CN106414375B - 化合物中或与之相关的改进 - Google Patents

化合物中或与之相关的改进 Download PDF

Info

Publication number
CN106414375B
CN106414375B CN201580005428.8A CN201580005428A CN106414375B CN 106414375 B CN106414375 B CN 106414375B CN 201580005428 A CN201580005428 A CN 201580005428A CN 106414375 B CN106414375 B CN 106414375B
Authority
CN
China
Prior art keywords
alkyl
group
carbon
atom
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580005428.8A
Other languages
English (en)
Other versions
CN106414375A (zh
Inventor
R·W·盖塞尔
J·D·厄蒂克尔
F·施罗德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Givaudan SA
Original Assignee
Givaudan SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Givaudan SA filed Critical Givaudan SA
Publication of CN106414375A publication Critical patent/CN106414375A/zh
Application granted granted Critical
Publication of CN106414375B publication Critical patent/CN106414375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/02Acyclic alcohols with carbon-to-carbon double bonds
    • C07C33/025Acyclic alcohols with carbon-to-carbon double bonds with only one double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/18Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part
    • C07C33/20Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part monocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/22Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system
    • C07C35/23Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with hydroxy on a condensed ring system having two rings
    • C07C35/36Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with hydroxy on a condensed ring system having two rings the condensed ring system being a (4.4.0) system, e.g. naphols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

在包含含有氮、硫和磷原子的三齿或二齿‑配体的过渡金属配合物存在下氢化含有碳杂原子双键的底物的方法,其中至少所述N‑和P‑原子与所述过渡金属配位并且任选地所述S‑原子也与所述过渡金属配位。

