CN106407549A - 一种基于遗传算法的阵列天线方向图综合优化方法 - Google Patents

一种基于遗传算法的阵列天线方向图综合优化方法 Download PDF

Info

Publication number
CN106407549A
CN106407549A CN201610817665.0A CN201610817665A CN106407549A CN 106407549 A CN106407549 A CN 106407549A CN 201610817665 A CN201610817665 A CN 201610817665A CN 106407549 A CN106407549 A CN 106407549A
Authority
CN
China
Prior art keywords
population
array
antenna
individual
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610817665.0A
Other languages
English (en)
Other versions
CN106407549B (zh
Inventor
宗华
张赫
刘北佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610817665.0A priority Critical patent/CN106407549B/zh
Publication of CN106407549A publication Critical patent/CN106407549A/zh
Application granted granted Critical
Publication of CN106407549B publication Critical patent/CN106407549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Genetics & Genomics (AREA)
  • Data Mining & Analysis (AREA)
  • Physiology (AREA)
  • Geometry (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Computer Hardware Design (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种基于遗传算法的阵列天线方向图综合优化方法,以解决传统阵列天线方向图综合技术计算量大,寻优精度低的问题。所述的方法包括天线阵模型建立步骤、最优权值获取步骤以及天线阵列方向图生成步骤。本发明在阵列天线方向图综合技术中使用遗传算法,达到了对无线数字信号的高速时空处理,使信道容量增加、频谱效率提高的效果。

Description

一种基于遗传算法的阵列天线方向图综合优化方法
技术领域
本发明涉及的是移动通信天线技术领域。
背景技术
阵列天线方向图综合技术应用于带有精密信号处理器的任何天线阵,它可以调整或自适应其波束方向图,目的是增强感兴趣的信号和减小干扰信号,还能够减轻多径效应的不利影响,它是智能天线的研究领域之一。随着社会信息交流的急剧增加、个人移动通信的迅速普及,频谱已成为越来越宝贵的资源,而智能天线采用空分多址技术,利用信号传播方向上的差别,通过调节各阵元信号的加权幅度和相位来改变阵列天线方向图,从而抑制干扰,提高信噪比、系统容量和允许的信号带宽,有效节约频谱和功率等资源。
天线阵系统的方向图是依靠各个振子的方向图的叠加而实现的,如果各个振子的电压激励的幅值和相位有所变化,那么该智能天线系统所要对应的方向图也会发生变化。在移动通信应用中,很多时候基站是相对固定的,而终端是移动的;为了维持他们之间良好的无线信道,保证链路的正常工作,就要求智能天线的主瓣能够时刻的跟踪终端,也就是说智能天线系统的方向图要随着用户的位置变化来做自我的调整。本发明利用最短的时间内找到一个矢量,使得它所对应的天线方向图的主瓣对准用户的方向。
本发明主要利用智能算法实现直线阵天线方向图综合,在计算阵元权系数时引入遗传算法,在这一算法中,把这一问题归化为一个空间范围内的寻优问题来处理,同一时刻的各个天线振子的幅度和相位构成一个矢量,而这个矢量把它叫做一个染色体,各个振子的电流和幅度都叫做该染色体的一个基因。很多具有相同基因个数的染色体就构成了一个解空间,本发明在这个解空间中找出一个最优的染色体。同时利用FEKO仿真软件建立直线天线阵模型,其天线单元为具有全向性的COCO天线,工作的中心频率在1800MHz。最终达到了对无线数字信号的高速时空处理,使信道容量增加、频谱效率提高的效果。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于遗传算法的阵列天线方向图综合优化方法,该方法计算量小、寻优精度高。
本发明的目的通过以下技术方案实现:一种基于遗传算法的阵列天线方向图综合优化方法,包括,天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:
根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;
最优权值获取步骤:
步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;
步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;
步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;
步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;
步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;
步骤6、循环步骤3至步骤5,直到取得最优权值;
天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。
进一步的,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群的尺度设置为400;初始种群得分设置为(1,100)。
进一步的,在适应度值评估步骤中采用最佳法,最佳个体比例设置在字段Quantity中,每个能产生子辈的个体指派给相同的比例值,而其他个体的比例值指派为0。
进一步的,在选择步骤中选择染色体时采用剩余选择法,使它在选择过程中,分配其双亲由每个个体刻度值的整数部分决定,在剩余的小数部分采用轮盘赌选择方法。
进一步的,在重组步骤中采用分散交叉方法;在一对选定的父辈中,采用高斯分布变异法,具有均值0的随机数加到父向量的每一项,这个分布的变化由参数“Scale”和“Shrink”决定,Scale设定为0.5,Shrink设定为0.8;再生方法为“Crossover Function”法,它指定下一代中不同于原种群的部分,它们由交叉产生;当迁移发生时,一个子种群中最好的个体代替另一子种群中最差的个体,运用的方法是双向迁移,即迁移在最后一个子种群处将卷绕回来。
进一步的,在步骤6中添加停止条件参数,最大重复执行次数为8000代,停滞代数为4000代,适应度值小于或等于0.1。
进一步的,排序准则是排列法、比率法或线性转换法。
本发明达到了对无线数字信号的高速时空处理,使信道容量增加、频谱效率提高的效果。
附图说明
图1是阵列天线方向图综合的遗传算法流程。
图2是天线模型示意图。
图3是直线天线阵示意图。
图4是三次仿真结果的鲁棒性检测值比较。
具体实施方式
具体实施方式一:一种基于遗传算法的阵列天线方向图综合优化方法,它由以下步骤实现,天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:
根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;
最优权值获取步骤:
步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;
步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;
步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;
步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;
步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;
步骤6、循环步骤3至步骤5,直到取得最优权值;
天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。
其中关于阵列天线方向图综合的遗传算法流程参见图1。
具体实施方式二:具体实施方式二与具体实施方式一的不同在于,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群的尺度设置为400;初始种群得分设置为(1,100)。在适应度值评估步骤中采用最佳法,最佳个体比例设置在字段Quantity中,每个能产生子辈的个体指派给相同的比例值,而其他个体的比例值指派为0。在选择步骤中选择染色体时采用剩余选择法,使它在选择过程中,分配其双亲由每个个体刻度值的整数部分决定,在剩余的小数部分采用轮盘赌选择方法。在重组步骤中采用分散交叉方法;在一对选定的父辈中,采用高斯分布变异法,具有均值0的随机数加到父向量的每一项,这个分布的变化由参数“Scale”和“Shrink”决定,Scale设定为0.5,Shrink设定为0.8;再生方法为“CrossoverFunction”法,它指定下一代中不同于原种群的部分,它们由交叉产生;当迁移发生时,一个子种群中最好的个体代替另一子种群中最差的个体,运用的方法是双向迁移,即迁移在最后一个子种群处将卷绕回来。在步骤6中添加停止条件参数,最大重复执行次数为8000代,停滞代数为4000代,适应度值小于或等于0.1。排序准则是排列法、比率法或线性转换法。
全向天线进行仿真:
由COCO天线组成阵列天线的一个巨大优点就是:由N个COCO天线组成的阵列相当于包含了N2个单极子天线(假设每个COCO天线也是由N段微带线节构成),但它却只有N个馈电点,相比较而言,若一个阵列是由N个单极子天线阵列组成,则它必须要有N2个馈电点(假设每个单极子阵列也是由N个单极子组成)。当然,由于COCO天线结构简单,具有价格优势和性能优势。
单元节边长为1/2介质波长:
根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍左右,可以得到a=52mm,b=58.5mm,L=520mm,W=80mm,Wa=69.5mm,Wb=11.4mm,h=2.5mm,在天线远离馈电端的贴片上打孔,孔连接着上下表面,孔的半径为3mm,在距馈电端480mm处。其中h为基片厚度,b为贴片单元间隔。天线示意图如图2所示。天线的馈电点的输入阻抗要求为50Ω。观察在中心频率下的馈电端口的输入阻抗Z参数。调整贴片的尺寸以及馈电点位置都可改变天线的输入阻抗值,目的使得输入阻抗的实部为50Ω和虚部为0Ω。
利用FEKO软件进行仿真,根据以上数据创建模型并调整网格密度,通过调节媒质控制卡、输出控制卡、电磁场计算卡,考虑趋服效应、计算远场、计算驻波等。天线的馈电电压的幅值为1V,相位为0°。模拟建立了8阵元直线阵列天线,在已知波达角情况下,通过使用算法获得的权值来控制各天线单元电压的幅值和相位,采用各阵元单独馈电的方式。在存在较小的天线阵单元间耦合互感的情况下,检验生成的方向图的可靠性和稳定性。如图3为8阵元直线天线阵放置的示意图。线阵设计采用均匀直线阵形式,防止在天线的H面上出现栅瓣,需要保证天线阵元中心间距d≤λ,而当天线阵元间距d≤λ/2时,会出现互感耦合现象,所以选择d≈0.6λ。每一个天线阵元享有一个馈电电压源。
实际运行过程的有益效果:
本发明通过大量实验和仿真得出各组数据均值,可以看出各处零陷电平的均值和旁瓣电平的均值都满足预定指标(详见表1),适应度函数值平均在0.63左右,距离理想适应度函数值0是十分接近,达到了函数逼近的目的,本发明通过遗传算法可以自适应的解决阵列天线方向图综合问题,具有很高的实用性。
表1各组部分参数的平均值
在同一组三个方向的干扰信号作用下,每次生成的方向图大致相同,说明算法的鲁棒性良好,将仿真所得数据计算算法的鲁棒性,所得鲁棒性检验值见表2
表2遗传算法鲁棒性检测值
将其绘成柱状图,如图4。可较直观看出其每次鲁棒性的检测值变化不大,系统稳定,所以多次改变干扰信号波达角方向,该算法所得的方向图仍能自适应的变换,得到理想的接收效果。
以上对本发明所提供的一种基于遗传算法的阵列天线方向图综合优化方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种基于遗传算法的阵列天线方向图综合优化方法,其特征在于,
天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:
a = λ g / 2 = λ 2 ϵ r - - - ( 1 )
根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;
最优权值获取步骤:
步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;
步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;
步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;
步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;
步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;
步骤6、循环步骤3至步骤5,直到取得最优权值;
天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。
2.如权利要求1所述的方法,其特征在于,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群的尺度设置为400;初始种群得分设置为(1,100)。
3.如权利要求2所述的方法,其特征在于,在适应度值评估步骤中采用最佳法,最佳个体比例设置在字段Quantity中,每个能产生子辈的个体指派给相同的比例值,而其他个体的比例值指派为0。
4.如权利要求3所述的方法,其特征在于,在选择步骤中选择染色体时采用剩余选择法,使它在选择过程中,分配其双亲由每个个体刻度值的整数部分决定,在剩余的小数部分采用轮盘赌选择方法。
5.如权利要求4所述的方法,其特征在于,在重组步骤中采用分散交叉方法;在一对选定的父辈中,采用高斯分布变异法,具有均值0的随机数加到父向量的每一项,这个分布的变化由参数“Scale”和“Shrink”决定,Scale设定为0.5,Shrink设定为0.8;再生方法为“Crossover Function”法,它指定下一代中不同于原种群的部分,它们由交叉产生;当迁移发生时,一个子种群中最好的个体代替另一子种群中最差的个体,运用的方法是双向迁移,即迁移在最后一个子种群处将卷绕回来。
6.如权利要求5所述的方法,其特征在于,在步骤6中添加停止条件参数,最大重复执行次数为8000代,停滞代数为4000代,适应度值小于或等于0.1。
7.如权利要求6所述的方法,其特征在于,排序准则是排列法、比率法或线性转换法。
CN201610817665.0A 2016-09-12 2016-09-12 一种基于遗传算法的阵列天线方向图综合优化方法 Active CN106407549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610817665.0A CN106407549B (zh) 2016-09-12 2016-09-12 一种基于遗传算法的阵列天线方向图综合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610817665.0A CN106407549B (zh) 2016-09-12 2016-09-12 一种基于遗传算法的阵列天线方向图综合优化方法

Publications (2)

Publication Number Publication Date
CN106407549A true CN106407549A (zh) 2017-02-15
CN106407549B CN106407549B (zh) 2019-09-10

Family

ID=57999270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610817665.0A Active CN106407549B (zh) 2016-09-12 2016-09-12 一种基于遗传算法的阵列天线方向图综合优化方法

Country Status (1)

Country Link
CN (1) CN106407549B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275801A (zh) * 2017-05-16 2017-10-20 李耘 一种l型阵列天线的基于获得性遗传的阵元排布方法
CN107329003A (zh) * 2017-06-30 2017-11-07 上海卫星工程研究所 优化sar天线方向图测试的方法
CN107657070A (zh) * 2017-07-31 2018-02-02 西安电子科技大学 基于遗传算法频率分集共形阵列波束的解耦合方法及天线
CN108470090A (zh) * 2018-02-12 2018-08-31 东南大学 准均匀阵元间距毫米波低副瓣电平串馈微带天线参数设计方法
CN109061561A (zh) * 2018-08-09 2018-12-21 西北工业大学 一种基于二分查找的自适应阵列方向图综合方法
CN109241576A (zh) * 2018-08-14 2019-01-18 西安电子科技大学 基于蚁狮算法的稀疏天线方向图综合方法
CN109800474A (zh) * 2018-12-27 2019-05-24 南京信息工程大学 一种基于遗传算法的阵列天线能量调配方法
CN111931934A (zh) * 2020-08-24 2020-11-13 深圳市数字城市工程研究中心 一种基于改进遗传算法的海量控制点下仿射变换求解方法
CN112016209A (zh) * 2020-08-28 2020-12-01 哈尔滨工业大学 基于蚁群算法的分布式嵌套圆阵列综合布阵方法
CN113271127A (zh) * 2021-05-19 2021-08-17 东南大学 一种基于最优保留遗传算法的分布式全双工大规模mimo系统天线工作模式选择方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725556A (zh) * 2005-07-07 2006-01-25 哈尔滨工业大学 基于遗传算法的智能天线复合波束形成方法
US20090061921A1 (en) * 2007-08-28 2009-03-05 Electronics And Telecommunications Research Institute Base station transmitting and receiving antenna and control method thereof
CN104900988A (zh) * 2015-05-21 2015-09-09 电子科技大学 一种改变辅助栅格圆半径来设计稀布圆形天线阵列的方法
CN104992000A (zh) * 2015-06-18 2015-10-21 哈尔滨工业大学 一种基于l型阵列天线的波束形成及波束图优化方法
CN105426578A (zh) * 2015-11-03 2016-03-23 电子科技大学 一种基于遗传算法的mimo-sar面阵天线阵元位置优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725556A (zh) * 2005-07-07 2006-01-25 哈尔滨工业大学 基于遗传算法的智能天线复合波束形成方法
US20090061921A1 (en) * 2007-08-28 2009-03-05 Electronics And Telecommunications Research Institute Base station transmitting and receiving antenna and control method thereof
CN104900988A (zh) * 2015-05-21 2015-09-09 电子科技大学 一种改变辅助栅格圆半径来设计稀布圆形天线阵列的方法
CN104992000A (zh) * 2015-06-18 2015-10-21 哈尔滨工业大学 一种基于l型阵列天线的波束形成及波束图优化方法
CN105426578A (zh) * 2015-11-03 2016-03-23 电子科技大学 一种基于遗传算法的mimo-sar面阵天线阵元位置优化方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DEBASIS MANDAL 等: "Synthesis of cosec2 pattern of circular array antenna using Genetic Algorithm", 《2012 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, DEVICES AND INTELLIGENT SYSTEMS (CODIS)》 *
SALVATORE CAORSI 等: "Planar antenna array design with a multi-purpose GA-based procedure", 《MICROWAVE & OPTICAL TECHNOLOGY LETTERS》 *
彭政谕: "阵列天线波束赋形技术研究与应用", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
董亮 等: "一种基于遗传算法的阵列天线方向图综合", 《火控雷达技术》 *
韩荣苍: "基于遗传算法的阵列天线综合", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931027B2 (en) 2017-05-16 2021-02-23 Dongguan University Of Technology Method for array elements arrangement of l-shaped array antenna based on inheritance of acquired character
WO2018210010A1 (zh) * 2017-05-16 2018-11-22 东莞理工学院 一种基于获得性遗传的l型阵列天线的阵元排布方法
CN107275801B (zh) * 2017-05-16 2019-06-04 李耘 一种l型阵列天线的基于获得性遗传的阵元排布方法
CN107275801A (zh) * 2017-05-16 2017-10-20 李耘 一种l型阵列天线的基于获得性遗传的阵元排布方法
CN107329003A (zh) * 2017-06-30 2017-11-07 上海卫星工程研究所 优化sar天线方向图测试的方法
CN107329003B (zh) * 2017-06-30 2019-08-30 上海卫星工程研究所 优化sar天线方向图测试的方法
CN107657070A (zh) * 2017-07-31 2018-02-02 西安电子科技大学 基于遗传算法频率分集共形阵列波束的解耦合方法及天线
CN107657070B (zh) * 2017-07-31 2021-05-25 西安电子科技大学 基于遗传算法频率分集共形阵列波束的解耦合方法及天线
CN108470090A (zh) * 2018-02-12 2018-08-31 东南大学 准均匀阵元间距毫米波低副瓣电平串馈微带天线参数设计方法
CN108470090B (zh) * 2018-02-12 2022-04-12 东南大学 准均匀阵元间距毫米波低副瓣电平串馈微带天线参数设计方法
CN109061561A (zh) * 2018-08-09 2018-12-21 西北工业大学 一种基于二分查找的自适应阵列方向图综合方法
CN109241576B (zh) * 2018-08-14 2020-06-30 西安电子科技大学 基于蚁狮算法的稀疏天线方向图综合方法
CN109241576A (zh) * 2018-08-14 2019-01-18 西安电子科技大学 基于蚁狮算法的稀疏天线方向图综合方法
CN109800474A (zh) * 2018-12-27 2019-05-24 南京信息工程大学 一种基于遗传算法的阵列天线能量调配方法
CN109800474B (zh) * 2018-12-27 2023-06-20 南京信息工程大学 一种基于遗传算法的阵列天线能量调配方法
CN111931934A (zh) * 2020-08-24 2020-11-13 深圳市数字城市工程研究中心 一种基于改进遗传算法的海量控制点下仿射变换求解方法
CN112016209A (zh) * 2020-08-28 2020-12-01 哈尔滨工业大学 基于蚁群算法的分布式嵌套圆阵列综合布阵方法
CN112016209B (zh) * 2020-08-28 2021-09-03 哈尔滨工业大学 基于蚁群算法的分布式嵌套圆阵列综合布阵方法
CN113271127A (zh) * 2021-05-19 2021-08-17 东南大学 一种基于最优保留遗传算法的分布式全双工大规模mimo系统天线工作模式选择方法
CN113271127B (zh) * 2021-05-19 2022-06-28 东南大学 一种基于最优保留遗传算法的分布式全双工大规模mimo系统天线工作模式选择方法

Also Published As

Publication number Publication date
CN106407549B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN106407549A (zh) 一种基于遗传算法的阵列天线方向图综合优化方法
CN111294096B (zh) 一种智能反射面miso无线通信系统的信道容量优化方法
CN106355245B (zh) 一种基于神经网络算法的阵列天线方向图综合方法
He et al. A novel dual-band, dual-polarized, miniaturized and low-profile base station antenna
Lopez et al. Subarray weighting for the difference patterns of monopulse antennas: Joint optimization of subarray configurations and weights
CN104919716B (zh) 用于无线通信的发射功率控制的装置、系统和方法
CN104320169B (zh) 多用户3d‑mimo系统中三维波束赋形设计方法
CN107135024A (zh) 一种低复杂度的混合波束赋形迭代设计方法
CN109800474B (zh) 一种基于遗传算法的阵列天线能量调配方法
CN110535518B (zh) 一种宽波束发射波束形成优化设计方法
CN110649943B (zh) 一种通过多个子波束叠加设计波束宽度的波束扫描方法
CN110138427A (zh) 基于部分连接的大规模多输入多输出混合波束赋形算法
CN103916170B (zh) 一种实现移动终端多天线位置优化配置的智能优化方法
CN110518952A (zh) 一种基于码本的自适应分组宽带混合波束赋形设计方法
Recioui Capacity optimization of MIMO systems involving conformal antenna arrays using a search group algorithm
Li et al. Joint beamforming and power allocation for intelligent reflecting surface-aided millimeter wave MIMO systems
Burtakov et al. QRIS: a QuaDRiGa-based simulation platform for reconfigurable intelligent surfaces
Tang et al. Design of 5G dual-antenna passive repeater based on machine learning
CN105227224B (zh) 3d-mimo系统中基于最小slnr最大准则的分布式干扰协调方法
CN113851827B (zh) 一种低剖面天线结构及天线码本生成方法
CN108550990B (zh) 一种5g大规模天线波束控制系统及方法
CN213584185U (zh) 5g相控微带天线
KR101851951B1 (ko) L형 슬롯을 이용한 wlan 대역 mimo 안테나
Yuan et al. A method for analyzing broadcast beamforming of massive MIMO antenna array
Shen et al. Genetic algorithm combined with ray tracer for optimizing cell-free mmimo topology in a confined environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant