CN106410228B - 一种有序催化层及其制备和应用 - Google Patents

一种有序催化层及其制备和应用 Download PDF

Info

Publication number
CN106410228B
CN106410228B CN201510467995.7A CN201510467995A CN106410228B CN 106410228 B CN106410228 B CN 106410228B CN 201510467995 A CN201510467995 A CN 201510467995A CN 106410228 B CN106410228 B CN 106410228B
Authority
CN
China
Prior art keywords
array
ppy
catalyst
carbon
ordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510467995.7A
Other languages
English (en)
Other versions
CN106410228A (zh
Inventor
俞红梅
蒋尚峰
邵志刚
衣宝廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510467995.7A priority Critical patent/CN106410228B/zh
Publication of CN106410228A publication Critical patent/CN106410228A/zh
Application granted granted Critical
Publication of CN106410228B publication Critical patent/CN106410228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及了一种质子交换膜燃料电池有序催化层。在不锈钢表面担载Fe、Co、Ni或者其合金,然后通过CVD的方法制备碳层于不锈钢表面。再通过电化学聚合的方法在碳层表面原位聚合有序PPy阵列,该PPy阵列具有近似垂直于碳层表面生长的特点。在阵列上首先担载一种或者两种金属,然后将包覆着催化剂的PPy阵列转印至膜,构建有序薄层催化层。这种方法所制备的催化层不含质子导体(如

Description

一种有序催化层及其制备和应用
技术领域
本发明属于燃料电池领域及其他电化学器件,主要涉及质子交换膜燃料电池有序催化层的一种制备方法。
背景技术
质子交换膜燃料电池(PEMFC)具有能量转化效率高,功率密度高,环境友好,室温快速启动等优点备受人们关注,然而成本、寿命、性能是限制质子交换膜燃料电池商业化的三大原因。稳定性问题主要是Pt/C催化剂中的碳载体容易发生腐蚀以及催化层中所使用的质子导体Nafion的降解。为了解决这些问题,3M公司提出了有序薄层电极(NSTFs)催化层两侧无质子导体,立体化的有序电极结构使得电极的反应物和产物的传质明显优于传统的催化层。因此制备有序的催化层中无质子导体的电极是未来膜电极的一大趋势。
目前在PEMFC中,构建的3D有序的催化层结构已有较多的研究。除3M制备的NSTF外,有序金属氧化物阵列,如TiO2有不少的研究工作。文章Journal of Power Sources,2015(276),80-88中采用生长在碳纸上的TiO2-C有序纳米阵列作为有序载体,通过磁控溅射担载上Pt纳米颗粒后,运用于质子交换膜燃料电池的阴极,表现出良好的活性和稳定性。此外,以有序的碳纳米管阵列为载体,也有一些研究,文章Adv.Energy Mater.2011,1,1205-1214使用导电的碳纳米管阵列,在阵列上担载超低的Pt担量(阴极侧35μg/cm2),表现出优于商业化0.4mg/cm2担量的单池性能,但文章中未涉及电极稳定性测试。
导电聚合物聚吡咯,作为一种导电性高且物性稳定,经常被作为催化剂载体运用于不同的领域中,且表现出良好的性能。文章Electrochim.Acta,1990,35,135–139首先通过化学氧化法制备PPy(无序纳米线),然后经过电沉积Pt在PPy上制备出Pt-PPy催化剂,考察不同环境下催化的ORR活性。文章J.Mater.Chem.A,2013,1,491–494提出制备在Nafion膜上直接制备PPy阵列(无需转印),在阵列表面喷涂PtRu催化剂,应用于DMFC电池中,在较低催化剂担载量的情况下表现出良好的电池性能。文章Mater.Chem.Phys.2006,98,165制备的PPy作为催化剂载体,担载Pd、Ru、Rh、Ir等金属颗粒,在HOR和CO2还原反应中,结果表明这些催化剂对提高催化剂活性起到重要作用。导电性好、稳定性高的PPy不同形貌的载体在不同领域中都有涉及,但是有序的PPy纳米线阵列生长在不锈钢表面上,作为有序的催化剂载体,通过在H2还原Pt的前驱体盐的乙醇溶液得到Pt催化剂然后转印至Nafion膜上,得到的PtM-PPy电极,催化层中没有使用质子导体Nafion,尚未用于质子交换膜燃料电池中。
发明内容
本发明目的在于提供一种燃料电池有序薄层且没有使用质子导体的催化层的制备方法,来提高催化剂的利用率以及提高催化层的传质。
本发明描述了一种有序薄层催化层的制备方法。包括有序阵列结构的制备及有序催化层的构建,首先在处理过的不锈钢表面制备PPy有序纳米棒阵列,再将催化剂担载在有序阵列上,并转印至膜上,得到有序薄层催化层。
制备方法如下:在不锈钢表面磁控溅射(Fe、Co、Ni、Cu等金属或合金,在该担载金属颗粒后不锈钢表面通过CVD或者在管式炉中使用CH4及其他碳氢化合物作为碳源,进行热处理在不锈钢表面生成碳层(石墨烯或碳纳米颗粒),随后在碳层表面进行电化学原位聚合聚合制备PPy阵列,PPy阵列的长度为0.5μm-2.0μm,且垂直于碳层表面。在PPy阵列有序结构上担载一种或者两种金属,然后放入H2饱和的含Pt的前驱体的乙醇溶液中,将Pt原位还原在上述金属表面形成核壳结构(催化剂层的厚度:1nm-50nm),得到相应的催化剂于阵列上,然后转印至膜,构建有序催化层。
具体包含以下步骤;
1)首先将不锈钢放入0.2M-0.5M的重铬酸钾溶液中超声1-2h,然后将其用去离子水洗干净备用;
2)在不锈钢表面担载磁控溅射上Fe、Co、Ni、Cu等催化剂或其合金,然后通过CVD或者是在管式炉中制备碳层于不锈钢表面,(反应温度500-900℃,CH4或C2H2流量1-200mL/min,反应时间5-50min,射频功率:100-300W),然后在碳层表面通过恒电位电沉积的方式(沉积电位0.60V-0.75V vs SCE)在0℃-25℃水浴下反应20-50min或者通过循环伏安法(-0.3V-0.7V vs SCE)循环10圈至50圈制备PPy纳米线阵列,PPy阵列的长度为0.5μm-2.0μm;
3)在步骤2)所制得的PPy阵列有序结构上担载金属颗粒层,然后放入H2饱和的含Pt的前驱体的乙醇溶液中或直接在Pt的前驱体溶液中进行置换反应,将Pt原位还原在上述金属表面形成核壳结构,得到相应的催化剂于阵列上,然后转印至膜,构建有序催化层;
上述步骤3)中所述催化剂担载方式采用电沉积、化学还原、热分解、蒸镀、磁控溅射或原子层沉积中的任意一种或二种以上;所担载的催化剂为金属Pd、Au、Ru、Nb、Ta、Ir、Ag、Fe、Co、Ni、Mn、Cu、Cr或Ti中的任意一种,或上述金属中的任意二种或三种以上的合金中的任意一种或二种以上。Pt的前驱体盐为H2PtCl6、K2PtCl4、Cl6H12Na2O6Pt、Pt(NH3)2Cl2(顺Pt或者反Pt)等含Pt的前驱体盐。
本发明采用PPy纳米线阵列生长在通过处理的不锈钢表面上作为有序载体,并将催化剂担载于阵列上(催化剂包覆在PPy纳米线表面),然后将包覆催化剂的PPy阵列全部转印至Nafion膜上形成有序的电极结构,并将制备的电极应用于质子交换膜燃料电池中,特别指出的是我们所制备的电极的催化层在无质子导体的情况能够正常工作。
根据本发明提供的制备方法制备的有序薄层催化层可用于制备燃料电池膜电极的阳极或阴极或同时使用,在催化层中不加质子导体。
本发明在PPy阵列上先磁控溅射(Pd、Ni、Cu)催化剂,然后放入H2饱和的含Pt的前驱体盐的乙醇溶液,将Pt原位的还原在金属表面,得到的包覆催化剂阵列热压转印至Nafion膜上,形成CCM结构。该有序的催化层结构能够降低传质阻力,增加了三相反应面积,提高Pt的利用率。此外,有序薄层的催化层使得质子的传导路径减短,在阴阳极催化层中没有使用质子导体(Nafion等)的情况下,电池能够正常的运行且电池性能良好。与其他有序电极(比如我们组之前做的TiO2阵列相关电极)相比,导电的PPy可以作为电子导体,这样就不需要催化剂自己作为电子导体,从而能够减少催化剂的使用,这样在阵列表面所制备的催化剂具有介观尺度上的核壳结构,使得催化剂具有较高的稳定性。
附图说明
图1为本发明实施例1中制备的PPy阵列电极的流程图。
图2为本发明实施例1中制备的PtAg-PPy的FESEM图。
图3为本发明实施例2中制备PtPd-PPy有序电极以及无序的PPy担载PtPd催化剂制备的电极(做阴极),在质子交换膜燃料电池中的I-V曲线。电池操作条件为:电池温度:65℃;RH:H2/O2=100%/100%;H2流量:50mLmin-1;O2流量:100mLmin-1
图4为本发明实施例3中制备PtCu-PPy的CV图。
图5为本发明实施例4中制备PtNi-PPy的TEM图。
图6为本发明实施例4中制备PtNi-PPy有序电极,在质子交换膜燃料电池中的I-V曲线。电池操作条件为:电池温度:65℃;RH:H2/O2=100%/100%;H2流量:50mLmin-1;O2流量:100mLmin-1
具体实施方式
以下实例对本发明做进一步说明
实施例1
步骤1:在不锈钢表面磁控溅射担载FeCo合金催化剂(共溅射FeCo催化剂,沉积条件:在Ar气氛下20℃条件下,溅射功率200W,真空度1.0Pa,溅射时间6min,Fe:Co(原子比)=1:1,催化剂厚度:~20nm),然后通过CVD的方法制备碳层于不锈钢表面(CH4为碳源,体积比CH4:H2=1:4,流量50mL min-1,温度:700℃,射频:200W,反应时间:25min)。再通过恒电位聚合的方法在碳层表面原位聚合有序PPy阵列(沉积电位0.7V,温度:25℃,反应时间:20min,反应溶液:0.2M磷酸缓冲液+0.1M对甲基苯磺酸钠+0.1M吡咯单体),该PPy阵列具有垂直于碳层表面生长的特点且长度为1.2μm,直径80nm。
步骤2:在阵列表面进行磁控溅射沉积Ag催化剂(沉积条件:溅射功率120W,溅射时间:10min,Ag载量:0.088mgcm-2),然后放入通Ar饱和的2mM的H2PtCl6溶液中进行置换反应,反应时间10min,Pt担载量为:50μg/cm2由图2可知所制备电极是垂直于处理过的不锈钢表面,且长度基本一致。
图1为制备过程的流程图,图2为Ag-PPy阵列的FESEM图。
实施例2
取实施例1中步骤1所制备的PPy纳米棒阵列,先通过磁控溅射Pd催化剂(在Ar气氛下20℃条件下,溅射功率200W,真空度1.0Pa,溅射时间Pd:8min),然后将样品放于H2饱和的100mL含K2PtCl4(20mg)的乙醇溶液,还原反应1.5h后,将带有催化剂的PPy阵列转印至Nafion膜上,作为单池阴极使用,其中阴极催化剂担载量(Pt:0.101mg/cm2,Pd:50μg/cm2);
阳极为商业化的GDE(0.4mgPt/cm2),应用于质子交换膜燃料电池中。电池温度:65℃,PH2=PO2=0.05MPa,气体流量:H2=50sccm,O2=100sccm,增湿度:H2/O2=100%/100%,Nafion膜。
图3为PtPd-PPy有序电极作为阴极时单池测试的i_V曲线图,这里所制备的电极的单池性能比之前所制备的TiO2相关电极的性能(Journal of Power Sources,2015(276),80-88)高出许多,特别是电流密度。
此外作为对比,在长有碳层的不锈钢表面进行循环伏安原位聚合PPy膜(沉积条件:-0.3V-0.7V vs SCE,温度:25℃,反应时间:20min,反应溶液:0.2M磷酸缓冲液+0.1M对甲基苯磺酸钠+0.1M吡咯单体,循环圈数:30圈),然后以与本实例2中担载PtPd催化剂在PPy阵列上的同样的方式将PtPd催化剂担载在PPy膜上,担载量与其相同。电池测试条件与上面同,同时将测试得I_V曲线列在图3中。
由电池I_V曲线可以看出,无序的PPy担载的催化剂所制备成的电极在高电密传质上明显比PPy阵列所构成的有序电极差,从而表现出电池性能在高电密下的差异。
实施例3
取实施例1中步骤1所制备的PPy纳米棒阵列。
在PPy纳米线阵列上磁控溅射Cu金属颗粒(Cu:5min,溅射其他条件与实施例1同,Cu:25.245μg/cm2),通过与0.1M的K2PtCl4溶液进行置换反应得到PtCu-PPy阵列(Pt:60.5μg/cm2)。
将制备的电极进行半电池测试,测试条件为(N2饱和的0.5M H2SO4,扫描速度50mV/s,扫描范围:-0.241V-0.959V vs SCE)
图4为PtCu-PPy的CV图。
实施例4
取实施例1中步骤1所制备的PPy纳米棒阵列。
在该PPy纳米线阵列表面磁控溅射溅射Ni金属颗粒,(Ni:15min,溅射其他条件与实施例1同),通过与0.1M的K2PtCl4溶液进行置换反应得到PtNi-PPy阵列(原子比Pt:Ni=1:3.23,其中Pt:0.099mg/cm2,Ni:30.975μg/cm2),制备成有序薄层催化层。
将该有序电极应用做质子交换膜燃料电池的阴极,阳极为GDE(0.4mgPt/cm2)。
图5为所制备的有序电极的TEM图,可以明显的看出催化剂是包覆在PPy纳米线表面的,并且沿着纳米线的轴线方向成一定角度生长出一些催化剂的纳米晶须。
图6为所制备的有序电极应用在质子交换膜燃料电池中所测得的i_V曲线,电池操作条件为:电池温度:65℃;RH:H2/O2=100%/100%;H2流量:50mLmin-1;O2流量:100mLmin-1

Claims (5)

1.一种有序催化层的制备方法,其特征在于:包括相互叠合的碳层和柱状PPy阵列层,PPy阵列层中的PPy柱垂直于碳层表面;在PPy阵列中的PPy柱上担载有催化剂,催化剂是以一种或二种以上金属的颗粒层,或催化剂是以一种或二种以上金属的颗粒为核,核外表面包覆有Pt层作为壳,形成核壳结构的颗粒催化剂层,相应的催化剂附着于阵列上,构建成有序催化层;
有序催化层的制备包括以下步骤:
在基底不锈钢平板表面磁控溅射Fe、Co、Ni或Cu金属中一种或二种以上合金的金属颗粒层平均厚度为20 nm,在该担载金属颗粒后不锈钢表面通过CVD或者在管式炉中使用CH4、C3H6、C2H2中一种或二种以上作为碳源,进行热处理在不锈钢表面生成碳层,随后在碳层表面进行电化学原位聚合制备PPy阵列;
在PPy阵列有序结构上担载金属的颗粒作为催化剂,得到相应的催化剂于阵列上,然后转印至Nafion®膜,构建有序催化层;或,在PPy阵列有序结构上担载金属的颗粒作为催化剂,然后放入H2饱和的含Pt的前驱体的乙醇溶液中或直接在Pt的前驱体溶液中进行置换反应,将Pt原位还原在上述金属表面形成核壳结构,得到相应的催化剂于阵列上,然后转印至Nafion®膜,构建有序催化层。
2.根据权利要求1所述有序催化层的制备方法,其特征在于:碳层的碳材质为石墨烯和/或碳纳米颗粒,碳纳米颗粒的粒径1 nm- 1000 nm,碳层的厚度1 nm- 1000 nm;柱状PPy阵列层中的PPy柱的高度为0.5 μm-2.0 μm,直径60-120 nm;催化剂层厚度:1 nm-50 nm。
3.根据权利要求1所述有序催化层的制备方法,其特征在于:具体为,
1)首先将不锈钢放入0.2 M-0.5 M的重铬酸钾溶液中超声1-2 h, 然后将其用去离子水洗干净备用;
2)在不锈钢表面担载磁控溅射上金属颗粒,然后通过CVD或者是在管式炉中制备碳层于不锈钢表面,反应温度500-900℃,CH4或C2H2流量1-200 mL/min, 反应时间5-50 min,射频功率:100-300 W;然后在碳层表面通过恒电位电沉积的方式,沉积电位为0.60 V-0.75 Vvs SCE,在0℃-25℃水浴下反应20-50 min或者通过循环伏安法,循环电位为-0.3 V-0.7 Vvs SCE,循环10圈至50圈制备PPy纳米线阵列,PPy阵列的长度为0.5 μm-2.0 μm;
3)在步骤2)所制得的PPy阵列有序结构上担载金属的颗粒作为催化剂,得到相应的催化剂于阵列上,然后转印至Nafion®膜,构建有序催化层;或,在PPy阵列有序结构上担载金属的颗粒作为催化剂,然后放入H2饱和的含Pt的前驱体的乙醇溶液中,将Pt原位还原在上述金属表面形成核壳结构,得到相应的催化剂于阵列上,然后转印至Nafion®膜,构建有序催化层;
上述步骤3)及权利要求1中所述催化剂担载方式采用电沉积、化学还原、热分解、蒸镀、磁控溅射或原子层沉积中的任意一种或二种以上;所担载的催化剂为金属Pd、Au、Ru、Nb、Ta、Ir、Ag、Fe、Co、Ni、Cu、Mn、Cr或Ti中的任意一种,或上述金属中的任意二种或三种以上的合金中的任意一种或二种以上;Pt的前驱体为H2PtCl6、K2PtCl4、Cl6H12Na2O6Pt、Pt(NH3)2Cl2中的一种或二种以上,前驱体于乙醇溶液中浓度0.0001 M -0.5 M。
4.根据权利要求3所述有序催化层的制备方法,其特征在于:
在步骤3)中所制备的核壳催化剂可以热处理或不进行热处理;
热处理条件:25℃- 300℃, N2、Ar、H2的一种或两种混合气,气体流量:10 mL min-1-500mL min-1, 反应时间:10 min – 1000 min。
5.一种根据权利要求1所述的制备方法,其特征在于,制备的有序催化层用于制备燃料电池膜电极的阳极和/或阴极。
CN201510467995.7A 2015-07-31 2015-07-31 一种有序催化层及其制备和应用 Active CN106410228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510467995.7A CN106410228B (zh) 2015-07-31 2015-07-31 一种有序催化层及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510467995.7A CN106410228B (zh) 2015-07-31 2015-07-31 一种有序催化层及其制备和应用

Publications (2)

Publication Number Publication Date
CN106410228A CN106410228A (zh) 2017-02-15
CN106410228B true CN106410228B (zh) 2019-03-19

Family

ID=58007768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510467995.7A Active CN106410228B (zh) 2015-07-31 2015-07-31 一种有序催化层及其制备和应用

Country Status (1)

Country Link
CN (1) CN106410228B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799778B (zh) * 2017-10-30 2021-04-13 上海泰坦科技股份有限公司 一种碳纤维负载贵金属催化剂及其制备方法和应用
CN109921047B (zh) * 2017-12-13 2021-07-06 中国科学院大连化学物理研究所 一种质子交换膜燃料电池有序催化层及其制备和应用
CN109921034B (zh) * 2017-12-13 2021-04-27 中国科学院大连化学物理研究所 一种阴离子交换膜燃料电池分级有序催化层的制备方法及应用
CN108539237B (zh) * 2018-05-04 2020-11-03 厦门大学 银/铂纳米催化剂修饰的Nafion复合膜及制备方法
CN111082081B (zh) * 2020-01-08 2020-07-21 深圳氢时代新能源科技有限公司 石墨烯基催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059841A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 燃料電池及び燃料電池の製造方法
CN101227000A (zh) * 2008-01-21 2008-07-23 重庆大学 核/壳结构气体多孔电极催化剂的制备方法
JP2011132068A (ja) * 2009-12-24 2011-07-07 Toyota Motor Corp カーボンナノチューブの製造方法
CN102881925A (zh) * 2012-09-28 2013-01-16 孙公权 一种新型有序化膜电极及其制备方法和应用
CN104701549A (zh) * 2013-12-06 2015-06-10 中国科学院上海高等研究院 一种无碳膜电极组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059841A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 燃料電池及び燃料電池の製造方法
CN101227000A (zh) * 2008-01-21 2008-07-23 重庆大学 核/壳结构气体多孔电极催化剂的制备方法
JP2011132068A (ja) * 2009-12-24 2011-07-07 Toyota Motor Corp カーボンナノチューブの製造方法
CN102881925A (zh) * 2012-09-28 2013-01-16 孙公权 一种新型有序化膜电极及其制备方法和应用
CN104701549A (zh) * 2013-12-06 2015-06-10 中国科学院上海高等研究院 一种无碳膜电极组件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electrochemical preparation of effective and low cost catalyst for electrooxidation of ethanol;Iman Razavipanah,等;《Journal of the Iranian Chemical Society》;20130522;第10卷(第6期);第1279页右栏第1段、第1280页左栏试验部分、第1283页左栏第5段至第6段 *
vertically oriented polypyrrole nanowire arrays on pd-plated nafion membrane and its application in direct methanol fuel cells;zhangxun Xia,等;《Journal of Materials Chemistry A》;20121109;第1卷(第3期);第491页右栏第2段至第492页右栏第2段,图1 *

Also Published As

Publication number Publication date
CN106410228A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Liu et al. Tip‐enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions
Meng et al. 1D-2D hybridization: Nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts
Kiani et al. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives
Yang et al. Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2T x MXene nanosheets for efficient methanol oxidation
Wee et al. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems
US7935655B2 (en) Nanostructured core-shell electrocatalysts for fuel cells
CN106410228B (zh) 一种有序催化层及其制备和应用
CN106159285B (zh) 一种有序超薄催化层的制备方法及催化层和应用
Du et al. Catalyst loading for Pt-nanowire thin film electrodes in PEFCs
EP2600451A2 (en) Electrode catalyst for fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including electrode catalyst
CN108448138B (zh) 一种催化层全有序结构燃料电池电极和膜电极的制备方法
Hernández-Fernández et al. MWCNT-supported PtRu catalysts for the electrooxidation of methanol: Effect of the functionalized support
CN103022518B (zh) 燃料电池用电极催化剂、其制法、膜电极组件和燃料电池
Lee et al. Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability
Chen et al. In situ surface reconstruction synthesis of a nickel oxide/nickel heterostructural film for efficient hydrogen evolution reaction
Wu et al. Enhancing Electrocatalytic methanol oxidation on PtCuNi Core–Shell alloy structures in acid electrolytes
Chabi et al. Electrocatalysis of oxygen reduction reaction on Nafion/platinum/gas diffusion layer electrode for PEM fuel cell
Ma et al. Recent advances of single-atom electrocatalysts for hydrogen evolution reaction
KR20140070246A (ko) 연료전지용 전극 촉매, 그 제조방법, 이를 포함한 연료전지용 전극 및 연료전지
García-Contreras et al. Pt, PtNi and PtCoNi film electrocatalysts prepared by chemical vapor deposition for the oxygen reduction reaction in 0.5 M KOH
US9466842B2 (en) Fuel cell electrode catalyst including a core containing platinum, a transition metal, and a nonmetal element and a shell containing platinum and the nonmetal element electrode including the same, and method for preparing the same
Gunji et al. Atomically ordered Pt5La nanoparticles as electrocatalysts for the oxygen reduction reaction
Yin et al. FeN4 Active Sites Electronically Coupled with PtFe Alloys for Ultralow Pt Loading Hybrid Electrocatalysts in Proton Exchange Membrane Fuel Cells
Eiler et al. Oxygen reduction reaction and proton exchange membrane fuel cell performance of pulse electrodeposited Pt–Ni and Pt–Ni–Mo (O) nanoparticles
Yao et al. Porous Pt-Ni Nanobelt Arrays with Superior Performance in H2/Air Atmosphere for Proton Exchange Membrane Fuel Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant