CN106430329A - 一种超级电容器电极材料及其制备方法 - Google Patents

一种超级电容器电极材料及其制备方法 Download PDF

Info

Publication number
CN106430329A
CN106430329A CN201610808245.6A CN201610808245A CN106430329A CN 106430329 A CN106430329 A CN 106430329A CN 201610808245 A CN201610808245 A CN 201610808245A CN 106430329 A CN106430329 A CN 106430329A
Authority
CN
China
Prior art keywords
electrode material
preparation
metal
solution
absorbent cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610808245.6A
Other languages
English (en)
Inventor
黄啸谷
张其土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201610808245.6A priority Critical patent/CN106430329A/zh
Publication of CN106430329A publication Critical patent/CN106430329A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种超级电容器电极材料及其制备方法,该电极材料的化学式为La1‑ xCaxCoO3,其中,0.05≤x≤0.45。本发明制备得到的电极材料具有优异的导电性能,且制备方法简单,操作便捷,适合一定规模和工业化生产。

Description

一种超级电容器电极材料及其制备方法
技术领域
本发明涉及一种用于超级电容器的电极材料及其制备方法。
背景技术
随着能源危机的日益加剧,新能源材料的开发和研究受到了广泛关注。其中,超级电容器作为一种新型的储能器件,兼具了电池高能量以及电容器高功率的优点,具备充电快速、电阻小、储能大、寿命长、安全可靠的特点。以金属氧化物作为电极材料的赝电容器是近年来新提出的储能器件,由于其储能密度是双电层电容器的 10~100倍以上,逐步取代双电层电容器成为人们研究的热点。
目前,大多数用于赝电容器的金属氧化物都是过渡金属氧化物,例如NiO,Co2O3,Fe3O4,Mn2O3, RuO2,NiFe2O4,CoFe2O4等等。这类材料具有环境友好、低成本等优点,但是它们的电阻值较高,后期进行器件组装时还需要加入导电添加物,实际应用过程中的比电容值还是远低于理论值。
发明内容
本发明的目的是为了解决现有技术中存在的缺陷,提供一种比电容值高、成本低廉的电极材料。
为了达到上述目的,本发明提供了一种超级电容器电极材料,该电极材料的化学式为La1-xCaxCoO3,其中,0.05≤x≤0.45。其中x优选范围:0.25~0.37。
本发明还提供了上述电极材料的制备方法,包括以下步骤:
(1)分别取金属La、Ca、Co的硝酸盐或氯化盐,以及柠檬酸,加入水中,搅拌均匀得到混合溶液;所述金属La、Ca、Co的摩尔比为1-x:x:1,其中,0.05≤x≤0.45;所述柠檬酸与金属Co的摩尔比为2:1~3:1;
(2)取脱脂棉加入步骤(1)中制备的混合溶液中,吸附5~30min后得到脱脂棉/溶液混合物;所述脱脂棉的加入量为每0.1mol金属Co取10~40g;
(3)将步骤(2)制备得到的混合物放置在烘箱中,100~140℃下干燥2~5h后得到前驱体;
(4)将步骤(3)中制备得到的前驱体置于马弗炉中,以升温速率8~15℃/min加热到800~1000℃,保温1~3 h,即可得到所述La1-xCaxCoO3
本发明相比现有技术具有以下优点:
1. 本发明制备的La1-x Ca x CoO3,其内部结构中的电子可以在不同价态的离子之间跃迁,具有优异的导电性,在后期器件组装过程中可以极大的减少导电添加物的用量。
2. 本发明制备的超级电容器电极材料具有较高的比电容值,并且循环稳定特性优异。
3. 本发明的超级电容器电极材料制备方法简单,操作便捷,适合一定规模和工业化生产。
附图说明
图1为本发明实施例1制备得到的电极材料的XRD图;
图2为本发明实施例2制备得到的电极材料的SEM图;
图3为本发明实施例3制备得到的电极材料的比电容值随扫描速率的变化关系图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应以此限制本发明的保护范围。
实施例1
(1)称取41.136g六水合硝酸镧、1.181g四水合硝酸钙、29.103g六水合硝酸钴和46.231g一水合柠檬酸加入到去离子水中(去离子水的加入量以充分溶解为宜),均匀搅拌后制得混合溶液;
(2)称取40g脱脂棉加入到混合溶液中,吸附30min后得到脱脂棉/溶液混合物;
(3)将步骤(2)的混合物放置在烘箱中,140℃干燥2h得到前驱体;
(4)将前驱体置于马弗炉中,以升温速率8℃/min加热到1000℃,保温3 h,即可得到超级电容器用电极材料La0.95Ca0.05CoO3
经测定,所制备的超级电容器电极材料表现为纯相的钙钛矿结构,其XRD图谱如图1所示。当扫描速度为50mV/s时,比电容值达到817F/g,表现出优异的电化学性能。
实施例2:
(1)称取36.806g六水合硝酸镧、2.205g二水合氯化钙、23.793g六水合氯化钴和55.752g一水合柠檬酸加入到去离子水中,均匀搅拌后制得混合溶液;
(2)称取30g脱脂棉加入到混合溶液中,吸附5min后得到脱脂棉/溶液混合物;
(3)将步骤(2)的混合物放置在烘箱中,100℃干燥5h得到前驱体;
(4)将前驱体置于马弗炉中,以升温速率15℃/min加热到800℃,保温1h,即可得到超级电容器用电极材料La0.85Ca0.15CoO3
经测定,当扫描速度为50mV/s时,所制备的超级电容器电极材料的比电容值达到875F/g,表现出优异的电化学性能。所制备材料的微观形貌图如图2所示,从图中可以看出,制得的超级电容器电极材料呈现无规则纳米颗粒形貌,颗粒粒径为30~100nm,具备较高的比表面积。。
实施例3:
(1)称取25.996g七水合氯化镧、4.410g二水合氯化钙、29.103g六水合硝酸钴和63.042g一水合柠檬酸加入到去离子水中,均匀搅拌后制得混合溶液;
(2)称取25g脱脂棉加入到混合溶液中,吸附10min后得到脱脂棉/溶液混合物;
(3)将步骤(2)的混合物放置在烘箱中,120℃干燥4h得到前驱体;
(4)将前驱体置于马弗炉中,以升温速率10℃/min加热到900℃,保温2h,即可得到超级电容器用电极材料La0.7Ca0.3CoO3
图3所示为制备得到的电极材料的比电容值随扫描速率的变化关系图,从图中可以看出当扫描速度为50mV/s时,所制备的超级电容器电极材料的比电容值达到975F/g,表现出优异的电化学性能。
实施例4:
(1)称取20.425g七水合氯化镧、6.615g二水合氯化钙、23.793g六水合硝酸钴和42.028g一水合柠檬酸加入到去离子水中,均匀搅拌后制得混合溶液;
(2)称取10g脱脂棉加入到混合溶液中,吸附20min后得到脱脂棉/溶液混合物;
(3)将步骤(2)的混合物放置在烘箱中,110℃干燥3h得到前驱体;
(4)将前驱体置于马弗炉中,以升温速率12℃/min加热到900℃,保温2 h,即可得到超级电容器用电极材料。
经测定,当扫描速度为50mV/s时,所制备的超级电容器电极材料的比电容值达到930F/g,表现出优异的电化学性能。

Claims (4)

1.一种超级电容器电极材料,其特征在于:所述电极材料的化学式为La1-xCaxCoO3,其中,0.05≤x≤0.45。
2.根据权利要求1所述的电极材料,其特征在于:所述x的取值范围为:0.25~0.37。
3.权利要求1所述电极材料的制备方法,其特征在于:包括以下步骤:
(1)分别取金属La、Ca、Co的硝酸盐或氯化盐,以及柠檬酸,加入水中,搅拌均匀得到混合溶液;所述金属La、Ca、Co的摩尔比为1-x:x:1,其中,0.05≤x≤0.45;所述柠檬酸与金属Co的摩尔比为2:1~3:1;
(2)取脱脂棉加入步骤(1)中制备的混合溶液中,吸附5~30min后得到脱脂棉/溶液混合物;所述脱脂棉的加入量为每0.1mol金属Co取10~40g;
(3)将步骤(2)制备得到的混合物放置在烘箱中,100~140℃下干燥2~5h后得到前驱体;
(4)将步骤(3)中制备得到的前驱体置于马弗炉中,以升温速率8~15℃/min加热到800~1000℃,保温1~3 h,即可得到所述La1-xCaxCoO3
4.根据权利要求3所述的制备方法,其特征在于:所述x的取值范围为:0.25~0.37。
CN201610808245.6A 2016-09-08 2016-09-08 一种超级电容器电极材料及其制备方法 Pending CN106430329A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610808245.6A CN106430329A (zh) 2016-09-08 2016-09-08 一种超级电容器电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610808245.6A CN106430329A (zh) 2016-09-08 2016-09-08 一种超级电容器电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106430329A true CN106430329A (zh) 2017-02-22

Family

ID=58164952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610808245.6A Pending CN106430329A (zh) 2016-09-08 2016-09-08 一种超级电容器电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106430329A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058357A (zh) * 1990-07-26 1992-02-05 北京大学 钙钛矿型稀土复合氧化物燃烧催化剂
CN103413924A (zh) * 2013-06-17 2013-11-27 昆明理工大学 一种La1-xCaxCoO3包覆锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料及其制备方法
CN105633372A (zh) * 2016-01-22 2016-06-01 复旦大学 硫化镍纳米颗粒/氮掺杂纤维基碳气凝胶复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058357A (zh) * 1990-07-26 1992-02-05 北京大学 钙钛矿型稀土复合氧化物燃烧催化剂
CN103413924A (zh) * 2013-06-17 2013-11-27 昆明理工大学 一种La1-xCaxCoO3包覆锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料及其制备方法
CN105633372A (zh) * 2016-01-22 2016-06-01 复旦大学 硫化镍纳米颗粒/氮掺杂纤维基碳气凝胶复合材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DEWEI ZHANG等: "Spin entropy enhancement tuned by spin state transition in La0.7-xYxCa0.3CoO3", 《CERAMICS INTERNATIONAL》 *
N. K. GAUR等: "Thermal Properties of Ln0.7Ca0.3CoO3(Ln = La, Pr, and Nd) Perovskites", 《INT J THERMOPHYS》 *
RUIYANG等: "Improvement of resistance switching properties for metal/La0.7Ca0.3MnO3/Pt devices", 《PHYS. STATUS SOLIDI A》 *
庄树新: "钙钛矿型La1-xCaxCoO3双效氧电极的研究及应用", 《中国博士学位论文全文数据库 工程科技I辑》 *
黄啸谷等: "Gd3+掺杂锰锌铁氧体的高分子吸附燃烧法制备及电磁性能", 《无机化学学报》 *

Similar Documents

Publication Publication Date Title
CN103066280B (zh) 球形磷酸铁锂正极材料及其制备方法
CN103682302B (zh) 雾化干燥同步合成多孔石墨烯包裹的纳米电极材料的方法
CN103964412A (zh) 一种氮掺杂多孔结构碳材料的制备方法
JP6449594B2 (ja) リチウムイオン電池用正極物質及びその製造方法
CN103011143B (zh) 石墨烯及其制备方法、超级电容器
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
WO2015021789A1 (zh) 一种高倍率水系碱金属电化学电池正极材料及其制备方法
CN109637826B (zh) 一种四氧化三钴-氧化镍/石墨烯泡沫复合电极材料的制备方法及其应用
CN107658138B (zh) Li6CoO4预锂化剂及锂离子电容器的制备方法及锂离子电容器
CN103151510A (zh) 一种锂离子电池负极材料及其制备方法
CN105405680B (zh) 一种碳颗粒/二氧化锰复合电极材料的制备方法
CN105070521B (zh) 超级电容器用层次纳米结构四氧化三钴/钼酸钴复合电极材料及其制备方法
CN104752073A (zh) 一种锰铁氧化物/碳复合材料的制备方法
CN104409219A (zh) 六边形二氧化锰纳米片材料的制备及其作为超级电容器电极材料的应用
CN105271438A (zh) 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法
CN102881878B (zh) 一种通过金属还原过程制备富锂固溶体正极材料的方法
CN103441249B (zh) 一种纳米SnO2修饰锂离子电池三元正极材料及其制备方法
CN108962617A (zh) 一种自组装四氧化三钴分级微球的制备方法及其应用
CN112216528A (zh) 一种利用水热法制备高电压水系超级电容器电极片的方法
CN112908714A (zh) 一种微纳米球状锌掺杂镍钴双金属磷化物及其制备方法和应用
CN108933046B (zh) 一种多孔级次结构的钒酸锌的制备及其在超级电容器中的应用
CN115050947B (zh) 一种改性高铁酸盐正极材料及其制备方法与锂离子电池
CN106430329A (zh) 一种超级电容器电极材料及其制备方法
CN109585842A (zh) 一种基于吸附赝电势与嵌入式反应的混合电化学储能体系
CN104157469A (zh) 一种高比容量超级电容器的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222

RJ01 Rejection of invention patent application after publication