CN106432988A - 一种复合材料热缩管及其制备方法 - Google Patents

一种复合材料热缩管及其制备方法 Download PDF

Info

Publication number
CN106432988A
CN106432988A CN201610497835.1A CN201610497835A CN106432988A CN 106432988 A CN106432988 A CN 106432988A CN 201610497835 A CN201610497835 A CN 201610497835A CN 106432988 A CN106432988 A CN 106432988A
Authority
CN
China
Prior art keywords
parts
kynoar
shrink tube
cnt
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610497835.1A
Other languages
English (en)
Inventor
袁国防
张丽丽
李莹
施文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haizhiyuan Intelligent Technology Co Ltd
Original Assignee
Qingdao Haizhiyuan Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haizhiyuan Intelligent Technology Co Ltd filed Critical Qingdao Haizhiyuan Intelligent Technology Co Ltd
Priority to CN201610497835.1A priority Critical patent/CN106432988A/zh
Publication of CN106432988A publication Critical patent/CN106432988A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种复合材料热缩管,由下述重量份数原料制成:聚偏氟乙烯颗粒80‑90份,聚偏氟乙烯/碳纳米管复合微米纤维40‑45份,偏氟乙烯/三氟氯乙烯共聚物30‑35份,抗氧化剂1‑2份,阻燃剂3‑4份,润滑剂2‑4份,吸酸剂0.8‑1.6份,增塑剂6‑10份,色母粒3‑5份,助交联剂4‑6份;所述聚偏氟乙烯/碳纳米管复合微米纤维由静电纺丝法制得的聚偏氟乙烯/碳纳米管复合微米纤维毡经超微粉碎至300目制得。通过材料复合有效提高聚偏氟乙烯热缩管的机械强度,增强其弹性,避免其在弯折过程中发白、断裂,延长其使用寿命。

Description

一种复合材料热缩管及其制备方法
技术领域
本发明涉及一种复合材料热缩管及其制备方法。
背景技术
热缩套管是一种特制的聚烯烃材质热收缩套管,也可以叫做EVA材质的。具有高温收缩、柔软阻燃、绝缘防蚀功能。热缩套管具有优良的阻燃、绝缘性能,非常柔软有弹性,收缩温度低,收缩快,可广泛应用于电线的连接、电线端部处理、焊点保护、线束标识、电阻电容的绝缘保护、金属棒或管材的防腐蚀保护、天线的保护等。在高能射线作用下、线性高分子材料形成三维网状交联结构。交联后的高分子材料在机械强度、耐温、耐化学溶剂、耐老化等方面获得极大改善,特别是耐酸、碱性能得到很大提高。聚偏氟乙烯热缩管具有很好的阻燃性能和极低的烟雾值,极耐久、耐磨损和抗机械损伤性能,特别适用于那些可能存在腐蚀性空气、热循环、或机械应力作用的不利环境。但由于氟塑料热缩管本身材质原因,收缩于线束、管路后增加整体的硬度,在弯折次数过多后存在发白、破裂的风险。
发明内容
本发明的目的在于克服现有技术的不足,提供一种复合材料热缩管及其制备方法,通过材料复合有效提高聚偏氟乙烯热缩管的机械强度,增强其弹性,避免其在弯折过程中发白、断裂,延长其使用寿命。
为了实现上述目的,本发明提供的技术方案如下:
一种复合材料热缩管,由下述重量份数原料制成:聚偏氟乙烯颗粒80-90份,聚偏氟乙烯/碳纳米管复合微米纤维40-45份,偏氟乙烯/三氟氯乙烯共聚物30-35份,抗氧化剂1-2份,阻燃剂3-4份,润滑剂2-4份,吸酸剂0.8-1.6份,增塑剂6-10份,色母粒3-5份,助交联剂4-6份;所述聚偏氟乙烯/碳纳 米管复合微米纤维由静电纺丝法制得的聚偏氟乙烯/碳纳米管复合微米纤维毡经超微粉碎至300目制得。
优选的,由下述重量份数原料制成:聚偏氟乙烯颗粒85份,聚偏氟乙烯/碳纳米管复合微米纤维43份,偏氟乙烯/三氟氯乙烯共聚物32份,抗氧化剂1.5份,阻燃剂3.5份,润滑剂3份,吸酸剂1.3份,增塑剂8份,色母粒4份,助交联剂5份。
优选的,所述聚偏氟乙烯/碳纳米管复合微米纤维的纤维平均直径为1微米,由静电纺丝法制得,其纺丝前驱体溶液的配置方法为:将2克碳纳米管水分散剂与20克丙酮混合,在60℃恒温水浴条件下磁力搅拌20分钟,向上述液体中加入1.5克多壁碳纳米管,继续磁力搅拌2小时,所得混合液体超声10分钟后置于冷水中冷却、消泡,再次继续超声10分钟即得分散好的碳纳米管分散液,将1.5克聚偏氟乙烯颗粒溶于3克丙酮和3克二甲基亚砜混合制成的溶剂中,配成聚偏氟乙烯溶液,取2.5克碳纳米管分散液加入7.5克聚偏氟乙烯溶液中在60℃恒温水浴条件下磁力搅拌4小时后,超声震荡1小时即得纺丝前驱体溶液;所述纺丝前驱体溶液加入静电纺丝装置的储液机构中进行静电纺丝,纺丝电压15千伏,纺丝距离15厘米,将静电纺丝装置收集集上获得的聚偏氟乙烯/碳纳米管复合微米纤维毡置于超微粉碎机中粉碎至300目即得聚偏氟乙烯/碳纳米管复合微米纤维。
聚偏氟乙烯(PVDF)具有良好的耐化学性、加工性及抗疲劳和蠕变性,且聚偏氟乙烯具有良好的化学稳定性、电绝缘性能,以聚偏氟乙烯为主要原料制成的热缩管具有很好的阻燃性能和极低的烟雾值,极耐久、耐磨损和抗机械损伤性能,特别适用于那些可能存在腐蚀性空气、热循环、或机械应力作用的不利环境。但由于氟塑料热缩管本身材质原因,收缩于线束、管路后增加整体的硬度,在弯折次数过多后存在发白、破裂的风险。要解决这一问 题,延长热缩管的使用寿命,需要增强材料的弹性和机械强度,将碳纳米管与聚偏氟乙烯复合,可以增强材料的力学性能,使其具有更好的弹性、机械强度、抗腐蚀、抗老化性能,单臂和多壁碳纳米管化学性质稳定,不溶于水和有机溶剂,具有优异的力学性能和导电性能及其独特的一维纳米结构所特有的纳米效应,但由于其表面原子具有较高的表面能和表面结合能,分散性差且易于形成大的团聚体,将碳纳米管与大量的聚偏氟乙烯基材直接复合作为基体的增强材料时,碳纳米管极易发生团聚,从而导致碳纳米管在基体中分散程度低,进而影响复合材料的应用性能,不易得到性能稳定,抗老化性能好的复合塑料材料。本发明的热缩管,以含有碳纳米管的聚偏氟乙烯/碳纳米管复合微米纤维作为原料,碳纳米管先通过静电纺丝法与聚偏氟乙烯复合形成聚偏氟乙烯/碳纳米管复合微米纤维,碳纳米管分布于该微米纤维中,被聚偏氟乙烯包裹固定,碳纳米管受复合纤维的限制不易形成团聚体,相较于直接向大量聚偏氟乙烯材料中添加碳纳米管,与聚偏氟乙烯颗粒搅拌混合时,这种被包裹束缚的碳纳米管更容易分散均匀,进而得到碳纳米管更加均匀的分布在的复合材料中,以获得均一性更好的材料,进而获得具有较好的弹性、较高机械强度的热缩管,以避免热缩管在弯折过程中发白、断裂,延长其使用寿命。
优选的,制备一种复合材料热缩管所用的原料聚偏氟乙烯颗粒与制备聚偏氟乙烯/碳纳米管复合微米纤维所用的聚偏氟乙烯颗粒为同种颗粒,按照GB/T3682-2000标准,在230℃、5kg载荷下,其熔体流动速率:6g/10min密度:1.77-1.78g/cm3。
优选的,所述的多壁碳纳米管的直径为50~60nm、长度为15~20μm 的多壁碳纳米管。
优选的,所述抗氧剂由2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯组成,且2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯的重量比为2:1;所述阻燃剂为四氯苯二甲酸酐;所述润滑剂为石蜡;吸酸剂为氢氧化钙;增塑剂为碳酸丙烯酯;所述的助交联剂为1,3,5-三烯丙基-均三嗪-2,4,6-三酮。
上述的复合材料热塑管的制备方法,包括以下步骤:
(1)按重量份数称取各组合原料,将上述组分原料混合经平行双螺杆混炼造粒,然后用单螺杆挤出机挤出成管材;
(2)所述管材经过钴-60或者电子加速器50-100KGy辐射交联,辐射交联后的管材在170℃温度下扩张3倍,即得复合材料热塑管。
本发明的有益效果为:本发明克服了现有技术的不足,提供了一种复合材料热缩管及其制备方法,通过材料复合有效提高聚偏氟乙烯热缩管的机械强度,增强其弹性,避免其在弯折过程中发白、断裂,延长其使用寿命。具体的说:由于氟塑料热缩管本身材质原因,收缩于线束、管路后增加整体的硬度,在弯折次数过多后存在发白、破裂的风险。要解决这一问题,延长热缩管的使用寿命,需要增强材料的弹性和机械强度,本发明的热缩管,以含有碳纳米管的聚偏氟乙烯/碳纳米管复合微米纤维作为原料,碳纳米管先通过静电纺丝法与聚偏氟乙烯复合形成聚偏氟乙烯/碳纳米管复合微米纤维,碳纳米管分布于该微米纤维中,被聚偏氟乙烯包裹固定,碳纳米管受复合纤维的限制不易形成团聚体,相较于直接向大量聚偏氟乙烯材料中添加碳纳米管,与聚偏氟乙烯颗粒搅拌混合时,这种被包裹束缚的碳纳米管更容易分散均匀,进而得到碳纳米管更加均匀的分布在的复合材料中,以获得均一性更好的材 料,进而获得具有较好的弹性、较高机械强度的热缩管,以避免热缩管在弯折过程中发白、断裂,延长其使用寿命。
附图说明
图1聚偏氟乙烯/碳纳米管复合微米纤维的TEM照片;
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明而不应当也不会限制权利要求书中所详细描述的本发明。
下述实施例中所用的原料聚偏氟乙烯/碳纳米管复合微米纤维由静电纺丝法制得,其纺丝前驱体溶液的配置方法为:将2克碳纳米管水分散剂(TNWDIS)与20克丙酮混合,在60℃恒温水浴条件下磁力搅拌20分钟,向上述液体中加入1.5克多壁碳纳米管(直径为50~60nm、长度为15~20μm),继续磁力搅拌2小时,所得混合液体超声10分钟后置于冷水中冷却、消泡,再次继续超声10分钟即得分散好的碳纳米管分散液,将1.5克聚偏氟乙烯颗粒(SOLEF 6010,美国苏威)溶于3克丙酮和3克二甲基亚砜混合制成的溶剂中,配成聚偏氟乙烯溶液,取2.5克碳纳米管分散液加入7.5克聚偏氟乙烯溶液中在60℃恒温水浴条件下磁力搅拌4小时后,超声震荡1小时即得纺丝前驱体溶液;所述纺丝前驱体溶液加入静电纺丝装置的储液机构中进行静电纺丝,纺丝电压15千伏,纺丝距离15厘米,将静电纺丝装置收集集上获得的聚偏氟乙烯/碳纳米管复合微米纤维毡置于超微粉碎机中粉碎至300目即得聚偏氟乙烯/碳纳米管复合微米纤维(其形貌特征如图1所示)。
实施例1
一种复合材料热缩管,由下述重量份数原料制成:聚偏氟乙烯颗粒80份, 聚偏氟乙烯/碳纳米管复合微米纤维40份,偏氟乙烯/三氟氯乙烯共聚物30份,抗氧化剂1份,阻燃剂3份,润滑剂2份,吸酸剂0.8份,增塑剂6份,色母粒3份,助交联剂4份;制备复合材料热缩管所用的原料聚偏氟乙烯颗粒与制备聚偏氟乙烯/碳纳米管复合微米纤维所用的聚偏氟乙烯颗粒为同种颗粒,按照GB/T3682-2000标准,在230℃、5kg载荷下,其熔体流动速率:6g/10min密度:1.77-1.78g/cm3;所述抗氧剂由2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯组成,且2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯的重量比为2:1;所述阻燃剂为四氯苯二甲酸酐;所述润滑剂为石蜡;吸酸剂为氢氧化钙;增塑剂为碳酸丙烯酯;所述的助交联剂为1,3,5-三烯丙基-均三嗪-2,4,6-三酮。
上述的复合材料热塑管的制备方法,包括以下步骤:
(1)按重量份数称取各组合原料,将上述组分原料混合经平行双螺杆混炼造粒,然后用单螺杆挤出机挤出成管材;
(2)所述管材经过钴-60或者电子加速器50-100KGy辐射交联,辐射交联后的管材在170℃温度下扩张3倍,即得复合材料热塑管。
对所得热缩管进行性能测试,所得结果如下:
阻燃性:通过VW-1阻燃性能测试;
拉伸强度:47.6Mpa,断裂伸长率482%;
250℃/168h高温老化后的断裂伸长率为448%;
300℃±3℃/4h高温冲击,无滴落、不开裂;
-55℃/4h低温冲击不开裂;
成品管弹性优异。
实施例2
一种复合材料热缩管,由下述重量份数原料制成:聚偏氟乙烯颗粒90份, 聚偏氟乙烯/碳纳米管复合微米纤维45份,偏氟乙烯/三氟氯乙烯共聚物35份,抗氧化剂2份,阻燃剂4份,润滑剂4份,吸酸剂1.6份,增塑剂10份,色母粒5份,助交联剂6份;制备复合材料热缩管所用的原料聚偏氟乙烯颗粒与制备聚偏氟乙烯/碳纳米管复合微米纤维所用的聚偏氟乙烯颗粒为同种颗粒,按照GB/T3682-2000标准,在230℃、5kg载荷下,其熔体流动速率:6g/10min密度:1.77-1.78g/cm3;所述抗氧剂由2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯组成,且2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯的重量比为2:1;所述阻燃剂为四氯苯二甲酸酐;所述润滑剂为石蜡;吸酸剂为氢氧化钙;增塑剂为碳酸丙烯酯;所述的助交联剂为1,3,5-三烯丙基-均三嗪-2,4,6-三酮。
上述的复合材料热塑管的制备方法,包括以下步骤:
(1)按重量份数称取各组合原料,将上述组分原料混合经平行双螺杆混炼造粒,然后用单螺杆挤出机挤出成管材;
(2)所述管材经过钴-60或者电子加速器50-100KGy辐射交联,辐射交联后的管材在170℃温度下扩张3倍,即得复合材料热塑管。
对所得热缩管进行性能测试,所得结果如下:
阻燃性:通过VW-1阻燃性能测试;
拉伸强度:49.2Mpa,断裂伸长率491%;
250℃/168h高温老化后的断裂伸长率为467%;
300℃±3℃/4h高温冲击,无滴落、不开裂;
-55℃/4h低温冲击不开裂;
成品管弹性优异。
实施例3
一种复合材料热缩管,由下述重量份数原料制成:聚偏氟乙烯颗粒85份, 聚偏氟乙烯/碳纳米管复合微米纤维43份,偏氟乙烯/三氟氯乙烯共聚物32份,抗氧化剂1.5份,阻燃剂3.5份,润滑剂3份,吸酸剂1.3份,增塑剂8份,色母粒4份,助交联剂5份;制备复合材料热缩管所用的原料聚偏氟乙烯颗粒与制备聚偏氟乙烯/碳纳米管复合微米纤维所用的聚偏氟乙烯颗粒为同种颗粒,按照GB/T3682-2000标准,在230℃、5kg载荷下,其熔体流动速率:6g/10min密度:1.77-1.78g/cm3;所述抗氧剂由2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯组成,且2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯的重量比为2:1;所述阻燃剂为四氯苯二甲酸酐;所述润滑剂为石蜡;吸酸剂为氢氧化钙;增塑剂为碳酸丙烯酯;所述的助交联剂为1,3,5-三烯丙基-均三嗪-2,4,6-三酮。
上述的复合材料热塑管的制备方法,包括以下步骤:
(1)按重量份数称取各组合原料,将上述组分原料混合经平行双螺杆混炼造粒,然后用单螺杆挤出机挤出成管材;
(2)所述管材经过钴-60或者电子加速器50-100KGy辐射交联,辐射交联后的管材在170℃温度下扩张3倍,即得复合材料热塑管。
对所得热缩管进行性能测试,所得结果如下:
阻燃性:通过VW-1阻燃性能测试;
拉伸强度:54Mpa,断裂伸长率512%;
250℃/168h高温老化后的断裂伸长率为487%;
300℃±3℃/4h高温冲击,无滴落、不开裂;
-55℃/4h低温冲击不开裂;
成品管弹性优异。
以上所列举的实施方式仅供理解本发明之用,并非是对本发明所描述的技术方案的限定,有关领域的普通技术人员,在权利要求所述技术方案的基 础上,还可以作出多种变化或变形,所有等同的变化或变形都应涵盖在本发明的权利要求保护范围之内。本发明未详述之处,均为本技术领域技术人员的公知技术。

Claims (7)

1.一种复合材料热缩管,其特征在于,由下述重量份数原料制成:聚偏氟乙烯颗粒80-90份,聚偏氟乙烯/碳纳米管复合微米纤维40-45份,偏氟乙烯/三氟氯乙烯共聚物30-35份,抗氧化剂1-2份,阻燃剂3-4份,润滑剂2-4份,吸酸剂0.8-1.6份,增塑剂6-10份,色母粒3-5份,助交联剂4-6份;所述聚偏氟乙烯/碳纳米管复合微米纤维由静电纺丝法制得的聚偏氟乙烯/碳纳米管复合微米纤维毡经超微粉碎至300目制得。
2.如权利要求1所述的一种复合材料热缩管,其特征在于,由下述重量份数原料制成:聚偏氟乙烯颗粒85份,聚偏氟乙烯/碳纳米管复合微米纤维43份,偏氟乙烯/三氟氯乙烯共聚物32份,抗氧化剂1.5份,阻燃剂3.5份,润滑剂3份,吸酸剂1.3份,增塑剂8份,色母粒4份,助交联剂5份。
3.如权利要求1所述的一种复合材料热缩管,其特征在于,所述聚偏氟乙烯/碳纳米管复合微米纤维的纤维平均直径为1微米,由静电纺丝法制得,其纺丝前驱体溶液的配置方法为:将2克碳纳米管水分散剂与20克丙酮混合,在60℃恒温水浴条件下磁力搅拌20分钟,向上述液体中加入1.5克多壁碳纳米管,继续磁力搅拌2小时,所得混合液体超声10分钟后置于冷水中冷却、消泡,再次继续超声10分钟即得分散好的碳纳米管分散液,将1.5克聚偏氟乙烯颗粒溶于3克丙酮和3克二甲基亚砜混合制成的溶剂中,配成聚偏氟乙烯溶液,取2.5克碳纳米管分散液加入7.5克聚偏氟乙烯溶液中在60℃恒温水浴条件下磁力搅拌4小时后,超声震荡1小时即得纺丝前驱体溶液;所述纺丝前驱体溶液加入静电纺丝装置的储液机构中进行静电纺丝,纺丝电压15千伏,纺丝距离15厘米,将静电纺丝装置收集集上获得的聚偏氟乙烯/碳纳米管复合微米纤维毡置于超微粉碎机中粉碎至300目即得聚偏氟乙烯/碳纳米管复合微米纤维。
4.如权利要求3所述的一种复合材料热缩管,其特征在于,制备复合材料热缩管所用的原料聚偏氟乙烯颗粒与制备聚偏氟乙烯/碳纳米管复合微米纤维所用的聚偏氟乙烯颗粒为同种颗粒,按照GB/T3682-2000标准,在230℃、5kg载荷下,其熔体流动速率:6g/10min密度:1.77-1.78g/cm3
5.如权利要求3所述的一种复合材料热缩管,其特征在于,所述的多壁碳纳米管的直径为50~60nm、长度为15~20μm的多壁碳纳米管。
6.如权利要求1所述的一种复合材料热缩管,其特征在于,所述抗氧剂由2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯组成,且2,6-二叔丁基-4-甲基苯酚和亚磷酸三壬基苯酯的重量比为2:1;所述阻燃剂为四氯苯二甲酸酐;所述润滑剂为石蜡;吸酸剂为氢氧化钙;增塑剂为碳酸丙烯酯;所述的助交联剂为1,3,5-三烯丙基-均三嗪-2,4,6-三酮。
7.如权利要求1至6中任一项所述的复合材料热塑管的制备方法,其特征在于,包括以下步骤:
(1)按重量份数称取各组合原料,将上述组分原料混合经平行双螺杆混炼造粒,然后用单螺杆挤出机挤出成管材;
(2)所述管材经过钴-60或者电子加速器50-100KGy辐射交联,辐射交联后的管材在170℃温度下扩张3倍,即得复合材料热塑管。
CN201610497835.1A 2016-06-29 2016-06-29 一种复合材料热缩管及其制备方法 Pending CN106432988A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610497835.1A CN106432988A (zh) 2016-06-29 2016-06-29 一种复合材料热缩管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610497835.1A CN106432988A (zh) 2016-06-29 2016-06-29 一种复合材料热缩管及其制备方法

Publications (1)

Publication Number Publication Date
CN106432988A true CN106432988A (zh) 2017-02-22

Family

ID=58183893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610497835.1A Pending CN106432988A (zh) 2016-06-29 2016-06-29 一种复合材料热缩管及其制备方法

Country Status (1)

Country Link
CN (1) CN106432988A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106116086A (zh) * 2016-06-27 2016-11-16 山东洁事达环保技术服务有限公司 高强度抗老化化粪池
CN110155988A (zh) * 2019-05-23 2019-08-23 上海长园电子材料有限公司 一种碳纳米管的活化方法及制备导电热缩管的方法
CN110920109A (zh) * 2019-10-25 2020-03-27 龙岩高格微扣科技有限公司 一种微电池绝缘收缩管加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719927A (zh) * 2012-07-04 2012-10-10 青岛大学 一种聚偏氟乙烯/碳纳米管复合纳米纤维的制备方法
CN103756202A (zh) * 2014-01-10 2014-04-30 长园电子(集团)有限公司 一种弹性聚偏氟乙烯热缩套管及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719927A (zh) * 2012-07-04 2012-10-10 青岛大学 一种聚偏氟乙烯/碳纳米管复合纳米纤维的制备方法
CN103756202A (zh) * 2014-01-10 2014-04-30 长园电子(集团)有限公司 一种弹性聚偏氟乙烯热缩套管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱和国等: "《复合材料原理》", 31 July 2013, 国防工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106116086A (zh) * 2016-06-27 2016-11-16 山东洁事达环保技术服务有限公司 高强度抗老化化粪池
CN110155988A (zh) * 2019-05-23 2019-08-23 上海长园电子材料有限公司 一种碳纳米管的活化方法及制备导电热缩管的方法
CN110155988B (zh) * 2019-05-23 2022-03-08 上海长园电子材料有限公司 一种碳纳米管的活化方法及制备导电热缩管的方法
CN110920109A (zh) * 2019-10-25 2020-03-27 龙岩高格微扣科技有限公司 一种微电池绝缘收缩管加工方法

Similar Documents

Publication Publication Date Title
CN102863788B (zh) 一种低表面电阻高玻纤增强阻燃尼龙树脂组合物及其制备方法
CN104559150A (zh) 一种抗静电己内酰胺导热材料及其制备方法
KR20150008057A (ko) 수지조성물
CN106432988A (zh) 一种复合材料热缩管及其制备方法
JP2012514136A (ja) Pekk複合繊維と、この繊維の製造方法と、その使用
CN101531787A (zh) 无卤阻燃长玻璃纤维增强聚丙烯复合材料及制备方法
WO2010128013A1 (de) Reduktion des einflusses der wasseraufnahme auf die elektrische leitfähigkeit von elektrisch leitfähigen polyamid-formmassen
CN109467783A (zh) 一种聚乙烯/碳纳米管导电材料及其制备方法
CN105705576A (zh) 用于海底管道的热塑性含氟聚合物组合物
CN109280259B (zh) 一种分布调控添加有ommt的eva/pa6阻燃复合材料及制备方法
CN105111693A (zh) 一种碳纳米复合纤维材料及其制备方法
CN110204820A (zh) 聚偏氟乙烯-聚乙烯复合材料及其制备方法、绝缘子护套
CN108396402B (zh) 一种高韧性涤纶短纤维及其制备方法
Dechojarassri et al. Mechanical properties of natural rubber composites filled with starch sludge compared with other waste and commercial fillers
CN110655787B (zh) 导电聚苯醚/聚酰胺66组合物及其制备方法
CN108822539A (zh) 环保阻燃尼龙复合材料及其制备方法
CN110760177B (zh) 导电聚苯醚/高抗冲聚苯乙烯组合物及其制备方法
CH715732B1 (de) Leitfähige Polyamidformmasse und Verwendungen dafür.
CN112898764B (zh) 一种导电pok/cnt组合物及其制备方法和设备
CN104448685A (zh) 一种陶瓷纤维增强阻燃abs及其制备方法
JP4370652B2 (ja) サイジング剤、及び該サイジング剤で処理されたチョップド炭素繊維
CN106046633A (zh) 一种高强度聚偏氟乙烯复合材料母粒
Zhong et al. Strong, flexible high-lignin polypropylene blends
CN110698832B (zh) 一种纳米粒子增强的阻燃耐老化pc复合材料及其制备方法
CN110684347B (zh) 导电聚酰胺6/聚苯醚组合物及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222

RJ01 Rejection of invention patent application after publication