏差;而利用高温灼烧的方法,则会因高温煅烧,引入坩埚脱落的材料中的其他杂质成分。于是这些方法都不利于对石墨中杂质金属元素的准确分析。
乙二胺四乙酸二钠(EDTA),在溶液中显酸性,pH约为4.7。其溶液中的酸性环境有利于将石墨中的金属杂质溶解,而乙二胺四乙酸的特殊结构又利于同金属离子结合成为一种在溶液中稳定存在的螯合物。于是,其可以作为一种处理样品中微量金属杂质并将其离子化的物质。
发明内容
本发明的目的在于提供一种石墨中金属离子检测的前处理方法。
本发明的目的可以通过以下技术方案实现:
一种石墨中金属离子检测的前处理方法,其特征在于,包括以下步骤:
(1)称取0.5g石墨粉末,置于100mL烧杯中,用去离子水分散均匀,加入EDTA溶液50mL,加热至150℃并保温1h,冷却后过滤,滤液转移到100mL容量瓶中以去离子水定容,得待测溶液;
(2)将50mL步骤(1)EDTA溶液转移到100mL容量瓶中以去离子水稀释定容,得空白溶液;
(3)分别移取检测的金属离子不同浓度梯度的标准溶液于容量瓶中,采用火焰原子吸收光谱分析法测定其中金属离子含量对应的吸光度,绘制成待检测金属离子浓度-金属元素吸光度的标准曲线;
(4)采用火焰原子吸收光谱分析法分别对待测溶液和空白溶液进行检测,测试其中金属离子对应的吸光度,以标准曲线为依据读取待测溶液吸光度对应的金属离子浓度,扣除空白溶液吸光度对应的金属离子浓度,通过换算即可得到待检测石墨中的金属元素含量。
进一步方案,所述步骤(1)EDTA溶液浓度为10-50g/L。
进一步方案,所述步骤(3)待检测金属元素为锌、铜、铬中的至少一种。
本发明的有益效果:本发明中对石墨中金属元素游离为金属离子的处理方式是利用了EDTA的酸性和络合作用来完成,处理方式高效、简便;本发明采用火焰原子吸收光谱分析法,提高了检测效率,没有使用强酸和强碱类危险化学品,也没有使用微波消解仪,安全系数高;同时前处理原料来源广泛,无毒无害,价格低廉,检测成本低。
附图说明
图1为金属铜离子的浓度-金属元素吸光度的标准曲线。
图2为金属铬离子的浓度-金属元素吸光度的标准曲线。
图3为金属锌离子的浓度-金属元素吸光度的标准曲线。
具体实施方式
下面结合具体实施例对本发明作进一步详细描述。
首先分别以铜、铬、锌三种金属离子的标准溶液配置一系列浓度梯度的铜、铬、锌金属离子溶液,金属离子溶液浓度梯度分别为:铜(0.5mg/L、1mg/L、1.5mg/L、2mg/L)、铬(0.5mg/L、1mg/L、1.5mg/L、2mg/L)、锌(0.2mg/L、0.4mg/L、0.6mg/L、0.8mg/L);以火焰原子吸收光谱分析仪器采用主灵敏线测试分别检测铜、铬、锌在不同浓度下的吸光度,绘制金属离子浓度-金属元素吸光度的标准曲线,结果见图1、图2、图3。
实施例1
1、称取0.5g的石墨粉末样品置于100mL烧杯中,用去离子水搅拌均匀,加入50mL浓度为50g/L的EDTA溶液,150℃加热并保温1h,冷却后过滤,滤液转移到100mL容量瓶中以去离子水定容,得待测溶液;
2、将50mL浓度为50g/L的EDTA溶液转移到100mL容量瓶中以去离子水稀释定容,得空白溶液;
3、采用火焰原子吸收光谱分析法分别对待测溶液和空白溶液进行检测,测试待测溶液和空白溶液的金属铜元素对应的吸收值,检测结果显示待测溶液中金属铜吸光度为0.0317,空白溶液中金属铜吸光度为0.0012,扣除空白溶液的干扰,则实际待测溶液中金属铜的吸光度为0.0305。
以图1给出的铜元素金属铜离子的浓度-金属元素吸光度的标准曲线为根据,通过换算可计算出待检测的石墨中铜元素在石墨样品中的含量为32.7ppm。
实施例2
1、称取0.5g的石墨粉末样品置于100mL烧杯中,用去离子水搅拌均匀,加入50mL浓度为50g/L的EDTA溶液,150℃加热并保温1h,冷却后过滤,滤液转移到100mL容量瓶中以去离子水定容,得待测溶液;
2、将50mL浓度为30g/L的EDTA溶液转移到100mL容量瓶中以去离子水稀释定容,得空白溶液;
3、采用火焰原子吸收光谱分析法分别对待测溶液和空白溶液进行检测,测试待测溶液和空白溶液的金属铬元素对应的吸收值,检测结果显示待测溶液中金属铬吸光度为0.0009,空白溶液中金属铬吸光度为0.0002,扣除空白溶液的干扰,则实际待测溶液中金属铬的吸光度为0.0007。
以图2给出的铬元素金属铬离子的浓度-金属元素吸光度的标准曲线为根据,通过换算可计算出待检测的石墨中铬元素摩尔质量为5.28ppm。
实施例3
1、称取0.5g的石墨粉末样品置于100mL烧杯中,用去离子水搅拌均匀,加入50mL浓度为50g/L的EDTA溶液,150℃加热并保温1h,冷却后过滤,滤液转移到100mL容量瓶中以去离子水定容,得待测溶液;
2、将50mL浓度为10g/L的EDTA溶液转移到100mL容量瓶中以去离子水稀释定容,得空白溶液;
3、采用火焰原子吸收光谱分析法分别对待测溶液和空白溶液进行检测,测试待测溶液和空白溶液的金属锌元素对应的吸收值,检测结果显示待测溶液中金属锌吸光度为0.0534,空白溶液中金属锌吸光度为0.0014,扣除空白溶液的干扰,则实际待测溶液中金属锌的吸光度为0.0520。
以图3给出的铬元素金属锌离子的浓度-金属元素吸光度的标准曲线为根据,通过换算可计算出待检测的石墨中锌元素摩尔质量为15.62ppm。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对实施案例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施案例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (3)

1.一种石墨中金属离子检测的前处理方法,其特征在于,包括以下步骤:
(1)称取0.5g石墨粉末,置于100mL烧杯中,用去离子水分散均匀,加入EDTA溶液50mL,加热至150℃并保温1h,冷却后过滤,滤液转移到100mL容量瓶中以去离子水定容,得待测溶液;
(2)将50mL步骤(1)EDTA溶液转移到100mL容量瓶中以去离子水稀释定容,得空白溶液;
(3)分别移取检测的金属离子不同浓度梯度的标准溶液于容量瓶中,采用火焰原子吸收光谱分析法测定其中金属离子含量对应的吸光度,绘制成待检测金属离子浓度-金属元素吸光度的标准曲线;
(4)采用火焰原子吸收光谱分析法分别对待测溶液和空白溶液进行检测,测试其中金属离子对应的吸光度,以标准曲线为依据读取待测溶液吸光度对应的金属离子浓度,扣除空白溶液吸光度对应的金属离子浓度,通过换算即可得到待检测石墨中的金属元素含量。
2.根据权利要求1所述的石墨中金属离子检测的前处理方法,其特征在于,所述步骤(1)EDTA溶液浓度为10-50g/L。
3.根据权利要求1所述的石墨中金属离子检测的前处理方法,其特征在于,所述步骤(3)待检测金属元素为锌、铜、铬中的至少一种。
CN201610796911.9A 2016-08-31 2016-08-31 一种石墨中金属离子检测的前处理方法 Pending CN106442047A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610796911.9A CN106442047A (zh) 2016-08-31 2016-08-31 一种石墨中金属离子检测的前处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610796911.9A CN106442047A (zh) 2016-08-31 2016-08-31 一种石墨中金属离子检测的前处理方法

Publications (1)

Publication Number Publication Date
CN106442047A true CN106442047A (zh) 2017-02-22

Family

ID=58165057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610796911.9A Pending CN106442047A (zh) 2016-08-31 2016-08-31 一种石墨中金属离子检测的前处理方法

Country Status (1)

Country Link
CN (1) CN106442047A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077094A (zh) * 2020-01-15 2020-04-28 南大盐城环境检测科技有限公司 一种土壤中六价铬的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148068B1 (en) * 2003-04-01 2006-12-12 Reheulishvili Aleksandre N Method of trivalent chromium concentration determination by atomic spectrometry
CN103395780A (zh) * 2013-08-19 2013-11-20 济宁利特纳米技术有限责任公司 降低氧化石墨烯中锰含量的方法
CN104787759A (zh) * 2015-04-20 2015-07-22 德阳烯碳科技有限公司 一种石墨烯制备过程中的除杂方法
CN105336932A (zh) * 2015-11-07 2016-02-17 合肥国轩高科动力能源有限公司 一种镍钴锰酸锂与富锂复合材料的制备方法
CN105865876A (zh) * 2016-05-29 2016-08-17 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料中金属离子检测的前处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148068B1 (en) * 2003-04-01 2006-12-12 Reheulishvili Aleksandre N Method of trivalent chromium concentration determination by atomic spectrometry
CN103395780A (zh) * 2013-08-19 2013-11-20 济宁利特纳米技术有限责任公司 降低氧化石墨烯中锰含量的方法
CN104787759A (zh) * 2015-04-20 2015-07-22 德阳烯碳科技有限公司 一种石墨烯制备过程中的除杂方法
CN105336932A (zh) * 2015-11-07 2016-02-17 合肥国轩高科动力能源有限公司 一种镍钴锰酸锂与富锂复合材料的制备方法
CN105865876A (zh) * 2016-05-29 2016-08-17 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料中金属离子检测的前处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
邓田方: "AAS测定饲料中矿物元素样品处理过程干扰因素的去除", 《饲料博览》 *
魏继中,王文琴等: "《原子吸收光谱分析-理论与实践》", 30 April 1993, 南开大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077094A (zh) * 2020-01-15 2020-04-28 南大盐城环境检测科技有限公司 一种土壤中六价铬的检测方法

Similar Documents

Publication Publication Date Title
CN103364426B (zh) 能量色散型x射线荧光光谱法测定锌精矿中锌含量的方法
CN101187629B (zh) 烟草及烟草制品中砷含量的测定方法
CN103267754B (zh) 定量测定碳素钢或低合金钢中常量元素和砷、锡、锑痕量元素的方法
CN101334365B (zh) 钢板轧制用平整液中氯离子含量测定方法
CN101294896A (zh) 烟用接装纸中镉含量的测定方法
CN105424462A (zh) 水浴消解-原子荧光法测定土壤中汞的方法
CN104807813A (zh) 锰铁中锰含量的快速分析方法
CN102359973A (zh) X-荧光测定铌铁合金中元素含量的方法
CN102269733A (zh) 一种低合金钢中痕量硒含量的测定方法
CN107192707A (zh) 同时测定人工虎骨粉中砷、镉、铜、汞、铅五种重金属元素的方法
CN103091450A (zh) 快速测定氮化钒铁中全铁含量的方法
CN102680470A (zh) 一种铜电解液中砷锑含量的测定方法
Chen et al. Tellurium speciation in a bioleaching solution by hydride generation atomic fluorescence spectrometry
CN106248609B (zh) 一种紫外分光光度计测定锂离子电池电解液中六氟磷酸锂含量的方法
CN103543133A (zh) 氢化物发生-原子荧光光谱法测定铁矿石中铋含量的方法
CN106442047A (zh) 一种石墨中金属离子检测的前处理方法
CN102768191A (zh) 一种水中痕量铊的简便测定方法
CN104133035A (zh) 一种用差减法测定压块球化剂中金属镁含量的方法
CN104359751B (zh) 微波消解荧光法测定土壤中微量铀
CN106706603A (zh) 一种检测生铁中元素含量的方法
CN105510285A (zh) 确定乳制品中总砷含量的方法
Wang et al. Development of an analytical technique to determine the fractions of vanadium cations with different valences in slag
Abbasi et al. A highly sensitive adsorptive stripping voltammetric method for simultaneous determination of lead and vanadium in foodstuffs
CN104730013A (zh) 一种判断石墨炉原子吸收光谱仪中石墨管有效使用期的方法
CN100535637C (zh) 塑料样品中铅镉的连续测定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222

RJ01 Rejection of invention patent application after publication