CN106399967B - 一种SiC薄膜材料的制备方法 - Google Patents

一种SiC薄膜材料的制备方法 Download PDF

Info

Publication number
CN106399967B
CN106399967B CN201610841190.9A CN201610841190A CN106399967B CN 106399967 B CN106399967 B CN 106399967B CN 201610841190 A CN201610841190 A CN 201610841190A CN 106399967 B CN106399967 B CN 106399967B
Authority
CN
China
Prior art keywords
sic
film
carbon nanotube
substrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610841190.9A
Other languages
English (en)
Other versions
CN106399967A (zh
Inventor
王文庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wallitay Electronic Technology Co ltd
Original Assignee
Shenzhen Wallitay Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Wallitay Electronic Technology Co Ltd filed Critical Shenzhen Wallitay Electronic Technology Co Ltd
Priority to CN201610841190.9A priority Critical patent/CN106399967B/zh
Publication of CN106399967A publication Critical patent/CN106399967A/zh
Application granted granted Critical
Publication of CN106399967B publication Critical patent/CN106399967B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明涉及一种第三代宽禁带半导体材料制备技术,特别涉及一种SiC薄膜材料的制备方法,包括以下步骤:(1)提供并清洗单晶Si衬底,并在该单晶Si衬底上设置一碳纳米管层;(2)将设置有碳纳米管层的生长衬底放入HFCVD系统,在碳纳米管层表面形成SiC膜;(3)将步骤(2)形成的衬底放入MOCVD系统,C3H8碳化未被碳纳米管覆盖的单晶Si衬底,形成碳化膜;(4)SiH4和C3H8为生长源生长SiC,形成表面平整的SiC薄膜缓冲层;(5)SiH4和C3H8为生长源生长SiC,形成SiC薄膜层。本发明所述方法制得的SiC薄膜材料的晶体质量良好。

Description

一种SiC薄膜材料的制备方法
技术领域:
本发明涉及一种第三代宽禁带半导体材料制备技术,特别涉及一种SiC薄膜材料的制备方法。
背景技术:
目前,第三代电子材料从正在研究和发展的激烈竞争中脱颖而出,它们将在一段较长的时期内对微电子学和光电子学产生影响,这些材料就是宽带隙(Eg>2.3eV)半导体,它们包括:氮化镓(GaN)、氮化铝(AlN)、碳化硅(SiC)、立方氮化硼(c-BN)、金刚石及其固溶体。
SiC作为第三代宽带隙半导体材料,具有带隙宽、临界击穿场强高、饱和电子漂移速度大等优点,是高温、高频、高功率半导体器件的首选材料,在微电子学领域具有广阔的应用前景。由于SiC的单晶制备技术较复杂,成本较高,所以采用在Si基片上异质外延生长SiC的方法成为了研究的热点。
然而这一方法首要需要解决的是SiC与Si之间存在较大的晶格失配度(约20%)和热膨胀系数差异(8%)。因此,SiC在Si基片上的异质外延制备仍存在困难,还有很多问题需要研究解决。为了减少失配缺陷,常用工艺为先碳化再外延生长,即在生长SiC之前,只引入C源,在Si上先生长一层SiC缓冲层后,然后同时通入Si源和C源生长SiC,尽管如此,SiC外延层和Si衬底界面仍不可避免地存在少量的空洞缺陷,碳化缓冲层质量也不能使得随后的外延为完美的同质外延,SiC薄膜晶体质量仍然不能让人满意。
发明内容:
本发明的目的是提供一种SiC薄膜材料的制备方法,有效提高制得的SiC薄膜材料的晶体质量。
为实现上述目的,本发明采用以下技术方案:
一种SiC薄膜材料的制备方法,包括以下步骤:
(1)提供并清洗单晶Si衬底,并在该单晶Si衬底上设置一碳纳米管层;
(2)将设置有碳纳米管层的生长衬底放入HFCVD系统,以SiH4为硅源,H2作为硅源稀释气体和载气,在碳纳米管层表面形成SiC膜;
(3)将步骤(2)形成的衬底放入MOCVD系统,C3H8碳化未被碳纳米管覆盖的单晶Si衬底,形成碳化膜;
(4)SiH4和C3H8为生长源生长SiC,形成表面平整的SiC薄膜缓冲层,之后在H2气氛下退火;
(5)SiH4和C3H8为生长源生长SiC,之后在H2气氛下退火,形成SiC薄膜层。
优选地,MOCVD系统内添加外部光源,薄膜生长时使外部光源直接照射衬底。
优选地,碳纳米管层中多个碳纳米管沿着平行于碳纳米管层表面的方向延伸。
优选地,步骤(3)达到碳化温度之前的C3H8流量小于达到碳化温度之后的C3H8流量。
优选地,步骤(3)在进行碳化之后,在H2气氛下退火。
优选地,步骤(4)或者(5)可循环重复多次,硅碳比依次减小。
与现有技术相比,本发明具有以下优点:通过设置碳纳米管层并且在碳纳米管表面形成SiC膜以及对未被碳纳米管覆盖的单晶Si衬底碳化的处理,减小了SiC薄膜生长时热应力以及晶格失配;硅碳比较小时,生长过程先较大硅碳比低速生长减少生长过程中缺陷,后减小硅碳比生长使薄膜晶粒尺寸以及分布更加均匀;多次退火使得结晶质量更好;薄膜生长时若受到外部光源直接照射衬底,将提高表面活性,进而降低生长所需温度,进而能减小因温度高而引起的缺陷。
具体实施方式:
下面结合实施例对本发明进行详细说明。
实施例1
一种SiC薄膜材料的制备方法,包括以下步骤:
(1)提供并清洗单晶Si衬底,并在该单晶Si衬底上铺设一碳纳米管层,碳纳米管层中多个碳纳米管沿着平行于碳纳米管层表面的方向延伸;
(2)将设置有碳纳米管层的生长衬底放入HFCVD系统,以SiH4为硅源,H2作为硅源稀释气体和载气,在碳纳米管层表面形成SiC膜;
HFCVD系统利用热钨丝的2000℃高温对气源即SiH4和H2进行分解,然后利用分解产生的原子和原子团在300℃的单晶Si衬底上沉积生长SiC膜,体系中,气体压强为10Pa,SiH4浓度5%。
(3)将步骤(2)形成的衬底放入MOCVD系统,反应室压力设为200mbar,温度升到800℃后10ml/min通入C3H8,温度达到碳化温度1200℃后,C3H8流量调至40ml/min,碳化未被碳纳米管覆盖的单晶Si衬底,碳化时间10min,形成碳化膜;
(4)升温至1300℃,SiH4和C3H8为生长源,硅碳比5:1,生长15min SiC,形成表面平整的SiC薄膜缓冲层,之后温度不变,在H2气氛下退火10min;
(5)温度不变,SiH4和C3H8为生长源,硅碳比调为2:1,生长60min SiC,之后在H2气氛下退火10min;形成SiC薄膜层;
本实施例,XRD测试显示,外延薄膜只存在3C-SiC(111)峰,不存在其它SiC峰,其XRD半峰宽为0.35°,薄膜结晶质量好。
实施例2
一种SiC薄膜材料的制备方法,包括以下步骤:
(1)提供并清洗单晶Si衬底,并在该单晶Si衬底上铺设一碳纳米管层,碳纳米管层中多个碳纳米管沿着平行于碳纳米管层表面的方向延伸;
(2)将设置有碳纳米管层的生长衬底放入HFCVD系统,以SiH4为硅源,H2作为硅源稀释气体和载气,在碳纳米管层表面形成SiC膜;
HFCVD系统利用热钨丝的2000℃高温对气源即SiH4和H2进行分解,然后利用分解产生的原子和原子团在300℃的单晶Si衬底上沉积生长SiC膜,体系中,气体压强为10Pa,SiH4浓度5%。
(3)将步骤(2)形成的衬底放入MOCVD系统,反应室压力设为200mbar,温度升到800℃后10ml/min通入C3H8,温度达到碳化温度1200℃后,C3H8流量调至40ml/min,碳化未被碳纳米管覆盖的单晶Si衬底,碳化时间10min,形成碳化膜;
(4)升温至1300℃,SiH4和C3H8为生长源,硅碳比5:1,生长20min SiC,形成表面平整的SiC薄膜缓冲层,之后温度不变,在H2气氛下退火10min;
(5)温度不变,SiH4和C3H8为生长源,硅碳比调为4:1,生长10min SiC,之后在H2气氛下退火10min;温度不变,SiH4和C3H8为生长源,硅碳比调为3:1,生长10min SiC,之后在H2气氛下退火10min;温度不变,SiH4和C3H8为生长源,硅碳比调为2:1,生长60min SiC,之后在H2气氛下退火10min,形成SiC薄膜层;
本实施例,XRD测试显示,外延薄膜只存在3C-SiC(111)峰,不存在其它SiC峰,其XRD半峰宽为0.28°,薄膜结晶质量好。
实施例3
一种SiC薄膜材料的制备方法,包括以下步骤:
(1)提供并清洗单晶Si衬底,并在该单晶Si衬底上铺设一碳纳米管层,碳纳米管层中多个碳纳米管沿着平行于碳纳米管层表面的方向延伸;
(2)将设置有碳纳米管层的生长衬底放入HFCVD系统,以SiH4为硅源,H2作为硅源稀释气体和载气,在碳纳米管层表面形成SiC膜;
HFCVD系统利用热钨丝的2000℃高温对气源即SiH4和H2进行分解,然后利用分解产生的原子和原子团在300℃的单晶Si衬底上沉积生长SiC膜,体系中,气体压强为10Pa,SiH4浓度5%。
(3)将步骤(2)形成的衬底放入MOCVD系统,MOCVD系统内添加外部光源,薄膜生长时使外部光源直接照射衬底。反应室压力设为200mbar,温度升到1000℃,H2气氛下退火2min,之后40ml/min通入C3H8,碳化未被碳纳米管覆盖的单晶Si衬底,碳化时间10min,形成碳化膜;
(4)升温至1150℃,SiH4和C3H8为生长源,硅碳比5:1,生长20min SiC,形成表面平整的SiC薄膜缓冲层,之后温度不变,在H2气氛下退火10min;
(5)温度不变,SiH4和C3H8为生长源,硅碳比调为4:1,生长10min SiC,之后在H2气氛下退火10min;温度不变,SiH4和C3H8为生长源,硅碳比调为3:1,生长10min SiC,之后在H2气氛下退火10min;温度不变,SiH4和C3H8为生长源,硅碳比调为2:1,生长60min SiC,之后在H2气氛下退火10min,形成SiC薄膜层;
本实施例,XRD测试显示,外延薄膜只存在3C-SiC(111)峰,不存在其它SiC峰,其XRD半峰宽为0.22°,薄膜结晶质量好。

Claims (5)

1.一种SiC薄膜材料的制备方法,其特征在于,包括以下步骤:
(1)提供并清洗单晶Si衬底,并在该单晶Si衬底上设置一碳纳米管层;其中,碳纳米管层中多个碳纳米管沿着平行于碳纳米管层表面的方向延伸;
(2)将设置有碳纳米管层的生长衬底放入HFCVD系统,以SiH4为硅源,H2作为硅源稀释气体和载气,在碳纳米管层表面形成SiC膜;
(3)将步骤(2)形成的衬底放入MOCVD系统,C3H8碳化未被碳纳米管覆盖的单晶Si衬底,形成碳化膜;
(4)SiH4和C3H8为生长源生长SiC,形成表面平整的SiC薄膜缓冲层,之后在H2气氛下退火;
(5)SiH4和C3H8为生长源生长SiC,之后在H2气氛下退火,形成SiC薄膜层。
2.根据权利要求1所述SiC薄膜材料的制备方法,其特征在于:MOCVD系统内添加外部光源,薄膜生长时使外部光源直接照射衬底。
3.根据权利要求1所述SiC薄膜材料的制备方法,其特征在于:步骤(3)达到碳化温度之前的C3H8流量小于达到碳化温度之后的C3H8流量。
4.根据权利要求1所述SiC薄膜材料的制备方法,其特征在于:步骤(3)在进行碳化之后,在H2气氛下退火。
5.根据权利要求1所述SiC薄膜材料的制备方法,其特征在于:步骤(4)或者(5)可循环重复多次,硅碳比依次减小。
CN201610841190.9A 2016-09-22 2016-09-22 一种SiC薄膜材料的制备方法 Expired - Fee Related CN106399967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610841190.9A CN106399967B (zh) 2016-09-22 2016-09-22 一种SiC薄膜材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610841190.9A CN106399967B (zh) 2016-09-22 2016-09-22 一种SiC薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN106399967A CN106399967A (zh) 2017-02-15
CN106399967B true CN106399967B (zh) 2019-03-01

Family

ID=57996841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610841190.9A Expired - Fee Related CN106399967B (zh) 2016-09-22 2016-09-22 一种SiC薄膜材料的制备方法

Country Status (1)

Country Link
CN (1) CN106399967B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117238758A (zh) * 2023-11-14 2023-12-15 深圳天狼芯半导体有限公司 一种通过牺牲氧化NANO-P掺杂EPI钝化SiC MOS界面缺陷方法

Also Published As

Publication number Publication date
CN106399967A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN103614769B (zh) 一种基于原位刻蚀的氮化镓同质外延方法
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
CN105140102A (zh) 一种优化的在硅衬底上外延生长β-碳化硅薄膜的方法
CN106835268A (zh) 一种iii族氮化物衬底的制备方法
US20140256120A1 (en) Process for Preparing Graphene Based on Metal Film-Assisted Annealing and the Reaction with Cl2
CN108538707B (zh) 一种二维黑磷晶体制备方法
CN105731825B (zh) 一种利用石墨烯玻璃低成本大面积制备氮化铝薄膜的方法
CN105719968B (zh) 硅衬底上外延氮化镓薄膜及制备hemt器件的方法
CN108428618B (zh) 基于石墨烯插入层结构的氮化镓生长方法
CN105441902A (zh) 一种外延碳化硅-石墨烯复合薄膜的制备方法
CN104561926A (zh) 一种在硅衬底上制备β-碳化硅薄膜的方法
CN111477534B (zh) 氮化铝模板及其制备方法
CN114899099A (zh) 一种金刚石衬底上生长氮化镓高电子迁移率晶体管的外延方法
CN113130296B (zh) 一种六方氮化硼上生长氮化镓的方法
CN111593408B (zh) 一种超大尺寸自支撑氮化镓单晶及其制备方法
CN106399967B (zh) 一种SiC薄膜材料的制备方法
CN111501102A (zh) 基于hvpe的自支撑氮化镓单晶及其制备方法
CN105006427B (zh) 一种利用低温过渡层生长高质量氮化镓外延结构的方法
WO2023079880A1 (ja) ヘテロエピタキシャルウェーハの製造方法
JP2006253617A (ja) SiC半導体およびその製造方法
CN113089091A (zh) 氮化硼模板及其制备方法
CN103311100A (zh) 含有非极性m面GaN缓冲层的InN半导体器件的制备方法
CN108878265B (zh) 一种在Si(100)衬底上生长单晶氮化镓薄膜的方法
CN112575378A (zh) 一种在hpve生长中实现一次或多次空洞掩埋插入层的方法
JP3909690B2 (ja) エピタキシャル成長によるSiC膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181213

Address after: 317700 Zhongcun 122, Zhanyuan Street, Jiaojiang District, Taizhou City, Zhejiang Province

Applicant after: Lin Piaopiao

Address before: 523000 productivity building 406, high tech Industrial Development Zone, Songshan Lake, Dongguan, Guangdong

Applicant before: Dongguan Lianzhou Intellectual Property Operation Management Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190118

Address after: 518101 left, third and fourth floors of 225 Xiangshan Avenue, Songgang Street, Baoan District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen Wallitay Electronic Technology Co.,Ltd.

Address before: 317700 Zhongcun 122, Zhanyuan Street, Jiaojiang District, Taizhou City, Zhejiang Province

Applicant before: Lin Piaopiao

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190301

CF01 Termination of patent right due to non-payment of annual fee