Description

化合物中或与之相关的改进
本发明涉及含有碳杂原子双键的底物的催化氢化领域,其中使用分子氢并采用催化系统,所述催化系统包含碱和VIII族金属与含有磷、氮和硫配位位置的三齿或二齿配体形成的金属配合物。本发明还涉及所述配体和含有所述配体的VIII族金属配合物。
用于将含有包括酯、内酯和其它羰基的官能团的底物还原为醇的合成方法和试剂在本领域中是已知的。WO2006106483公开了一类二齿钌(II)配合物,其可用于这些底物的催化氢化,而WO2013023307公开了一类用于此目的的三齿配合物。类似地,WO2006106484公开了一类用于此目的的四齿钌配合物。
尽管本领域中用于还原具有含有碳杂原子双键的官能团的底物的试剂和方法是已知的,但是仍然需要用于从含有羰基的底物生产醇的工业上可接受的试剂和方法。特别适合用于此目的的是氢气压力或氢转移条件下的催化剂,其使得这些方法能够以低催化剂负载、高转化率和对含有碳杂原子双键的基团而言高的化学选择性来进行。
本发明在第一方面提供了在根据以下通式的过渡金属配合物存在氢化含有碳杂原子双键的官能团的方法,
MX2[SNP]Y
其中M是VIII族过渡金属,例如Ru或Os,且SNP表示含有氮、硫和磷原子的三齿或二齿配体,其中至少所述N-和P-原子与所述过渡金属配位并且任选地所述S-原子也与所述过渡金属配位,每个X独立地选自卤化物(例如F、Cl或Br)、羟基、烷氧基、酰氧基、酰氨基,且每个Y独立地选自单齿膦或一氧化碳(CO)配体、亚硝酰基或RCN基(R=烷基、芳基)。
其中X=烷氧基、酰氧基或酰氨基,且Y=膦或RCN,这些配体可以是任选取代的。
术语“膦”包括单齿膦类,它们是多膦的一部分,其连接到低聚阵列中的金属核心M上。
在本发明的一个具体实施方案中,三齿或二齿配体上的氮原子形成胺基团或亚胺基团的一部分;而硫原子形成脂族基团的一部分或形成芳族环的一部分;且磷原子形成膦基团的一部分。
在一个具体的实施方案中,当硫原子形成芳族环的一部分时,所述环不是含有S和N杂原子二者的5元杂环。
在本发明的一个具体实施方案中,含有氮原子的基团在一侧与含有磷原子的基团侧接,而在另一侧与含有硫原子的基团侧接。
在本发明的一个具体实施方案中,所述三齿或二齿配体L由下式表示,
其中
R1和R2独立地选自H或C1-C20烷基或芳基,其可以是任选取代的,或R1和R2连接以使得它们与所连接的硫和碳原子一起形成杂脂族或杂芳族环,其可以是取代或未取代的,并且其中如果所述环是杂芳族环,则其不是含有S和N杂原子二者的5-元杂环,尤其是噻唑环;
R3-R7独立地选自H或C1-C20直链或支链烷基或烯基;C3-C8环烷基;或C5-C10芳基,其中前述基团中任意一个可以是取代或未取代的;或R2和R3;R3和R4;或R2和R4与它们所连接的碳原子一起形成5-或6-元脂族环,其任选地是不饱和的;和/或R5和R6;R5和R7;或R6和R7与它们所连接的碳原子一起形成5-或6-元脂族环,其任选地是不饱和的,其中前述基团中任意一个可以是取代或未取代的;
R8和R9独立地选自H或C1-C20直链或支链烷基或烯基;C3-C8环烷基;C5-C10芳基或杂芳基,其中前述基团中任意一个可以是取代或未取代的;
a和b独立地是0、1或2;
n是0或1;和
表示单键或双键,条件是当R2是H或C4-C20烷基时,表示单键;和当n是1时,每个表示碳-氮单键;而当n是0时,一个是碳-氮单键且另一个是碳-氮双键。
在本发明一个更具体的实施方案中,所述三齿或二齿配体可以由下式表示
其中
R1是H或C1-20烷基,其可以包含脂族环系、杂原子、不饱和或芳族基团,其是取代或未取代的,并且优选是甲基、乙基、丙基、异丙基、正丁基、异丁基;
R8和R9独立地如上述所定义;
a和b独立地是1或2;
n是0或1;和
当n是1时,每个表示碳-氮单键;而当n是0时,一个是碳-氮单键且另一个是碳-氮双键。
在另一个具体的实施方案中,所述三齿或二齿配体可以由下式表示
其中R8、R9、a、b、n和如在前面紧邻的一段中所定义,并且噻吩基团可以是未取代的或被一个或多个选自C1-10烷基、芳基、杂芳基、烯基、腈或卤化物的取代基取代。
用于本发明的具体三齿或二齿配体选自
其中R1如上述所定义,并且尤其是甲基、正乙基、正丙基或正丁基;
R8和R9独立地选自C1-C20烷基或苯基,其是任选取代的;
当n是1时,是碳-氮单键,且n是0时,是碳-氮双键;和
R10可以是任意取代基,但是优选是选自C1-C10烷基、芳基、杂芳基、烯基、腈、卤化物的基团,它们全部可以是取代或未取代的;或R10是二价基团,其与杂芳族环中的两个碳原子连接并与这些碳原子一起形成C5-C7环;和
m是0、1、2或3。
优选的三齿或二齿配体是如上所述的那些,其中S-原子不形成环系的一部分。特别优选的是那些配体,其中R1和R2独立地选自H或C1-C20烷基或芳基,其可以是取代的。仍然更具体地,基团R1是脂族的,例如甲基或丁基。这些配体可以形成催化剂,其可以以特别高的效率催化碳-杂原子双键的氢化。
在本发明的一个具体实施方案中,所述配体不是选自如那些在WO2012/048646中所定义的配体:
在本发明的一个具体实施方案中,VIII族过渡金属配合物具有下式
MX2[SNP]Y
其中M、SNP、X和Y如上述所定义。
在本发明的一个具体实施方案中,VIII族过渡金属配合物选自下式的配合物,其中S-原子任选地与金属原子配位。
所述配体可以使用普通的起始材料和试剂、根据文献方法以直接的方式制备。配合物1的含噻吩的SNP-配体L1例如已经按照在CN102443082中所公开的方法制备。配合物6、7和8的邻-亚苯基桥连配体L3和L4例如已经按照类似于M.E.Bluhm等人在J.Organomet.Chem.690,713-721,2005中所公开的方法制备。
与含有噻吩的配体L1不同,带有嵌入一侧的硫醚中的硫、连接至仲胺NH的SN-和NP-亚烷基键和嵌入另一侧三取代膦中的磷原子的SNP配体如L2则没有被公开,并且其代表本发明的另一个方面。
因此,在本发明的另一个方面,提供根据上面所公开的式L2的配体以及含有所述配体的催化剂。
配体L1-L4的亚胺可以例如通过在适当的溶剂如低级醇、例如甲醇中醛与伯胺的缩合来制备。相应的胺可以通过使亚胺在适合的溶剂如乙醇中与还原剂例如硼氢化钠接触,从而由亚胺来制备。这两个步骤可以在本领域技术人员已知的条件下结合在一锅还原氨基化过程中。
一旦制备了所述配体,可以以自身已知的方式制备所述配体的金属配合物。以通常的方式,所述配体的金属配合物可以通过文献方法制备。例如,所述配体可以简单地与适合的金属前体如RuCl2(PPh3)3在回流条件下在适合的溶剂如甲苯中反应。可以使用可供替代的金属前体如RuCl2(DMSO)4、RuHCl(PPh3)3以及可供替代的溶剂如四氢呋喃或二氯甲烷。
本文所述的SNP的配体可形成八面体或三角双锥体过渡金属配合物。这意味着RuX2Y通过二齿PN-配位通过三齿SNP-配位与一个SNP-配体配合。弱供体硫-或噻吩-单元在钌核心上的配位因此是任选的,并且可以从配合物到配合物以及在氢化反应过程中改变,例如当RuX2的卤化物被氢化物交换时。MX2[SNP]Y配合物的基本特征是,只有一个SNP配体存在于MX2[SNP]Y中,如通过NMR、MS和元素分析所显示的。因此,三齿八面体和二齿三角型MX2[SNP]Y配合物均代表了本发明的不同方面,并且尽管硫-或噻吩-单元至金属核心的配位可以是任选的,然而其在SNP配体中的存在还是改进了催化剂效率,如通过例如Ru(II)SNP和Ru(II)ONP配合物4和10在香紫苏内酯(Sclareolide)的氢化中的对比所证明的。因此,尽管香紫苏内酯在25ppm的4的存在下完全氢化为香紫苏二醇(Sclareodiol),但是其ONP类似物10在0.1%时给出的仅仅是30%的香紫苏内酯至香紫苏二醇(转化率),而且在0.01%的水平下没有转化。
所述金属配合物可以在其使用前不久在氢化介质中原位制备,无需分离或纯化。一个合适的用于原位生产所述金属配合物的方法是在甲苯中在回流下加热金属前体RuCl2(PPh3)3和配体的1:1混合物几个小时,然后添加底物和碱,并将全部混合物在高压釜中在氢气压力下氢化。
本文所述的过渡金属配合物是用于催化含有碳-杂原子双键的官能团的氢化。这样的官能团包括、但不限于酯类、内酯类、酮类、醛类、酰胺类、内酰胺类和亚胺类,虽然它们特别适用于酯类和内酯类的氢化。特别有用的带有上述含有碳-杂原子双键的官能团的底物是那些在香料和香精工业有用的材料,无论是作为最终产品或作为最终产品的中间体。
在本发明的具体实施方案中,香紫苏内酯可以用本发明的过渡金属配合物氢化为中间体二醇(香紫苏二醇),然后使用文献方法环化为有价值的香料成分降龙涎香醚(Ambrox)。
该反应可以在适当的碱如甲醇钾的存在下和约50bar的氢气下、在升高的温度例如100℃下使用催化量的根据本发明的过渡金属配合物进行约4小时。该反应可以在溶剂如THF中进行。环化可以通过本领域技术人员已知的不同方法进行,如例如在WO2009010791中所公开的。
在另一个方面,本发明的催化剂可用于将取代或未取代的C8-C40烷酸酯、烯酸酯和苯甲酸酯氢化为相应的伯醇。这包括单-、二-和三酯的氢化。底物可以是甲基酯,但更优选乙基-或更高级酯,例如正丙基、异丙基、正丁基、叔丁基、异丁基或甚至更高级的支链和直链酯,其可以是取代或未取代的。
因此,各种酯可以以良好的效率被氢化,如α,β-不饱和酯11和不饱和酯13分别给出醇12和分别不饱和醇14,在后者的情况下具有高CO/烯烃选择性。
在又一个方面中,本发明的催化剂可用于酮类和亚胺类的氢转移反应,得到仲醇和胺。在氢转移反应中,羰基通过在碱的存在下从醇溶剂到羰基的氢转移被氢化。额外的氢气压力是不需要的,但可以任选地使用。
在又一个方面中,本发明的催化剂可用于脱氢反应。此类反应是所有上述转化的逆转,从而例如从醇类生成酯类,伴随着生成氢气。
在本发明的催化氢化反应中,过渡金属配合物可以相对于底物量为0.05-0.001mol%的量使用。
低催化剂水平是优选的,因为这能有效地降低催化均相氢化反应的总成本。
作为在催化氢化反应中使用的碱,可以提到金属烷酸盐。所述金属可以是Na、K或Cs;而烷酸盐可以是C1-C10烷酸盐,其可以是直链或支链的。
金属烷酸盐可以1摩尔-当量/底物和1摩尔-当量/催化剂之间的任何量使用,但通常以1-15%/底物的量使用以得到良好的结果并保持碱的低成本贡献。
另一组有效的碱包括金属氢化物如NaH或KH,其可以1摩尔-当量/底物和1摩尔-当量/催化剂之间的任何量使用,但通常以1-15%/底物的量使用以得到良好的结果并保持碱的低成本贡献。这些碱通常作为在矿物油中的分散体提供,所述碱可以该形式在氢化反应中使用或所述油可以在氢化之前被洗去。
在碱/溶剂系统中使用的溶剂可以是通常在均相催化氢化反应中使用的任何溶剂。溶剂的非限制性实例包括芳族溶剂如甲苯或二甲苯;烃溶剂如己烷或环己烷;醚类如四氢呋喃或MTBE;以及极性溶剂如叔丁醇。甲醇应该避免。优选的溶剂是醚类或呋喃类如THF或类似物如环戊基甲基醚(CPME)、甲基四氢呋喃,但也可使用任何无环或环状聚醚如二噁烷或四乙二醇二乙醚。
还可以使用低水平的溶剂或甚至无溶剂系统。低水平的溶剂包括<100%溶剂/底物的重量当量(w/w)、<50%w/w、<25%w/w或优选<10%w/w。
当使用溶剂时,其使用可以限于刚刚足以用于催化剂溶解/乳化和用于随后的转移和添加如此制备的催化剂溶液到底物中的用量。然而,所述催化剂也可以固体形式添加。除了这些可忽略的溶剂量,反应可以基本上在无溶剂情况下进行。
在严格的无溶剂条件下,催化剂溶解在所述底物的一部分中,随后该部分被添加到其余的底物中,或反之亦然。尽管如此,所述催化剂也可以固体形式加入。
特别有效的碱/溶剂系统包括在THF中的KOMe、在甲苯中的NaOMe、在tBuOH中的KOtBu、在THF中的NaH或在甲苯中的KH。
催化氢化反应可以在高压釜中在从1到80bar或甚至更高、更特别是40至80bar或更高的氢气压力范围下进行。本领域技术人员将理解的是,对于使用的金属配合物的水平,可调节H2压力以进行优化。
所述反应可进行的温度可以取决于以下的因素而变化,例如所使用的底物和反应产物的熔点/沸点、粘度以及极性以及实现完全或基本上完全的转化所需的反应时间。然而,通常所述反应将在50-120℃之间进行。
现在将在下面一系列实施例中进一步来说明本发明。
一般合成条件:
非极性GCMS:50℃/2min,20℃/min 200℃,35℃/min,270℃。具有HP 7890A系列GC系统的GC/MS Agilent 5975C MSD。非极性柱:得自BPX5的SGE,5%苯基95%二甲基聚硅氧烷,0.22mm×0.25mm×12m。载气:氦气。注射温度:230℃。分流1:50。流速:1.0ml/min。传输线:250℃。MS-四极:106℃。MS-源:230℃。
实施例1:RuCl2(2-(二苯基膦基)-N-(噻吩-2-基甲基)乙胺)PPh31
在氮气和搅拌下,将NaBH(OAc)3(4.4g,20mmol)添加到在1,2-二氯甲烷(75ml)中的2-(二苯基膦基)-乙胺(3g,12.4mmol)和噻吩-2-甲醛(1.6g,13.7mmol)中。在室温下搅拌18h后,将混合物倾入浓NaHCO3(100ml)中,并用乙酸乙酯萃取。将有机层用水和浓NaCl水溶液洗涤。将水相用乙酸乙酯再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到4.6g黄色油状物,将其溶解在叔丁基甲基醚中并通过快速硅胶色谱法使用洗脱剂叔丁基甲基醚进行纯化。第一级分(1.85g)含有双烷基化产物(叔胺)并被弃去,第二级分(1.1g,27%)含有SNP-配体2-(二苯基膦基)-N-(噻吩-2-基甲基)-乙胺,为淡黄色油状物。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.38-7.43(4H,Ar),7.28-7.31(6H,Ar),7.2(m,1H,噻吩-CH),6.9(m,1H,噻吩-CH),6.85(m,1H,噻吩-CH),3.9(d,J=1.01Hz,2H,CH2N),2.69-2.84(m,2H,NCH2CH2P),2.20-2.30(m,2H,NCH2CH2P),1.7(s,1H,NH)ppm。13C-NMR(CD2Cl2,400MHz):δ144.6(s),138.8和138.7(s),132.7和132.6(s),128.6和128.5(d),128.4(d),126.5(d),124.6(d),124.15(d),48.05(t),45.9和45.7(t),28.9和28.8(t)ppm。31P-NMR(CD2Cl2,200MHz):-21.5ppm。MS(EI)(%)(m/z):325([M]+,17%),292([M-HS]+,20%),268([M-C2HS]+,15%),186([HPPh2]+,100%),97([CH2-噻吩]+,50%)。
将在二氯甲烷(15ml)中的SNP-配体2-(二苯基膦基)-N-(噻吩-2-基甲基)乙胺(0.16g,0.5mmol)和RuCl2(PPh3)3(0.5g,0.5mmol)在回流和氮气下加热搅拌24h。在室温下添加己烷(60ml)。将沉淀物过滤、用己烷(3×20ml)洗涤并在减压下干燥,得到配合物1(0.21g,55%),为砖红色粉末。1的分析数据:
1H-NMR(CD2Cl2,400MHz):δ2.3-2.43(m,1H),2.76-2.87(m,1H),3.3-3.5(m,2H),4.07-4.15(m,1H),4.39-4.46(m,1H),4.56-4.68(m,1H),6.00(d,J=5.3Hz,1H),6.85-7.58(m,30H)ppm。31P-NMR(CD2Cl2,200MHz):δ42.79(d,2JP,P=34Hz,1P),60.0(d,2JP,P=33Hz,1P)。MS(EI)(%)(m/z):480([M-Cl+Na]+,748%)。C37H35Cl2NP2RuS的分析计算值:C,58.50%;H,4.64%;N,1.84%。实测值:C,58.42%;H,4.92%;N,1.74%。
实施例2:RuCl2(2-(二苯基膦基)-N-(噻吩-2-基甲基)乙胺)PPh32
在氮气和搅拌下,将NaBH(OAc)3(1.5g,6.6mmol)添加到在1,2-二氯甲烷(25ml)中的2-(二苯基膦基)乙胺(1g,4.1mmol)和噻吩-2-甲醛(0.7g,4.1mmol)中。在室温下搅拌19h后,将混合物倾入浓NaHCO3并用乙酸乙酯萃取。将有机层用水和浓NaCl水溶液洗涤。将水相用乙酸乙酯再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到1.7g黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化。蒸发溶剂,得到SNP-配体N-(苯并[b]噻吩-2-基甲基)-2-(二苯基-膦基)乙胺(0.32g,21%)。分析数据:
1H-NMR(CDCl3,400MHz):δ7.79(d,1H),7.68(d,1H),7.4-7.45(4H),7.25-7.35(8H),7.05(s,1H),4.0(d,2H,CH2N),2.85(m,2H,NCH2CH2),2.3(m,2H,NCH2CH2),1.72(br.s.,1H,NH)ppm。13C-NMR(CDCl3,400MHz):δ145.1(s),139.8(s),139.7(s),138.4和138.3(2s),132.8和132.65(d),128.7和128,5(d),128.4(d),129.01(s,1C),124.1(d),123.8(d),123.1(d),122.4(d),121.2(d),48.8(t),45.85和45.65(t),29.1和28.95(t)ppm。31P-NMR(CDCl3,400MHz):-20.9ppm。MS(EI)(%)(m/z):375([M]+,23%),324(7%),318(18%),266(22%),200(15%),199(17%),186([HPPh2]+,100),185(10%),183(17%),162(15%),152(14%),147(48%),121(13%),108(30%)。
将在二氯甲烷(13ml)中的SNP-配体N-(苯并[b]噻吩-2-基甲基)-2-(二苯基膦基)乙胺(0.17g,0.45mmol)和RuCl2(PPh3)3(0.45g,0.45mmol)在回流和氮气下加热搅拌24h。在室温下添加己烷(60ml)。将沉淀物过滤、用己烷洗涤并在减压下干燥,得到配合物2(0.32g,88%),为粉红色粉末。分析数据:
1H-NMR(CD2Cl2,400MHz):δ6.9-7.8(30H),5.85(d),4.8(m),4.6(t),4.2(m),3.3-3.7,2.85(m),2.35(m),1.6(1H),6H,2.35-5.85ppm。31P-NMR(CD2Cl2,400MHz):δ57.2(d),43.1(d)。MS(EI,在MeOH中,HCO2H,%,m/z):784([M-Cl-HCl+HCO2H]+,100%),738([M-Cl-HCl]+,15%)。C41H37Cl2NP2RuS的分析计算值:C,60.82%;H,4.61%;N,1.73%。实测值:C,60.25%;H,4.53%;N,1.56%。
实施例3:RuCl2(2-(二苯基膦基)-N-(2-(甲基硫基)乙基)乙胺)PPh3 3
如在Synthesis 7,659(1987)中所公开的从(2,2-二甲氧基乙基)(甲基)硫烷制备甲基硫基乙醛。
在氮气和搅拌下,将NaBH(OAc)3(3g,13.3mmol)添加到在1,2-二氯甲烷(50ml)中的2-(二苯基膦基)-乙胺(2g,8.3mmol)和甲基硫基乙醛(0.85g,9.1mmol)中。在室温下搅拌18h后,将混合物倾入浓NaHCO3并用乙酸乙酯萃取。将有机层用水和浓NaCl水溶液洗涤。将合并的水层用乙酸乙酯再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到2.83g淡黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化。蒸发溶剂,得到SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)乙基)-乙胺(0.79g,31%)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4-7.45(4H,Ar),7.3-7.35(6H,Ar),2.7-2.8(4H),2.5-2.6(m,2H),2.2-2.3(m,2H),2.05(3H),1.7(br,1H,NH)ppm。13C-NMR(CD2Cl2,400MHz):δ138.8(s),132.7(d),128.4-128.8(2d),47.8(t),46.3和46.1(t),34.4(t),29.1和28.9(t),15.1(q,SMe)ppm。31P-NMR(CD2Cl2,200MHz):-20.7ppm。GSMS(EI)(%)(m/z):288([M-CH3]+,8%),256([M+O-MeSH]+,80%),242(8%),199(19%),185(100%),183(89%),152(11%),121(27%),108(20%),107(21%),91(11%),75(43%),61(14%)。
将在二氯甲烷(15ml)中的SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)乙基)乙胺(0.165g,0.54mmol)和RuCl2(PPh3)3(0.52g,0.54mmol)在回流和氮气下加热搅拌16h。在室温下添加己烷(60ml)。将沉淀物过滤、用己烷洗涤并在减压下干燥,得到配合物3(0.27g,86%),为淡绿色粉末。分析数据:
31P-NMR(CD2Cl2,400MHz):δ46.1和44.7(2d,30.5Hz,镜像异构体),46.6和44.4(2d,32.5Hz,少量异构体)。MS(EI,在MeOH中,HCO2H,%,m/z):776([M+O+Na]+,100%),735和737([M]+,15%),718([M-Cl+O]+,35%),702([M-Cl]+,55%)。C35H37Cl2NP2RuS的分析计算值:C,56.99%;H,5.06%;N,1.9%。实测值:C,55.59%;H,5.00%;N,2.17%。
实施例4:RuCl2(2-(二苯基膦基)-N-(2-(正丁基硫基)乙基)乙胺)PPh3 4
对于正丁基硫基乙醛的合成,参见N.A.Keiko等人,Arkivoc127-138(2011)。
在氮气和搅拌下,将NaBH(OAc)3(3g,13.3mmol)添加到在1,2-二氯甲烷(50ml)中的2-(二苯基膦基)-乙胺(2g,8.3mmol)和正丁基硫基乙醛(1.2g,9.1mmol)中。在室温下搅拌22h后,将混合物倾入浓NaHCO3并用DCE萃取。将有机层用浓NaCl水溶液洗涤。将水相用DCE再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到3.15g淡黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化。在第一个级分中,分离副产物2-(丁基硫基)-N-(2-(丁基硫基)乙基)-N-(2-(二苯基膦基)乙基)乙胺(0.72g,19%,在溶剂蒸发后)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4(4H,Ar),7.3(6H,Ar),2.7-2.6(6H),2.45-2.55(8H),2.2(2H),1.5-1.6(4H),1.35-1.45(4H),0.9(t,6H)ppm。13C-NMR(CD2Cl2,400MHz):δ138.8(s),132.65(d),130.55(d),128.55(d),53.9(t),50.2(t),32.0(t),29.8(t),25.7(t),22.0(t),13.5(q,Me)ppm。31P-NMR(CD2Cl2,200MHz):-20.0ppm。MS(EI)(m/z):404([M-C4H9]+),373(23%),372(90%),358(100%),288(6%),256(8%),186(9%),185(61%),183(25%),117(55%),61(16%)。57(11%)。IR(膜):3052(w),2954(m),2926(m),2870(m),1738(w),1586(w),1480(w),1457(m),1434(m),1377(w),1294(w),1192(m),1095(m),1069(w),1026(w),998(w),914(w),737(m),695(s)。
从第二级分蒸发溶剂,得到SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)乙基)乙胺(0.72g,25%)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4-7.45(4H,Ar),7.3-7.35(6H,Ar),2.7(4H),2.6(m,2H),2.5(2H),2.3(m,2H),1.6(br,1H,NH),1.5(m,2H),1.4(m,2H),0.9(t,3H)ppm。13C-NMR(CD2Cl2,400MHz):δ138.85(s),132.65(d),130.55(d),128.45(d),48.5(t),46.2(t),32.3(t),31.9(t),31.6(t),28.95(t),22.0(t),13.5(q,Me)ppm。31P-NMR(CD2Cl2,200MHz):-20.7ppm。MS(EI)(m/z):346([M+H]+,289(10%),288(55%),257(18%),256([M+O-BuSH]+,100%),242(20%),199(13%),186(18%),185(87%),183(31%),69(20%)。IR(膜):3051(w),2926(m),2871(w),1953(w),1886(w),1812(w),1737(w),1671(w),1585(w),1479(w),1456(m),1433(m),1376(w),1331(w),1272(w),1240(w),1184(w),1117(m),1068(w),998(w),737(m),694(s)。
将在二氯甲烷(15ml)中的SNP-配体2-(二苯基膦基)-N-(2-(正丁基硫基)乙基)乙胺(0.25g,0.7mmol)和RuCl2(PPh3)3(0.71g,0.7mmol)在回流和氮气下加热搅拌14h。在室温下添加己烷(100ml)。将沉淀物过滤、用己烷洗涤并在减压下干燥,得到配合物4(0.44g,78%),为橙色粉末。分析数据:
1H-NMR(400MHz,CD2Cl2):6.9-7.4(25H),4.5和4.7(1H),2.3-3.7(9H),1.55(2H),1.0-1.5(4H),0.8(t,3H)。31P-NMR(CD2Cl2
400MHz):δ45.6和45.9(2d),44.7和44.8(2d)。MS(ESI(+),在MeOH中,HCO2H,%,m/z):754([M-Cl-HCl+HCO2H]+,100%,与计算的同位素簇(isotope cluster)相同),744([M-Cl]+,100%)。C38H43Cl2NP2RuS的分析计算值:C,58.53%;H,5.56%;N,1.80%。实测值:C,57.21%;H,5.44%;N,1.75%。IR(ATR):3162(w),3059(w),2947(w),2859(w),1585(w),1480(w),1454(w),1432(m),1303(w),1267(w),1187(w),1156(w),1138(w),1088(m),1067(w),1027(w),1006(w),983(m),914(w),865(w),799(w),751(w),740(m),737(m),691(s),657(m),619(m)。
实施例5:RuCl2(2-(二苯基膦基)-N-(2-(正辛基硫基)乙基)乙胺)PPh3 5
对于正辛基硫基乙醛的合成,参见N.A.Keiko等人,Arkivoc127-138(2011)。
在氩气和搅拌下,将NaBH(OAc)3(2.8g,12.5mmol)添加到在1,2-二氯甲烷(50ml)中的2-(二苯基膦基)-乙胺(1.9g,2.8mmol)和正辛基硫基乙醛(1.6g,8.6mmol)中。在室温下搅拌22h后,将混合物倾入浓NaHCO3并用DCE萃取。将有机层用浓NaCl水溶液洗涤。将水相用DCE再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到3.6g淡黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化,蒸发溶剂后得到0.64g(20%)配体,为无色油状物。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4-7.5(4H,Ar),7.25-7.35(6H,Ar),2.8(4H),2.6(m,2H),2.5(m,2H),2.3(m,2H),1.8(br,1H,NH),1.5-1.6(m,2H),1.3-1.4(4H),1.25(6H),0.9(t,3H)ppm。13C-NMR(CD2Cl2,400MHz):δ138.35(s),132.7(d),128.6(d),128.4(d),48.4(t),46.25(t,CH2-P),32.3(t),32.0(t),31.8(t),29.8(t),29.2(t),29.1(t),29.0(t),28.9(t),22.7(t),14.1(q,Me)ppm。31P-NMR(CD2Cl2,200MHz):-20.6ppm。MS(EI)(m/z):400([M-H]+,1%),289(12%),288(57%),257(19%),256([M+O-OctSH]+,100%),242(19%),200(7%),199(8%),186(15%),185(56%),183(26%),121(7%)。
将在二氯甲烷(30ml)中的SNP-配体2-(二苯基膦基)-N-(2-(正辛基硫基)乙基)乙胺(0.5g,1.25mmol)和RuCl2(PPh3)3(0.86g,0.87mmol)在回流和氮气下加热搅拌24h。在室温、搅拌下缓慢添加己烷(100ml)。将橙色沉淀物过滤、用己烷(3×20ml)洗涤并在减压下干燥,得到粗配合物5(0.51g,71%),为橙色粉末,将其再次溶于二氯甲烷(30ml)并在搅拌下缓慢地用己烷(150ml)处理。将橙色沉淀物过滤、用己烷(3×20ml)洗涤并在减压下干燥,得到配合物5(0.3g,29%),为橙色粉末。
1H-NMR(400MHz,CD2Cl2):6.9-7.5(25H),4.55和4.8(1H),2.3-3.6(10H),1.0-1.6(12H),0.9(t,3H)。31P-NMR(CD2Cl2,400MHz):δ46.3,46.1,45.8,45.6和44.7,44.5,44.1,44.0。C42H51Cl2NP2RuS的分析计算值:C,60.35%;H,6.15%;N,1.68%。实测值(在第一次沉淀后):C,60.00%;H,6.31%;N,1.52%。实测值(在第二次沉淀后):C,60.24%;H,6.24%;N,1.83%。IR(ATR):3162(w),3054(w),2957(w),2921(w),2853(w),1481(w),1455(w),1432(m),1304(w),1188(w),1088(m),1072(w),1002(w),979(m),862(m),799(w),740(m),737(m),691(s),658(m)。
实施例6:二氯[(N-(2-(二苯基膦基)亚苄基)-2-(乙基硫基)乙胺)-(三苯基-膦)]-钌(II)6
在氩气下将2-(乙基硫基)乙胺(0.36g,3.44mmol)在THF中的(3ml)的溶液添加到2-(二苯基膦基)苯甲醛(1.00g,3.44mmol)在THF(10ml)中的溶液中。在72℃搅拌12h后,将反应混合物冷却至0℃,添加DCM(3ml)并将溶剂在真空下蒸发。得到SNP-配体N-(2-(二苯基膦基)亚苄基)-2-(乙基硫基)乙胺,为橙色固体(1.20g,92%)。分析数据:
1H-NMR(400MHz,CDCl3):8.92(d,J=4.80,1H),8.00(m,1H),7.41(m,1H),7.38-7.28(m,11H),6.91(m,1H),3.70(dt,J=1.26,7.07,2H),2.62(t,J=7.33,2H),2.50(q,J=7.33,2H),1.23(t,J=7.33,3H)。13C-NMR(400MHz,CDCl3):161.12,139.67,137.93,136.96,136.87,134.42,133.77,130.74,129.28,129.01,128.13,61.64,32.56,26.49,15.28。31P-NMR(500MHz,CDCl3):-13.55(s,1P)。GC/MS:377(6%,M+),348(54%,[M-29]+),288(100%),226(20%),208(14%),183(28%),165(14%),107(11%),89(34%),61(14%)。
在氩气下将二氯三(三苯基膦)钌(II)(1.52g,1.58mmol)添加到N-(2-(二苯基膦基)亚苄基)-2-(乙基硫基)乙胺(0.60g,1.58mmol)在甲苯(13ml)中的溶液中。在110℃搅拌19h后,将反应混合物冷却至室温并在真空下蒸发至体积为5ml。向这一红色悬浮液中添加DCM(20ml)。搅拌15min后,将悬浮液过滤并在真空下干燥。得到配合物6,为红色固体(0.88g,69%)。分析数据:
1H-NMR(400MHz,CDCl3):8.80(d,J=8.84,1H),7.56-6.81(m,29H),6.35(m,2H),4.60(m,1H),4.20(m,1H),3.03(m,2H),2.29(m,1H),0.92(t,J=7.33,3H)。31P-NMR(500MHz,CDCl3):45.68(d,J=30.23,1P),29.60(d,J=30.23,1P)。MS(ESI):811.10(40%,M+),776.12(100%,[M-Cl]+)。C41H39Cl2NP2RuS的分析计算值:C,60.66%;H,4.84%;N,1.73%。实测值:C,60.85%;H,4.90%;N,1.64%。
实施例7:二氯[(N-(2-(二苯基膦基)苄基)-2-(乙基硫基)乙胺)(三苯基膦)]钌(II)7
在氩气下,将NaBH4(0.18g,4.75mmol)添加到N-(2-(二苯基-膦基)-亚苄基)-2-(乙基硫基)乙胺(0.60g,1.58mmol)在乙醇(6ml)中的溶液中。在78℃搅拌18h后,将反应混合物冷却至室温并添加水(18ml),随后添加饱和NH4Cl水溶液。将各相分离并将水相用DCM(3×10ml)萃取。将合并的有机相用MgSO4干燥、过滤并在真空下浓缩。得到SNP-配体N-(2-(二苯基膦基)苄基)-2-(乙基硫基)乙胺,为橙色液体(0.53g,88%)。分析数据:
1H-NMR(400MHz,CDCl3):7.63(m,1H),7.50(m,1H),7.37-7.26(m,10H),7.19(dt,J=1.26,7.58,1H),6.91(m,1H),4.03(d,J=1.77,2H),2.73(t,J=6.82,2H),2.53(t,J=6.57,2H),2.48(q,J=7.33,2H),1.23(t,J=7.33,3H)。13C-NMR(400MHz,CDCl3):137.07,136.21,134.36,134.14,132.37,129.55,129.43,129.15,128.97,127.78。31P-NMR(500MHz,CDCl3):-16.06(s,1P)。MS(EI):379.4(2%,M+),318.3(100%,[M-61.1]+),304.3(15%,[M-75.1]+),275.2(42%,[M-104.2]+)。
在氩气下将二氯三(三苯基膦)钌(II)(1.22g,1.27mmol)添加到N-(2-(二苯基膦基)苄基)-2-(乙基硫基)乙胺(0.48g,1.27mmol)在甲苯(17ml)中的溶液中。在110℃搅拌18h后,将反应混合物冷却至室温并在真空下蒸发至体积为5ml。向这一红色悬浮液添加乙醚(15ml)。在搅拌15min后,将悬浮液过滤并在真空下干燥。得到配合物7,为红色固体(0.39g,38%)。分析数据:
1H-NMR(400MHz,CDCl3):7.73-7.15(m,22H),6.89(m,4H),6.63(m,1H),6.08(m,2H),4.49(m,1H),4.06(m,1H),3.59(m,1H),3.44(m,1H),3.08(m,3H),2.23(m,1H),1.72(m,1H),0.86(t,J=7.33,3H)。31P-NMR(500MHz,CDCl3):35.94(d,J=75.78,1P),34.74(d,J=76.05,1P)。MS(ESI):813.11(34%,M+),778.14(100%,[M-Cl]+)。C41H41Cl2NP2RuS的分析计算值:C,60.44%;H,5.26%;N,1.72%。实测值:C,60.48%;H,4.93%;N,1.59%。
实施例8:二氯[(N-(2-(二苯基膦基)苄基)-2-(乙基硫基)乙胺)(三苯基膦)]钌(II)8
在氩气下将2-(甲基硫基)苯甲醛(0.33g,2.18mmol)添加到2-(二苯基膦)乙胺(0.50g,2.18mmol)在甲醇(6ml)中的溶液中。在75℃搅拌42h后,将反应混合物冷却至室温并在真空下蒸发。得到SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)亚苄基)乙胺,为浅棕色固体(0.66g,84%)。分析数据:
1H-NMR(500MHz,CDCl3):8.74(s,1H),7.79(dd,J=1.58,7.88,1H),7.52-7.48(m,4H),7.39-7.32(m,8H),7.21(m,1H),3.80(m,2H),2.53(m,2H),2.48(s,3H)。13C-NMR(500MHz,CDCl3):159.37,138.34,134.24,132.88,132.74,130.78,130.66,128.59,128.49,128.44,128.25,127.28,125.50,58.58,29.99,16.90。31P-NMR(500MHz,CDCl3):-19.04(s,1P)。GC/MS:363(2%,M+),348(2%,[M-15]+),320(100%,[M-43]+),288(10%),214(12%),183(39%),121(20%),108(42%)。
在氩气下将二氯三(三苯基膦)钌(II)(0.53g,0.55mmol)添加到2-(二苯基膦基)-N-(2-(甲基硫基)亚苄基)乙胺(0.20g,0.55mmol)在甲苯(15ml)中的溶液中。在110℃搅拌20h后,将反应混合物冷却至室温并在真空下蒸发至体积为5ml。向这一红色悬浮液添加己烷(20ml)。在搅拌15min后,将悬浮液过滤并用己烷(4ml)洗涤。将红色滤饼在真空下干燥19h,然后悬浮在乙醚(6ml)中。将悬浮液过滤,用乙醚(4×4ml)洗涤并将滤饼在真空下干燥。得到配合物8,为浅红色固体(0.29g,67%)。分析数据:
1H-NMR(400MHz,CDCl3):8.78(d,J=8.84,1H),8.33(m,1H),7.70(m,3H),7.54-7.06(m,25H),4.59(m,1H),4.53(m,1H),2.55(m,2H),1.83(d,J=2.53,3H)。31P-NMR(500MHz,CDCl3):40.62(d,J=32.27,1P),36.72(d,J=32.37,1P)。MS(ESI):797.18(62%,M+),762.12(100%,[M-Cl]+)。
实施例9:二氯[2-(二苯基膦基)-N-(2-(甲基硫基)苄基)乙胺]-钌(II)9
在氩气下将NaBH4(0.13g,3.47mmol)添加到2-(二苯基膦基)-N-(2-(甲基硫基)亚苄基)乙胺(0.42g,1.16mmol)在乙醇(7ml)中的溶液中。在80℃搅拌20h后,将反应混合物冷却至室温并添加DCM(10ml),随后添加饱和NH4Cl水溶液。将各相分离并将有机相用水洗涤2次并用盐水洗涤1次。将有机相用MgSO4干燥、过滤并在真空下浓缩。得到配体2-(二苯基膦基)-N-(2-(甲基硫基)苄基)乙胺,为黄色液体(0.36g,86%)。分析数据:
1H-NMR(400MHz,CDCl3):7.76(m,1H),7.44(m,4H),7.34(m,6H),7.24(m,2H),7.12(m,1H),3.86(s,2H),2.81(m,2H),2.49(s,3H),2.34(m,2H),1.75(bs,1H)。13C-NMR(400MHz,CDCl3):138.89,138.25,137.70,133.13,129.29,128.95,128.82,128.05,126.09,125.31,51.88,46.43,29.48,16.17。31P-NMR(500MHz,CDCl3):-20.60(s,1P)。GC/MS:350(16%,[M-15]+),318(40%),200(26%),183(32%),166(11%),152(19%),137(100%),121(33%),108(36%),91(25%),77(13%),45(28%)。
在氩气下将二氯三(三苯基膦)钌(II)(0.94g,0.99mmol)添加到2-(二苯基膦基)-N-(2-(甲基硫基)苄基)乙胺(0.36g,0.99mmol)在甲苯(20ml)中的溶液中。在110℃搅拌19h后,将反应混合物冷却至室温并在真空下蒸发至体积为5ml。向这一悬浮液中添加己烷(20ml)。在搅拌15min后,将悬浮液过滤并用己烷(4ml)和乙醚(2×4ml)洗涤。将浅棕色滤饼在真空下干燥19h,然后悬浮在乙醚(5ml)中。在搅拌15min后,将悬浮液过滤、用乙醚(3×1ml)洗涤,并将滤饼在真空下干燥。得到配合物9,为浅棕色固体(0.76g,96%)。分析数据:
1H-NMR(400MHz,CDCl3):7.80(m,6H),7.69(m,1H),7.47(m,3H),7.31-7.01(m,17H),6.88(dt,J=2.02,7.58,1H),7.18(d,J=7.33,1H),5.48(bs,1H),5.23(d,J=12.63,1H),4.11(m,1H),3.89(m,1H),3.00(m,1H),2.07(m,1H),1.12(m,1H),1.08(s,3H)。31P-NMR(500MHz,CDCl3):49.83(d,J=27.74,1P),37.96(d,J=27.74,1P)。C40H39Cl2NP2RuS的分析计算值:C,60.07%;H,4.92%;N,1.75%。实测值:C,60.36%;H,4.79%;N,1.47%。
实施例10:RuCl2(2-(二苯基膦基)-N-(2-(正丁氧基)乙基)乙胺)PPh3 10
在氮气、搅拌和冷却下,在30min内将在矿物油(6.5g,162mmol)中的NaH 60%逐滴添加到在干燥THF(70ml)中的丁醇(10g,135mmol)中。在室温下1h后,在轻微冷却下逐滴添加在THF(20ml)中的2-溴-1,1-二甲氧基乙烷(23.5g,135mmol)。将混合物在回流下(67℃)加热44h并(在完全转化后)冷却至室温,并倾入水(200ml)。用二氯甲烷(2×200ml)萃取,用水(200ml)洗涤合并的有机层,用MgSO4干燥、过滤并蒸发溶剂,得到15.6g(71%)1-(2,2-二甲氧基乙氧基)-丁烷,为含有一些(15%)正丁醇的无色液体。分析数据:
1H-NMR(400MHz,CDCl3):4.5(t,1H),3.45-4.5(2m,4H),3.4(s,6H),1.5-1.6(m,2H),1.4(m,2H),0.9(t,3H)ppm。13C-NMR(400MHz,CDCl3):102.7(d),71.5(t,OCH2),70.4(t,OCH2),53.8(q,OMe),32.6(t),19.2(t),13.8(q)ppm。GCMS:131(0.5%,[M-OMe]+),75(100%,[正丁基-O-CH2]+),57(8%,[正丁基]+),45(28%)。
将溶于水(70ml)的pTSA一水合物(8.8g,46mmol)添加到在DCM(50ml)中的1-(2,2-二甲氧基乙氧基)-丁烷(5g,31mmol)中。将混合物在45℃搅拌46h。在相分离并用DCM(50ml)萃取水相后,将合并的有机层用浓NaCO3(25ml)和浓NaCl(2×25ml)洗涤,用MgSO4干燥,过滤并在500mbar/40℃下蒸发。将残余物(3.25)用丁基羟基甲苯(20mg)处理并在80-100℃/50mbar下进行瓶-对-瓶蒸馏(bulb-to-bulb-distilled),得到0.9g(24%)2-丁氧基乙醛,纯度80%。这一级分的分析数据与H.C.Arndt,S.A.Caroll,Synthesis,202,1979中所报道的这一化合物的分析数据相同,将所述化合物直接用于下一步。
在氮气和搅拌下将在1,2-二氯甲烷(50ml)中的2-丁氧基乙醛(0.53g,4.56mmol)添加到2-(二苯基膦基)-乙胺(1.92g,8.0mmol)中。在添加NaBH(OAc)3(1.5g,6.6mmol)并在室温搅拌22h后,将混合物倾入浓NaHCO3(100ml),分离各相并将水相用1,2-二氯甲烷(50ml)萃取。将有机层用浓NaCl水溶液(50ml)洗涤。将水层用1,2-二氯甲烷(100ml)再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到1.25g淡黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化。蒸发溶剂,得到SNP-配体2-丁氧基-N-(2-(二苯基膦基)乙基)乙胺(0.5g,37%)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4-7.45(4H,Ar),7.3(6H,Ar),3.5(t,2H),3.4(t,2H),2.7-2.8(4H),2.3(m,2H),1.6-1.7(br,1H,NH),1.5-1.6(m,2H),1.3-1.4(m,2H),0.9(t,3H)ppm。13C-NMR(CD2Cl2,400MHz):δ138.5和138.4(s),132.8和132.6(d),128.6(d),128.5和128.4(d),71.0(t),70.0(t),49.2(t),46.8和46.6(t),31.8(t),29.15和29.0(t),19.3(t),13.95(q,Me)ppm。31P-NMR(CD2Cl2,200MHz):-20.4ppm。GSMS(EI)(m/z):328([M-H]+,1%),286(1%),272(2%),257(9%),255(12%),242(33%),229(14%),227(32%),201(28%),200(71%),199(51%),186(60%),185(93%),184(11%),183(100%),152(12%),130(12%),121(33%),109(12%),108(43%),107(24%),91(18%),74(15%),58(88%),57(44%),56(52%),41(43%),29(28%)。
将在二氯甲烷(30ml)中的ONP-配体2-(二苯基膦基)-N-(2-(正丁氧基)乙基)乙胺(0.5g,1.5mmol)和RuCl2(PPh3)3(1.05g,1.1mmol)在回流、氮气和搅拌下加热8h。在室温下将己烷(150ml)添加到棕色溶液中。将暗红色沉淀过滤、用己烷(3×20ml)洗涤并在减压下干燥,得到配合物10(0.65g,56%),为暗红色粉末。配合物10的分析数据:
1H-NMR(400MHz,CD2Cl2):7.4-7.5(5H),7.0-7.3(20H),5.1-5.2(1H),4.0-4.1(1H),3.9(1H),3.2-3.6(4H),2.6-2.9(3H),1.55(1H),1.2-1.4(3H),0.75-0.9(2H),0.7(3H),0.0(3H)。31P-NMR(CD2Cl2,400MHz):δ61.0和60.8(d),45.9和45.7(d)。MS(ESI(+),m/z,%):728([M-Cl]+,100%,与计算的同位素簇相同)。IR(ATR):3162(w),3059(w),3056(w),2946(w),2909(w),2866(w),1480(w),1432(m),1189(w),1091(m),1069(w),1019(m),921(w),833(w),806(w),739(m),691(s),655(m),618(w)。C38H43Cl2NP2RuO的分析计算值:C,59.77%;H,5.68%;N,1.83%。实测值:C,59.74%;H,5.66%;N,1.73%。
实施例11:使用RuCl2(2-(二苯基膦基)-N-(噻吩-2-基甲基)乙胺)PPh3 1催化氢化苯甲酸乙酯
在氩气下将催化剂1(1.5mg,2μmol)和苯甲酸乙酯(0.6g,4mmol)溶于甲苯(10ml)并置于120ml Premex高压釜中。在添加甲基钠(22mg,0.4mmol)后,用氢气替换氩气气氛并将混合物在100℃、50bar氢气下搅拌加热16h。将压力释放并将混合物在室温下用2%H3PO4(30ml)处理。用叔丁基甲基醚(50ml)进行萃取。GCMS-分析揭示定量转化为苄基醇,纯度99%。
实施例12:用0.05%RuCl2(2-(二苯基膦基)-N-(噻吩-2-基甲基)乙胺)PPh3 1催化氢化香紫苏内酯
将商购的(+)-(3aR,5aS,9aS,9bR)-香紫苏内酯(CAS 564-20-5)用作底物。
在氩气下将催化剂1(1.5mg,2μmol)和香紫苏内酯(1g,4mmol)溶于甲苯(10ml)并置于120ml Premex高压釜中。在添加甲基钠(22mg,0.4mmol)后,用氢气替换氩气气氛并将混合物在100℃、50bar氢气下搅拌加热16h。后处理后得到1g香紫苏二醇(99.5%),根据GCMS和NMR分析,纯度为100%。(1R,2R,4aS,8aS)-香紫苏二醇的分析数据与文献例如J.H.George等人,Org.Lett.14,4710(2012)中所公开的这一化合物(CAS 38419-75-9)的分析数据相一致。
在下表中公开了这一转化的一些变体:
表1:上述(实施例12)的一般条件。a)底物/溶剂用量。b)催化剂负载/底物,以mol%或mol-ppm为单位。c)底物香紫苏内酯(CAS 564-20-5)。d)如从粗产物中检测到的转化率推导的转换数。
实施例13:用在THF中的Ru(II)-催化剂和碱KOMe催化氢化香紫苏内酯
将在超声下在THF(5ml)中溶解5-10min的催化剂3(1.9mg,2.6μmol)在氩气下添加到在Premex高压釜内的THF(58ml)中的香紫苏内酯(26g,104mmol)中。添加KOMe(0.72g,10.4mmol)后,将氩气气氛替换为氢气并将混合物在100℃、50bar氢气下搅拌加热22h。冷却至室温后,将压力释放并将反应混合物在搅拌下倾入2%H3PO4水溶液中。用叔丁基甲基醚(2×50ml)萃取,将合并的有机相用水(50ml)洗涤、用MgSO4干燥、过滤并蒸发溶剂,得到26.4g白色固体,根据GC和NMR,所述固体由香紫苏二醇(94%),降龙涎香醚(2%)和香紫苏内酯(3%)组成。
在下表中公开了这一转化的一些变体:
表2:上述(实施例13)的一般条件。a)底物/溶剂用量。b)催化剂负载/底物,以mol%为单位。c)底物香紫苏内酯(CAS 564-20-5)。d)如从粗产物中检测到的转化率推导的转换数。e)4mol%KOMe而不是10mol%。
实施例14:用Ru(II)-催化剂4和碱NaH或KH催化氢化香紫苏内酯:
将在超声下在甲苯(20ml)中溶解5-10min的催化剂4(2mg,2.6μmol)在氩气下添加到在Premex高压釜内的甲苯(43ml)中的香紫苏内酯(26g,104mmol)中。添加在石蜡油(1.2g,10.4mmol)中的氢化钾35%后,将氩气气氛替换为氢气并将混合物在105℃、50bar氢气下搅拌加热7h。冷却至室温后,将压力释放并将反应混合物在搅拌下倾入2%H3PO4水溶液(30ml)中。用叔丁基甲基醚和乙酸乙酯萃取、用MgSO4干燥、过滤并蒸发溶剂,得到27.2g白色固体,根据GC,所述固体由香紫苏二醇(94%),降龙涎香醚(5%)和香紫苏内酯(1%)组成。
在其他相同条件和比例下使用在石蜡油中的氢化钠60%和溶剂THF的相同方法,得到26.5g白色固体,根据GC,所述固体由香紫苏二醇(95%),降龙涎香醚(3%)和香紫苏内酯(2%)组成。
实施例15:催化氢化α,β-不饱和酯11:
将在THF(30ml)中的商购的(E)-3-(4-异丁基苯基)丙烯酸乙酯11(3g,12.4mmol),催化剂4(9.7mg,12μmol)和KOMe(92mg,1.24mmol)在105℃、氢气(50bar)和搅拌下在Parr-高压釜中氢化16h。冷却至室温后,将压力释放并将反应混合物在搅拌下倾入2%H3PO4水溶液(10ml)中。用叔丁基甲基醚(20ml)萃取后,将有机层用盐水(20ml)洗涤。用MgSO4干燥、过滤、蒸发溶剂并在120-140℃/0.05mbar下瓶对瓶蒸馏后,得到2.6g(91%)3-(4-异丁基苯基)丙-1-醇12,为无色油状物,GC-纯度为97-100%。分析数据:
1H-NMR(400MHz,CDCl3):7.0-7.1(4H),3.6(t,2H),2.65(t,2H),2.4(d,2H),1.85-1.9(3H),1.7(br,OH,1H),0.9(d,6H)ppm。13C-NMR(400MHz,CDCl3):139.2(s),139.0(s),129.2(d),128.1(d),62.4(t),45.1(t),34.3(t),31.7(t),30.3(d),22.4(q)ppm。GCMS:192(27%,[M]+),174(4%,[M-H2O]+),149(83%),132(14%),131(100%),117(24%),116(12%),115(15%),105(26%),104(12%),91(32%)。IR(膜):3326(br),3009(w),2951(s),2925(m),2867(m),1512(m),1465(m),1418(m),1383(m),1366(m),1166(w),1116(w),1058(m),1039(s),1021(w),915(w),846(m),810(w),791(m),695(s)。
在相同条件下使用0.01%催化剂4(1mg,1.24μmol)的相同反应,得到饱和酯15(2.91g),为黄色油状物,含有82%饱和酯和18%3-(4-异丁基苯基)丙-1-醇12。15的分析数据:
1H-NMR(400MHz,CDCl3):7.0-7.1(4H),4.2(q,1H),2.9(t,2H),2.6(t,2H),2.4(d,2H),1.8-1.9(1H),1.2(t,3H),0.9(d,6H)ppm。13C-NMR(400MHz,CDCl3):173.1(s,C=O),139.6(s),137.8(s),129.2(d),128.0(d),60.4(t),45.0(t),36.1(t),30.25(t),30.24(d),22.4(2C,q),14.2(q)ppm。GCMS:234(10%,[M]+),191(26%),160(33%),147(11%),118(18%),117(100%),104(14%),91(12%)。
实施例16:催化氢化不饱和酯13:
对于十二碳-9-烯酸甲酯13的合成,参见例如K.Takai,Organic Reactions 64,253页,488(2004)。
在80℃和搅拌下,将十二碳-9-烯酸甲酯13E/Z84:16(30g,141mmol)、KOMe(1.05g,14.11mmol)和催化剂4(11mg,14μmol)的混合物氢化(50bar)21h。冷却至室温后,将压力释放并将反应混合物在搅拌下倾入2%H3PO4水溶液(30ml)中。用叔丁基甲基醚萃取后,将有机层用盐水(20ml)洗涤。用MgSO4干燥、过滤、蒸发溶剂,得到27g淡黄色油状物,将其在62-72℃/0.05mbar通过蒸馏纯化,得到21.5g(83%,corr)十二碳-9-烯-1-醇14,纯度为93-98%,E/Z比为85/15。异构体的分析数据与得自文献的(H.J.Bestmann等人,Chem.Ber.113,1115,1980以及其中的参考文献)异构体的数据是相同的。
实施例17:略微改进的用于合成催化剂RuCl2(2-(二苯基膦基)-N-(2-(甲基硫基)乙基)乙胺)PPh33的方法,具有正确的元素分析
如在Synthesis 7,659(1987)中所公开的,由(2,2-二甲氧基乙基)(甲基)硫烷制备甲基硫基乙醛。
在氮气和搅拌下,NaBH(OAc)3(2.85g,12.75mmol)添加到在1,2-二氯甲烷(50ml)中的2-(二苯基膦基)-乙胺(1.92g,8.0mmol)和甲基硫基乙醛(0.82g,8.75mmol)中。在室温下搅拌22h后,将混合物倾入浓NaHCO3(50ml)中并用1,2-二氯甲烷(50ml)萃取。将有机层用浓NaCl水溶液(50ml)洗涤。将合并的有机层用1,2-二氯乙烷再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到2.83g淡黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化。蒸发溶剂,得到SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)乙基)-乙胺(1.2g,45%)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4-7.45(4H,Ar),7.3-7.35(6H,Ar),2.7-2.8(4H),2.5-2.6(m,2H),2.2-2.3(m,2H),2.05(3H),1.7(br,1H,NH)ppm。13C-NMR(CD2Cl2,400MHz):δ138.8(s),132.7(d),128.4-128.8(2d),47.8(t),46.3和46.1(t),34.4(t),29.1和28.9(t),15.1(q,SMe)ppm。31P-NMR(CD2Cl2,200MHz):-20.7ppm。GSMS(EI)(%)(m/z):288([M-CH3]+,8%),256([M+O-MeSH]+,80%),242(8%),199(19%),185(100%),183(89%),152(11%),121(27%),108(20%),107(21%),91(11%),75(43%),61(14%)。
在回流、搅拌和氮气下将在二氯甲烷(30ml)中的SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)乙基)乙胺(0.5g,1.65mmol)和RuCl2(PPh3)3(1.15g,1.15mmol)加热22h。在室温下、搅拌下将己烷(150ml)缓慢添加到橙色悬浮液中。将沉淀物过滤、用己烷(20ml)洗涤并在高真空下干燥,得到配合物3(0.79g,93%),为橙色固体。分析数据:
31P-NMR(CD2Cl2,400MHz):δ46.1和44.7(2d,30.5Hz,镜像异构体),46.6和44.4(2d,32.5Hz,少量异构体)。MS(EI,在MeOH中,HCO2H,%,m/z):742(100%),702([M-Cl]+,82%)。IR(ATR):3162(w),3047(w),2914(w),2857(w),1480(w),1454(w),1431(m),1299(w),1184(w),1086(m),1012(w),979(w),958(w),864(w),801(w),740(m),691(s),658(m),619(w)。C35H37Cl2NP2RuS的分析计算值:C,56.99%;H,5.06%;N,1.9%。实测值:C,56.81%;H,5.20%;N,1.98%。
实施例18:略微改进的用于合成催化剂RuCl2(2-(二苯基膦基)-N-(2-(正丁基硫基)乙基)乙胺)PPh3 4的方法,具有正确的元素分析
对于正丁基硫基乙醛的合成,参见N.A.Keiko等人,Arkivoc127-138(2011)。
在氮气和搅拌下,将NaBH(OAc)3(3g,13.3mmol)添加到在1,2-二氯甲烷(50ml)中的2-(二苯基膦基)-乙胺(2g,8.3mmol)和正丁基硫基乙醛(1.2g,9.1mmol)中。在室温下搅拌22h后,将混合物倾入浓NaHCO3并用DCE萃取。将有机层用浓NaCl水溶液洗涤。将水相用DCE再次萃取。将合并的有机层用MgSO4干燥、过滤并蒸发,得到3.15g淡黄色油状物,将其溶于乙酸乙酯并通过快速硅胶色谱法使用洗脱剂乙酸乙酯进行纯化。在第一个级分中,分离副产物2-(丁基硫基)-N-(2-(丁基硫基)乙基)-N-(2-(二苯基膦基)乙基)乙胺(0.72g,19%,溶剂蒸发后)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4(4H,Ar),7.3(6H,Ar),2.7-2.6(6H),2.45-2.55(8H),2.2(2H),1.5-1.6(4H),1.35-1.45(4H),0.9(t,6H)ppm。13C-NMR(CD2Cl2,400MHz):δ138.8(s),132.65(d),130.55(d),128.55(d),53.9(t),50.2(t),32.0(t),29.8(t),25.7(t),22.0(t),13.5(q,Me)ppm。31P-NMR(CD2Cl2,200MHz):-20.0ppm。MS(EI)(m/z):404([M-C4H9]+),373(23%),372(90%),358(100%),288(6%),256(8%),186(9%),185(61%),183(25%),117(55%),61(16%)。57(11%)。IR(膜):3052(w),2954(m),2926(m),2870(m),1738(w),1586(w),1480(w),1457(m),1434(m),1377(w),1294(w),1192(m),1095(m),1069(w),1026(w),998(w),914(w),737(m),695(s)。
从第二级分蒸发溶剂,得到SNP-配体2-(二苯基膦基)-N-(2-(甲基硫基)乙基)乙胺(0.77g,27%)。分析数据:
1H-NMR(CD2Cl2,400MHz):δ7.4-7.45(4H,Ar),7.3-7.35(6H,Ar),2.7(4H),2.6(m,2H),2.5(2H),2.3(m,2H),1.6(br,1H,NH),1.5(m,2H),1.4(m,2H),0.9(t,3H)ppm。13C-NMR(CD2Cl2,400MHz):δ138.85(s),132.65(d),130.55(d),128.45(d),48.5(t),46.2(t),32.3(t),31.9(t),31.6(t),28.95(t),22.0(t),13.5(q,Me)ppm。31P-NMR(CD2Cl2,200MHz):-20.7ppm。MS(EI)(m/z):346([M+H]+,289(10%),288(55%),257(18%),256([M+O-BuSH]+,100%),242(20%),199(13%),186(18%),185(87%),183(31%),69(20%)。IR(膜):3051(w),2926(m),2871(w),1953(w),1886(w),1812(w),1737(w),1671(w),1585(w),1479(w),1456(m),1433(m),1376(w),1331(w),1272(w),1240(w),1184(w),1117(m),1068(w),998(w),737(m),694(s)。
将在二氯甲烷(15ml)中的SNP-配体2-(二苯基膦基)-N-(2-(正丁基硫基)乙基)乙胺(0.25g,0.7mmol)和RuCl2(PPh3)3(0.5g,0.5mmol)在回流和氮气下搅拌加热24h。在室温下添加己烷(100ml)。将沉淀物过滤、用己烷(3×20ml)洗涤并在减压下干燥,得到配合物4(0.35g,88%),为橙色粉末。分析数据:
1H-NMR(400MHz,CD2Cl2):6.9-7.4(25H),4.5和4.7(1H),2.3-3.7(9H),1.55(2H),1.0-1.5(4H),0.8(t,3H)。31P-NMR(CD2Cl2,400MHz):δ45.6和45.9(2d),44.7和44.8(2d)。MS(ESI(+),在MeOH中,HCO2H,%,m/z):754([M-Cl-HCl+HCO2H]+,100%,与计算的同位素簇相同),744([M-Cl]+,100%)。IR(ATR):3162(w),3059(w),2947(w),2859(w),1585(w),1480(w),1454(w),1432(m),1303(w),1267(w),1187(w),1156(w),1138(w),1088(m),1067(w),1027(w),1006(w),983(m),914(w),865(w),799(w),751(w),740(m),737(m),691(s),657(m),619(m)。C38H43Cl2NP2RuS的分析计算值:C,58.53%;H,5.56%;N,1.80%。实测值:C,58.24%;H,5.54%;N,1.71%。

Claims (10)

1.在根据以下通式的过渡金属配合物存在下氢化含有碳杂原子双键的官能团的方法,
MX2[SNP]Y
其中M是钌或锇,且SNP表示含有氮、硫和磷原子的三齿或二齿配体,其中至少所述N-和P-原子与所述过渡金属配位并且任选地所述S-原子也与所述过渡金属配位,每个X独立地选自卤化物、羟基、烷氧基、酰氧基或酰氨基;且每个Y独立地选自膦或一氧化碳(CO)配体、亚硝酰基或RCN基,其中R是烷基或芳基,
其中所述三齿或二齿配体由选自下组的式子表示,
其中
R1选自H或C1-C20烷基或芳基,
R8和R9独立地选自C1-C20烷基或苯基,
n是0或1,
当n是1时,N是碳-氮单键,且当n是0时,N是碳-氮双键,
R10是选自C1-C10烷基、芳基、杂芳基、烯基、腈和卤化物的基团;或R10是二价基团,其与杂芳族环中的两个碳原子连接并与这些碳原子一起形成C5-C7环,且
m是0、1、2或3。
2.权利要求1的方法,其中所述过渡金属配合物选自下式的配合物,其中S-原子任选地与金属原子配位,
3.权利要求1-2任一项的方法,其中被氢化的官能团选自酯、酮、醛、酰胺和亚胺。
4.权利要求3的方法,其中被氢化的官能团选自内酯和内酰胺。
5.权利要求1-2任一项的方法,其中带有含有碳杂原子双键的官能团的底物是香紫苏内酯,且氢化产物是香紫苏二醇。
6.制备降龙涎香醚的方法,包括以下步骤:
i)根据权利要求1-5任一项氢化底物香紫苏内酯,形成香紫苏二醇,和
ii)环化香紫苏二醇,形成降龙涎香醚
7.根据如下通式的过渡金属配合物,
MX2[SNP]Y
其中M是钌或锇,且SNP表示含有氮、硫和磷原子的三齿或二齿配体,其中至少所述N-和P-原子与所述过渡金属配位并且任选地所述S-原子也与所述过渡金属配位,每个X独立地选自卤化物、羟基、烷氧基、酰氧基或酰氨基;且每个Y独立地选自单齿膦或一氧化碳(CO)配体、亚硝酰基或RCN基,其中R是烷基或芳基,
其中所述三齿或二齿配体由选自下组的式子表示,
其中
R1选自H或C1-C20烷基或芳基,
R8和R9独立地选自C1-C20烷基或苯基,
n是0或1,
当n是1时,N是碳-氮单键,且当n是0时,N是碳-氮双键,
R10是选自C1-C10烷基、芳基、杂芳基、烯基、腈和卤化物的基团;或R10是二价基团,其与杂芳族环中的两个碳原子连接并与这些碳原子一起形成C5-C7环,且
m是0、1、2或3。
8.权利要求7的配合物,其中所述过渡金属配合物选自下式的配合物,其中S-原子任选地与金属原子配位,
9.由选自下组的式子表示的三齿或二齿配体,
其中
R1选自H或C1-C20烷基或芳基,
R8和R9独立地选自C1-C20烷基或苯基,
n是0或1,
当n是1时,N是碳-氮单键,且当n是0时,N是碳-氮双键,
R10是选自C1-C10烷基、芳基、杂芳基、烯基、腈和卤化物的基团;或R10是二价基团,其与杂芳族环中的两个碳原子连接并与这些碳原子一起形成C5-C7环,且
m是0、1、2或3。
10.权利要求9的三齿或二齿配体,由选自下组的式子表示
CN201580005428.8A 2014-01-24 2015-01-22 化合物中或与之相关的改进 Active CN106414375B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1401230.6A GB201401230D0 (en) 2014-01-24 2014-01-24 Improvements in or relating to organic compounds
GB1401230.6 2014-01-24
PCT/EP2015/051219 WO2015110515A1 (en) 2014-01-24 2015-01-22 Improvements in or relating to organic compounds

Publications (2)

Publication Number Publication Date
CN106414375A CN106414375A (zh) 2017-02-15
CN106414375B true CN106414375B (zh) 2019-10-22

Family

ID=50287516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580005428.8A Active CN106414375B (zh) 2014-01-24 2015-01-22 化合物中或与之相关的改进

Country Status (8)

Country Link
US (2) US10196414B2 (zh)
EP (1) EP3097067B1 (zh)
JP (1) JP6560685B2 (zh)
CN (1) CN106414375B (zh)
GB (1) GB201401230D0 (zh)
IL (1) IL246085B (zh)
MX (1) MX2016008299A (zh)
WO (1) WO2015110515A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550139B2 (en) 2014-06-09 2020-02-04 Triad National Security, Llc Polydentate ligands and their complexes for molecular catalysis
WO2016031874A1 (ja) * 2014-08-26 2016-03-03 高砂香料工業株式会社 N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体
CA3012962A1 (en) * 2016-01-29 2017-08-03 Takasago International Corporation N,n-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing n, n-bis (2-dialkylphosphinoethyl)amine as ligand
US10487100B1 (en) 2017-04-04 2019-11-26 Triad National Security, Llc Macrocyclic ligands and their complexes for bifunctional molecular catalysis
GB201714158D0 (en) * 2017-09-04 2017-10-18 Johnson Matthey Plc Process
GB201800276D0 (en) * 2018-01-08 2018-02-21 Univ Court Univ St Andrews Maganese-catalysed hydrogenation of esters
US11413610B2 (en) 2018-01-10 2022-08-16 Basf Se Use of a transition metal catalyst comprising a tetradentate ligand for hydrogenation of esters and/or formation of esters, a process for hydrogenation of esters, a process for formation of esters and a transition metal complex comprising said tetradentate ligand
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation
CN114516782A (zh) * 2020-11-18 2022-05-20 中国科学院大连化学物理研究所 一种香紫苏二醇化合物的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820880A (en) * 1987-05-18 1989-04-11 Michigan Biotechnology Institute Process for the production of 3,4-dideoxyhexitol
CN101611045A (zh) * 2006-12-27 2009-12-23 住友化学株式会社 金属配合物、高分子化合物及含有它们的器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133184A (ja) * 1984-07-24 1986-02-17 Takasago Corp l−アンブロツクスの製造方法
IT1299068B1 (it) * 1998-04-10 2000-02-07 Chemi Spa Legandi fosforati chirali e loro complessi organometallici, utili come catalizzatori in sintesi stereoselettive
CN100384791C (zh) * 2002-12-02 2008-04-30 索尔维亚斯股份公司 碳-杂原子双键的催化氢化
EP1868964B1 (en) * 2005-04-05 2016-11-23 Firmenich Sa Hydrogenation of esters with ru/bidentate ligands complexes
WO2012048646A1 (zh) 2010-10-15 2012-04-19 中国科学院上海有机化学研究所 新型铬催化剂及其在催化烯烃齐聚和高聚中的应用
CN103857687B (zh) 2011-08-18 2020-10-16 德米特里·顾塞维 氢化和脱氢催化剂、以及制备和使用它们的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820880A (en) * 1987-05-18 1989-04-11 Michigan Biotechnology Institute Process for the production of 3,4-dideoxyhexitol
CN101611045A (zh) * 2006-12-27 2009-12-23 住友化学株式会社 金属配合物、高分子化合物及含有它们的器件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Rhenium(V) complexes with tridentate P,N,S ligands;Jennifer Schroer等;《Polyhedron》;20121231(第33期);第218-222页 *
Ruthenium complexes with tridentate PNX (X = O, S) donor ligands;Simon R. Bayly等;《Dalton Trans》;20081231;第2190-2198页 *
Simon R. Bayly等.Ruthenium complexes with tridentate PNX (X = O, S) donor ligands.《Dalton Trans》.2008,第2190-2198页. *

Also Published As

Publication number Publication date
US10544179B2 (en) 2020-01-28
EP3097067B1 (en) 2019-07-17
US20160326199A1 (en) 2016-11-10
GB201401230D0 (en) 2014-03-12
IL246085B (en) 2019-11-28
WO2015110515A1 (en) 2015-07-30
US10196414B2 (en) 2019-02-05
IL246085A0 (en) 2016-08-02
MX2016008299A (es) 2016-09-08
JP2017507924A (ja) 2017-03-23
US20180066003A1 (en) 2018-03-08
CN106414375A (zh) 2017-02-15
JP6560685B2 (ja) 2019-08-14
EP3097067A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106414375B (zh) 化合物中或与之相关的改进
JP5388569B2 (ja) Ru/二座配位子の錯体を用いたエステルの水素化
CN102858788B (zh) 钌络合物和制备光学活性醇化合物的方法
JP5694275B2 (ja) 均一系不斉水素化反応用触媒
Masui et al. Synthesis and structures of heterobimetallic Ir2M (M Pd, Pt) sulfido clusters and their catalytic activity for regioselective addition of alcohols to internal 1-aryl-1-alkynes
US20160152550A1 (en) Method for producing optically active 2,3-dihydrofarnesal
JP4482299B2 (ja) ルテニウム化合物及び光学活性アルコール化合物の製造方法
Ranu et al. Chemo-, regio-and stereoselective addition of triorganoindium reagents to acetates of Baylis–Hillman adducts: a new strategy for the synthesis of (E)-and (Z)-trisubstituted alkenes
Ulrich et al. Functionalised alkenylcarbene metal complexes (M= Ru, W, Cr) by activation of propargyl alcohol derivatives
Marozsán et al. Catalytic racemization of secondary alcohols with new (arene) Ru (II)-NHC and (arene) Ru (II)-NHC-tertiary phosphine complexes
WO2014077323A1 (ja) 光学活性イソプレゴールおよび光学活性メントールの製造方法
Primault et al. Palladium-catalyzed benzylic-like nucleophilic substitution of benzofuran-, benzothiophene-and indole-based substrates by dimethyl malonate anion
Chan et al. Mechanistic aspects of Ru (BINAP)-catalysed asymmetric hydrogenation of vinylcarboxylic acid derivatives
JP2018090594A (ja) ロジウム触媒及びアミン化合物の製造法
Bruce et al. Further reactions of some bis (vinylidene) diruthenium complexes
JPH02219A (ja) 不飽和アルコールを製造する方法
CN108409764B (zh) 一种与金属镍协同催化形成c-x键的有机光敏剂及其合成方法
US20030162994A1 (en) 6,6&#39;-Bis-(1-Phosphanorbornadiene) diphosphines, their preparation and their uses
US20030195369A1 (en) Optically active chiral diphosphine ligands
CN105940007A (zh) 用于炔的钌催化反式-选择性锡氢化的方法
Herbst et al. Unusual stability of reaction intermediates in ortho-metalation reactions of dicyclohexylphenylphosphane with dirhodium (II) tetraacetate
Gee Development of Axially Chiral Biazulenes for Catalysis
JP5346434B2 (ja) β,β―ビスへテロ置換光学活性アルコールの製造方法
PAN Study on the development of rhodium-catalyzed selective hydroformylation of vinylheteroarenes using formaldehyde
Holz et al. Cooperative attractive interactions in asymmetric hydrogenations with dihydroxydiphosphine Rh (I) catalysts—a competition study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant