CN106398316A - 一种掺杂金属镍离子的纳米氧化锌的制备方法 - Google Patents

一种掺杂金属镍离子的纳米氧化锌的制备方法 Download PDF

Info

Publication number
CN106398316A
CN106398316A CN201610379448.8A CN201610379448A CN106398316A CN 106398316 A CN106398316 A CN 106398316A CN 201610379448 A CN201610379448 A CN 201610379448A CN 106398316 A CN106398316 A CN 106398316A
Authority
CN
China
Prior art keywords
time
5min
nickel ion
zine oxide
nano zine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610379448.8A
Other languages
English (en)
Other versions
CN106398316B (zh
Inventor
姚俊
尚怀宇
王砚峰
张宏琛
马瑞廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Ligong University
Original Assignee
Shenyang Ligong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Ligong University filed Critical Shenyang Ligong University
Priority to CN201610379448.8A priority Critical patent/CN106398316B/zh
Publication of CN106398316A publication Critical patent/CN106398316A/zh
Application granted granted Critical
Publication of CN106398316B publication Critical patent/CN106398316B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

一种掺杂金属镍离子的纳米氧化锌的制备方法是:取10.56g~9.68g二水乙酸锌和0.1592g~1.6979g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h。所制备一种掺杂金属镍离子的纳米氧化锌。在紫外灯照射50min时,对甲基橙染料达到最大降解率为91%,对金黄色葡萄球菌的抑菌圈最大为19.6mm。

Description

一种掺杂金属镍离子的纳米氧化锌的制备方法
技术领域
本发明涉及降解剂和抑菌类生长技术领域,特别涉及一种掺杂金属镍离子的纳米氧化锌的制备方法。
背景技术
纳米氧化锌具有较高的比表面积,较好的生物相容性和较强的生物活性,在降解有机染料和抑菌金黄色葡萄球菌上表现出优异的性能;同时与有机抑菌剂相比,纳米氧化锌的耐热性和稳定性好、降解有机染料效率高,抑菌时效长。
纳米氧化锌在降解有机染料和抑菌金黄色葡萄球菌的研究和实践过程中,本发明的发明人发现:将金属镍离子掺杂进纳米氧化锌晶格中替代部分的锌离子,能够影响其晶体结构,提高纳米氧化锌的性能。本发明旨在获得一种具有高效光催化降解有机染料和抑菌活性的掺杂金属镍离子的纳米氧化锌的制备方法。
发明内容
本发明提供一种掺杂金属镍离子的纳米氧化锌的制备方法,所制备出的一种掺杂金属镍离子的纳米氧化锌具有降解有机染料和抑菌金黄色葡萄球菌的的制备方法。
采用的技术方案
本发明一种掺杂金属镍离子的纳米氧化锌的制备方法,包括如下步骤:
将10.56g~9.68g二水乙酸锌和0.1592g~1.6979g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h。
光催化降解有机染料的实验方法如下:
将制成的一种掺杂金属镍离子的纳米氧化锌50mg加入到100mL浓度为50mg/L的甲基橙溶液中,避光磁力搅拌15min,超声分散15min,测定其初始吸光度数值。然后将上述溶液放入到125W的紫外光灯源下,每隔10min取样一次,根据需要确定取样次数,取样后立即进行离心分离,取上层清液3mL,测定其吸光度数值。光催化甲基橙的降解率采用如下公式计算
公式中RE为降解率,A 0 A t 分别为甲基橙溶液的初始吸光度和反应时间为t 时的吸光度。
抑菌实验方法如下:
预先培植金黄色葡萄球菌16h,将浓度为1.0×106cfu/mL的菌液25µL均匀涂布于固体培养基,将已灭菌的滤片置于培养皿中,取0.2mL浓度为0.5mg/mL的一种掺杂金属镍离子的纳米氧化锌溶液滴于滤片上,将培养基放置在培养箱中24h, 测量抑菌圈直径。
所制备的纳米粉的性能测试结果为:在紫外灯照射50min时,对甲基橙染料达到最大降解率为82%~91%,对金黄色葡萄球菌的抑菌圈直径为7.2mm~19.6mm。
二水乙酸锌、乙二醇、柠檬酸三钠、无水乙醇、丙酮、四水乙酸镍均为市购产品。
优点
1、氧化锌纳米粉和将制成的一种掺杂金属镍离子的纳米氧化锌在相同的实验条件下其结果如下:
纳米氧化锌,对有机染料甲基橙的降解率为20%~62%,对金黄色葡萄球菌的抑菌圈直径为5.2mm。
10.56g~9.68g二水乙酸锌和0.1592g~1.6979g四水乙酸镍制成的一种掺杂金属镍离子的纳米氧化锌,对有机染料甲基橙的降解率为82%~91%,对金黄色葡萄球菌的抑菌圈直径为7.2mm~19.6mm。
2.由于金属镍离子掺杂进纳米氧化锌晶格中,替代部分的锌离子,影响其晶体结构,导致纳米氧化锌的晶粒尺寸减小,微应力增大,晶格常数增大,从而使本发明产品降解有机染料甲基橙效率高,抑制金黄色葡萄球菌效果好。
3. 本发明产品属于无机抑菌剂,耐热性和稳定性高,与生物相容性好。
附图说明
图1为纳米Ni x Zn1-x O(x=0, 0.04, 0.08和0.12)的XRD谱图;
图2为纳米Ni x Zn1-x O(x=0, 0.04, 0.08和0.12)粒子的平均粒径分布图;
图3为纳米Ni x Zn1-x O(x=0, 0.04, 0.08和0.12)的抑菌圈直径分布图;
图4为纳米Ni x Zn1-x O粉体对甲基橙的降解率曲线a-x=0, b-x=0.04, c-x=0.08和d-x=0.12图。
具体实施方式
实施例 1
本发明一种掺杂金属镍离子的纳米氧化锌的制备方法,包括如下步骤:
取10.56g二水乙酸锌和0.1592g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h;
光催化降解有机染料的实验方法如下:
将制成的一种掺杂金属镍离子的纳米氧化锌50mg加入到100mL浓度为50mg/L的甲基橙溶液中,避光磁力搅拌15min,超声分散15min,测定其初始吸光度数值;然后将上述溶液放入到125W的紫外光灯源下,每隔10min取样一次,根据需要确定取样次数,取样后立即进行离心分离,取上层清液3mL,测定其吸光度数值;光催化甲基橙的降解率采用如下公式计算
公式中RE为降解率,A 0 A t 分别为甲基橙溶液的初始吸光度和反应时间为t 时的吸光度;
抑菌实验方法如下:
预先培植金黄色葡萄球菌16h,将浓度为1.0×106cfu/mL的菌液25µL均匀涂布于固体培养基,将已灭菌的滤片置于培养皿中,取0.2mL浓度为0.5mg/mL的一种掺杂金属镍离子的纳米氧化锌溶液滴于滤片上,将培养基放置在培养箱中24h, 测量抑菌圈直径;
所制备的纳米粉的性能测试结果为:在紫外灯照射50min时,对甲基橙染料达到最大降解率为82%,对金黄色葡萄球菌的抑菌圈直径为7.2mm。
实施例 2
本发明一种掺杂金属镍离子的纳米氧化锌的制备方法,包括如下步骤:
取10.12g二水乙酸锌和1.084g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h;
光催化降解有机染料的实验方法如下:
将制成的一种掺杂金属镍离子的纳米氧化锌50mg加入到100mL浓度为50mg/L的甲基橙溶液中,避光磁力搅拌15min,超声分散15min,测定其初始吸光度数值;然后将上述溶液放入到125W的紫外光灯源下,每隔10min取样一次,根据需要确定取样次数,取样后立即进行离心分离,取上层清液3mL,测定其吸光度数值;光催化甲基橙的降解率采用如下公式计算
公式中RE为降解率,A 0 A t 分别为甲基橙溶液的初始吸光度和反应时间为t 时的吸光度;
抑菌实验方法如下:
预先培植金黄色葡萄球菌16h,将浓度为1.0×106cfu/mL的菌液25µL均匀涂布于固体培养基,将已灭菌的滤片置于培养皿中,取0.2mL浓度为0.5mg/mL的一种掺杂金属镍离子的纳米氧化锌溶液滴于滤片上,将培养基放置在培养箱中24h, 测量抑菌圈直径;
所制备的纳米粉的性能测试结果为:在紫外灯照射50min时,对甲基橙染料达到最大降解率为88%,对金黄色葡萄球菌的抑菌圈直径为14.5mm。
实施例 3
本发明一种掺杂金属镍离子的纳米氧化锌的制备方法,包括如下步骤:
取9.68g二水乙酸锌和1.6797g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h;
光催化降解有机染料的实验方法如下:
将制成的一种掺杂金属镍离子的纳米氧化锌50mg加入到100mL浓度为50mg/L的甲基橙溶液中,避光磁力搅拌15min,超声分散15min,测定其初始吸光度数值;然后将上述溶液放入到125W的紫外光灯源下,每隔10min取样一次,根据需要确定取样次数,取样后立即进行离心分离,取上层清液3mL,测定其吸光度数值;光催化甲基橙的降解率采用如下公式计算
公式中RE为降解率,A 0 A t 分别为甲基橙溶液的初始吸光度和反应时间为t 时的吸光度;
抑菌实验方法如下:
预先培植金黄色葡萄球菌16h,将浓度为1.0×106cfu/mL的菌液25µL均匀涂布于固体培养基,将已灭菌的滤片置于培养皿中,取0.2mL浓度为0.5mg/mL的一种掺杂金属镍离子的纳米氧化锌溶液滴于滤片上,将培养基放置在培养箱中24h, 测量抑菌圈直径;
所制备的纳米粉的性能测试结果为:在紫外灯照射50min时,对甲基橙染料达到最大降解率为91%,对金黄色葡萄球菌的抑菌圈直径为19.6mm。
工作原理
金属镍离子掺杂进纳米氧化锌晶格中替代部分的锌离子,能够影响其晶体结构,提高纳米氧化锌的性能。本发明旨在获得一种具有高效光催化降解有机染料和抑菌活性的掺杂金属镍离子的纳米氧化锌的制备方法。
光催化降解有机染料的实验方法如下:
将制成的一种掺杂金属镍离子的纳米氧化锌50mg加入到100mL浓度为50mg/L的甲基橙溶液中,避光磁力搅拌15min,超声分散15min,测定其初始吸光度数值。然后将上述溶液放入到125W的紫外光灯源下,每隔10min取样一次,取样后立即进行离心分离,取上层清液3mL,测定其吸光度数值。光催化甲基橙的降解率采用如下公式计算
公式中RE为降解率,A 0 A t 分别为甲基橙溶液的初始吸光度和反应时间为t 时的吸光度。
抑菌实验方法如下:
预先培植金黄色葡萄球菌16h,将浓度为1.0×106cfu/mL的菌液25µL均匀涂布于固体培养基,将已灭菌的滤片置于培养皿中,取0.2mL浓度为0.5mg/mL的一种掺杂金属镍离子的纳米氧化锌溶液滴于滤片上,将培养基放置在培养箱中24h, 测量抑菌圈直径。

Claims (4)

1.一种掺杂金属镍离子的纳米氧化锌的制备方法,其特征在于:
取10.56g~9.68g二水乙酸锌和0.1592g~1.6979g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h。
2.根据权利要求1所述的一种掺杂金属镍离子的纳米氧化锌的制备方法,其特征在于:
取10.56g二水乙酸锌和0.1592g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h。
3.根据权利要求1所述的一种掺杂金属镍离子的纳米氧化锌的制备方法,其特征在于:
取10.12g二水乙酸锌和1.084g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h。
4.根据权利要求1所述的一种掺杂金属镍离子的纳米氧化锌的制备方法,其特征在于:
取9.68g二水乙酸锌和1.6797g四水乙酸镍,放入250mL的三口瓶中,加入70mL的分析乙二醇作为溶剂,1.2g 浓度为0.058mol/L的柠檬酸三钠作为分散剂,上述溶液在180℃下反应4h,整个反应过程始终在磁力搅拌,氮气保护下进行,得到的沉淀物用无水乙醇洗涤三次,每次5min,用分析丙酮洗涤一次,每次5min,再用去离子水洗涤三次,每次5min,确保产物为纯的一种掺杂金属镍离子的纳米氧化锌,产物在80℃的真空干燥箱中烘干8h。
CN201610379448.8A 2016-06-01 2016-06-01 一种掺杂金属镍离子的纳米氧化锌的制备方法 Expired - Fee Related CN106398316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610379448.8A CN106398316B (zh) 2016-06-01 2016-06-01 一种掺杂金属镍离子的纳米氧化锌的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610379448.8A CN106398316B (zh) 2016-06-01 2016-06-01 一种掺杂金属镍离子的纳米氧化锌的制备方法

Publications (2)

Publication Number Publication Date
CN106398316A true CN106398316A (zh) 2017-02-15
CN106398316B CN106398316B (zh) 2018-08-10

Family

ID=58005868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610379448.8A Expired - Fee Related CN106398316B (zh) 2016-06-01 2016-06-01 一种掺杂金属镍离子的纳米氧化锌的制备方法

Country Status (1)

Country Link
CN (1) CN106398316B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107140698A (zh) * 2017-05-26 2017-09-08 扬州工业职业技术学院 一种用于检测氢气的镍掺杂氧化锌材料的制备方法
CN106966444B (zh) * 2017-05-26 2018-04-06 扬州工业职业技术学院 一种镍掺杂的氧化锌材料及其在制备气敏传感器中的应用
CN108301066A (zh) * 2018-02-10 2018-07-20 深圳源广安智能科技有限公司 一种抗菌聚酯纤维
CN108324031A (zh) * 2018-02-10 2018-07-27 深圳市晟达机械设计有限公司 一种酒店抗菌防螨阻尼枕
CN108437589A (zh) * 2018-02-10 2018-08-24 梧州井儿铺贸易有限公司 一种窗帘用抗菌性能良好的面料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390892A (zh) * 2002-06-28 2003-01-15 杨学良 一种纳米级抗菌除味复合粉体的制造方法
CN101563294A (zh) * 2006-10-11 2009-10-21 巴斯夫欧洲公司 生产表面改性的纳米颗粒状金属氧化物、金属氢氧化物和/或金属羟基氧化物的方法
CN103285866A (zh) * 2013-05-16 2013-09-11 马玉山 一种液相糠醛加氢制糠醇催化剂及其制备方法和用法
CN103651569A (zh) * 2013-11-26 2014-03-26 南通职业大学 一种制备表面包覆改性Ag/ZnO纳米复合抗菌剂的工艺
CN103657662A (zh) * 2013-11-27 2014-03-26 浙江师范大学 镍掺杂氧化锌分级结构光催化纳米材料及其制备方法
CN103974906A (zh) * 2011-11-17 2014-08-06 堺化学工业株式会社 表面处理氧化锌粉体、抗菌剂和抗菌性组合物
CN103977806A (zh) * 2014-05-16 2014-08-13 盐城工学院 一种光催化降解材料Co掺杂纳米ZnO及其制备方法
CN104275173A (zh) * 2014-07-30 2015-01-14 浙江师范大学 碳包覆金属掺杂氧化锌复合光催化纳米材料及其制备方法
CN104445363A (zh) * 2013-09-14 2015-03-25 金秀华 一种纳米氧化锌的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390892A (zh) * 2002-06-28 2003-01-15 杨学良 一种纳米级抗菌除味复合粉体的制造方法
CN101563294A (zh) * 2006-10-11 2009-10-21 巴斯夫欧洲公司 生产表面改性的纳米颗粒状金属氧化物、金属氢氧化物和/或金属羟基氧化物的方法
CN103974906A (zh) * 2011-11-17 2014-08-06 堺化学工业株式会社 表面处理氧化锌粉体、抗菌剂和抗菌性组合物
CN103285866A (zh) * 2013-05-16 2013-09-11 马玉山 一种液相糠醛加氢制糠醇催化剂及其制备方法和用法
CN104445363A (zh) * 2013-09-14 2015-03-25 金秀华 一种纳米氧化锌的制备方法
CN103651569A (zh) * 2013-11-26 2014-03-26 南通职业大学 一种制备表面包覆改性Ag/ZnO纳米复合抗菌剂的工艺
CN103657662A (zh) * 2013-11-27 2014-03-26 浙江师范大学 镍掺杂氧化锌分级结构光催化纳米材料及其制备方法
CN103977806A (zh) * 2014-05-16 2014-08-13 盐城工学院 一种光催化降解材料Co掺杂纳米ZnO及其制备方法
CN104275173A (zh) * 2014-07-30 2015-01-14 浙江师范大学 碳包覆金属掺杂氧化锌复合光催化纳米材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107140698A (zh) * 2017-05-26 2017-09-08 扬州工业职业技术学院 一种用于检测氢气的镍掺杂氧化锌材料的制备方法
CN106966444B (zh) * 2017-05-26 2018-04-06 扬州工业职业技术学院 一种镍掺杂的氧化锌材料及其在制备气敏传感器中的应用
CN108301066A (zh) * 2018-02-10 2018-07-20 深圳源广安智能科技有限公司 一种抗菌聚酯纤维
CN108324031A (zh) * 2018-02-10 2018-07-27 深圳市晟达机械设计有限公司 一种酒店抗菌防螨阻尼枕
CN108437589A (zh) * 2018-02-10 2018-08-24 梧州井儿铺贸易有限公司 一种窗帘用抗菌性能良好的面料

Also Published As

Publication number Publication date
CN106398316B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
CN106398316A (zh) 一种掺杂金属镍离子的纳米氧化锌的制备方法
Wang et al. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer
Lu et al. A novel hollow capsule-like recyclable functional ZnO/C/Fe 3 O 4 endowed with three-dimensional oriented recognition ability for selectively photodegrading danofloxacin mesylate
Li et al. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis
Palanisamy et al. Magnetically recoverable multifunctional ZnS/Ag/CoFe2O4 nanocomposite for sunlight driven photocatalytic dye degradation and bactericidal application
Huang et al. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: characterization, biocompatibility, and mechanisms for NO removal
Xu et al. Synthesis of zinc ferrite/silver iodide composite with enhanced photocatalytic antibacterial and pollutant degradation ability
Zhang et al. Carbon dots-decorated Na2W4O13 composite with WO3 for highly efficient photocatalytic antibacterial activity
Umar et al. Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes
Nie et al. NaYF4: Yb, Er, Nd@ NaYF4: Nd upconversion nanocrystals capped with Mn: TiO2 for 808 nm NIR-triggered photocatalytic applications
Zhang et al. A free-standing 3D nano-composite photo-electrode—Ag/ZnO nanorods arrays on Ni foam effectively degrade berberine
George et al. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm
Li et al. Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol
Wang et al. Enhanced photocatalytic degradation and antibacterial performance by GO/CN/BiOI composites under LED light
Wu et al. Synthesis of high-performance conjugated microporous polymer/TiO2 photocatalytic antibacterial nanocomposites
Shi et al. Hierarchical Z-scheme Bi2S3/CdS heterojunction: Controllable morphology and excellent photocatalytic antibacterial
Beshkar et al. Facile one-pot in situ synthesis and characterization of a Cu2O/Cu2 (PO4)(OH) binary heterojunction nanocomposite for the efficient photocatalytic degradation of ciprofloxacin from aqueous solution under direct sunlight irradiation
Cai et al. Leaf-templated synthesis of hierarchical AgCl-Ag-ZnO composites with enhanced visible-light photocatalytic activity
CN105268438A (zh) 一种等离子体复合光催化剂及其制备方法和应用
Zhang et al. Constructing a novel CuS/Cu2S Z-scheme heterojunction for highly-efficiency NIR light-driven antibacterial activity
Guo et al. Singlet oxygen mediated efficient photocatalytic degradation of rhodamine B and disinfection by ZnO@ PDA/Ag-Ag2O nanocomposite under LED light
Bian et al. Functionalized polyvinyl alcohol nanofibers with visible light-triggered antibacterial and ethylene scavenging capabilities for food packaging
Cai et al. Kelp-inspired N–I-doped ZnO photocatalysts with highly efficient catalytic activity
CN102716741A (zh) 一种Pt/ZnO复合空心微球光催化材料及其制备方法
Chen et al. Metallic zirconium carbide mediated near-infrared driven photocatalysis and photothermal sterilization for multidirectional water purification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180810

Termination date: 20190601

CF01 Termination of patent right due to non-payment of annual fee