CN106391021A - 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 - Google Patents

一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 Download PDF

Info

Publication number
CN106391021A
CN106391021A CN201610691014.1A CN201610691014A CN106391021A CN 106391021 A CN106391021 A CN 106391021A CN 201610691014 A CN201610691014 A CN 201610691014A CN 106391021 A CN106391021 A CN 106391021A
Authority
CN
China
Prior art keywords
catalyst
metal
carrier
preparation
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610691014.1A
Other languages
English (en)
Inventor
苏海全
付晓娟
温鼎
殷文超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN201610691014.1A priority Critical patent/CN106391021A/zh
Publication of CN106391021A publication Critical patent/CN106391021A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法,属于天然气化工技术领域和催化剂制造工程技术领域。其特征在于,通过控制活性组分还原温度在载体相变温度范围内,在还原活性金属的同时,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属负载型催化剂。所述的负载型催化剂采用浸渍法,载体为TiO2、ZrO2、Al2O3、CaSiO3等无机氧化物和含氧酸盐,所用活性金属为Ni、Co、Ru等过渡金属,金属的负载量在1%—30%。本发明所述的催化剂制备方法简单,合成条件易控制;制得的催化剂金属分散性好、粒径小,具有催化活性高、抗积炭性能和稳定性好的特点。

Description

一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法 及应用
技术领域
本发明涉及属于天然气化工技术领域和催化剂制造工程技术领域,特别是涉及一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用。
背景技术
CH4-CO2重整(Dry Reforming of Methane,DRM)是甲烷、二氧化碳转化利用的一条有效途径。但是,甲烷二氧化碳重整反应至今没有工业化,主要问题是催化剂的失活问题。催化剂的失活有很多种原因,其中最主要的原因是积炭和烧结。目前,甲烷二氧化碳重整催化剂研究主要集中在贵金属和Ⅷ族过渡金属。虽然贵金属Rh、Ru、Ir、Pt等作为活性组分具有良好的催化性能和相对不易积炭的优点,但由于价格昂贵,不适宜工业化应用。非贵金属(如Ni)成本低廉,也具有相对较高的催化活性,是目前认为最有前途的甲烷二氧化碳重整工业化催化剂。但由于其易于表面积炭和高温烧结,所面临的失活问题相较贵金属更为突出。
积炭反应是对催化剂表面活性金属颗粒大小敏感的反应。积炭易发生在较大的金属粒子表面,减小活性金属粒子的尺寸会有效地抑制积炭从而提高催化剂反应性能。催化剂另一个失活的原因是烧结,颗粒的烧结迁移直接后果是活性组分团聚成更大的粒子,加剧积炭的产生,催化剂表面可供反应的活性位点减少,最终活性金属从载体上脱离出来,进一步烧结、积炭、失活。因此,将金属的颗粒大小控制在相对小的范围内,同时提高其在催化剂表面的分散性和抗迁移性,是提升甲烷二氧化碳重整催化剂性能的关键问题。
近年来,为了减小催化剂金属颗粒尺寸以及提高其分散性和抗迁移性,研究人员做了许多卓有成效的工作。中国发明专利(公开号CN102744072A)采用共沉淀法,文献(Journal of Catalysis, 2015, 330:106-119)采用一锅法,均合成了含镍的复合氧化物催化剂,利用Ni与载体一步形成稳定结构,使镍很好地分散到载体体相,但是该类方法所得催化剂活性组分不能全部分散在载体表面且还原困难,此外制备过程也较复杂。中国发明专利(公开号CN102698789A和CN105381818A)公开了采用一步或多步浸渍法制备的Ni/SBA-15催化剂,文献(Applied Catalysis B: Environmental, 2012, 125(3): 324–330)也报道了利用介孔材料的界面限域或孔道限域作用可以使Ni颗粒的运动受到空间限制,达到稳定纳米粒子、提高分散度的目的,该方法催化剂载体负载过程虽然简单,但是载体制备过程繁琐,且载体在高温反应中易坍塌。文献(Journal of Catalysis, 2009, 266(2):380-390)利用原子层沉积技术直接均匀镀膜达到原子级的高度分散,但是设备要求高,过程能耗大,比较复杂,且反应后活性组分还是出现了明显的团聚和迁移。中国发明专利(公开号CN102974353A)公开了一种采用胶体磨制备NiO/Al2O3催化剂的方法,将镍与氧化铝悬浮液在胶体磨中循环研磨数小时,取出悬浮液,烘干、焙烧,虽然催化剂成本低、经济性好,但是胶体磨过程耗时较长,制备工序增多。中国发明专利(公开号CN1234366)公开了一种采用溶胶-凝胶-超临界流体干燥法制备Ni/ZrO2催化剂的方法,所得催化剂具有较好的甲烷二氧化碳重整活性,但是该方法技术难度大,增加了催化剂制备成本和难度;中国发明专利(公开号CN1268394)公开了一种较上述专利大大简化的催化剂制备方法,虽然载体制备过程较溶胶-凝胶-超临界流体干燥法简化,但是同样用到了回流蒸煮等工艺,方法还是较为复杂。
综上所述,直至目前,想要达到将金属的颗粒大小控制在相对小的范围内,同时提高其在催化剂表面高分散的目的,催化剂制备方法较复杂,均有耗时长、工艺繁琐的弊端。
发明内容
本发明提供了一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法,克服了上述现有技术之不足,既能达到控制金属颗粒大小、提高其在催化剂表面的分散性和抗迁移性的目的,又能大大简化催化剂制备过程。
为解决上述技术问题,本发明采用的一个技术方案是:通过控制活性组分还原温度在载体相变温度范围内,在还原活性金属的同时,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属负载型催化剂,并把该催化剂用于甲烷二氧化碳重整反应。催化剂所用载体为TiO2、ZrO2、Al2O3、CaSiO3等无机氧化物和含氧酸盐,所用活性金属为Ni、Co、Ru等过渡金属。催化剂的制备条件为:金属的负载量在1%—30%;载体相变温度100oC—1500oC;还原气为氢气,浓度为1%—100%,还原温度100oC—1500oC。使用本发明工艺方法制备的催化剂明显提高了金属的分散程度,降低了金属粒径,在甲烷二氧化碳重整反应中具有高的活性和优良的稳定性。
本发明所涉及的催化剂的制备方法和甲烷二氧化碳重整反应操作步骤如下:
1. 负载型催化剂按如下步骤制备(见附图1):
(1)催化剂前驱体制备:称取一定量的金属前驱体溶于去离子水中,金属的负载量在1%~30%,加入一定量的未经过高温处理、未发生相变的载体,置于烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中焙烧,制得所需负载型的催化剂前驱体。
(2)控制活性组分还原温度在载体相变温度范围内,在一定浓度的H2中还原活性金属的同时,载体发生相转变,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属催化剂。
(3)作为对比,称取一定量的金属前驱体溶于去离子水中,金属的负载量在1%~30%,加入一定量已经发生过相转变的载体,置于烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气中焙烧,制得所需负载型催化剂前驱体,并将本前驱体在一定浓度氢气中还原,还原温度和上述步骤(2)中相同,得到对比催化剂。
2. 甲烷二氧化碳重整反应的操作:
催化剂活性评价采用固定床催化剂评价装置,外部采用不锈钢套管,内部用石英管反应器,原料气为CH4和CO2的混合气。催化剂在所需温度下反应,进行0.5h后开始对反应尾气进行取样,采用在线气相色谱仪进行分析。
附图说明
附图说明
图1 本发明催化剂的制备工艺流程图
图2 Ni/TiO2催化剂的TEM图( A:Ni/TiO2-500; B:Ni/TiO2-800; C:Ni/TiO2-500; D:Ni/TiO2 -800)
图3 Ni/ZrO2催化剂的TEM图( A:Ni/ ZrO2-400; B:Ni/ ZrO2-800; C:Ni/ ZrO2-400;D:Ni/ZrO2 -800)
图4 Ni/CaSiO3催化剂的TEM图( A:Ni/ CaSiO3-650; B:Ni/ CaSiO3-800; C:Ni/CaSiO3-650; D:Ni/ CaSiO3-800)
图5 Ni/TiO2催化剂的甲烷二氧化碳重整活性测试结果
图6 Ni/ZrO2催化剂的甲烷二氧化碳重整活性测试结果
图7 Ni/ CaSiO3催化剂的甲烷二氧化碳重整活性测试结果
图8 Ni/TiO2催化剂的甲烷二氧化碳重整稳定性测试结果。
具体实施方式
实施例1:
(1)载体TiO2(锐钛矿)的制备:将钛酸丁酯与无水乙醇混合(钛的摩尔浓度CTi=0.64mol/L),超声30min后,缓慢加入去离子水,使得Ti4+稀释100倍,同时剧烈搅拌并超声30min,之后静置3h,离心清洗多次,置于100 oC烘箱中干燥;将所得固体置于马弗炉中,在流动的空气中500 oC焙烧3h,制得载体TiO2(锐钛矿),标记为TiO2-500;
(2)采用等体积浸渍法制备负载型催化剂,称取一定量的硝酸镍溶于去离子水中,加入一定量的TiO2-500,镍的负载量控制10%,于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得所需负载型催化剂前驱体NiO/TiO2-500。
(3)氢气浓度10%条件下,在800oC进行还原处理,该温度下载体TiO2-500(锐钛矿)发生相变转化为金红石相,同时NiO还原为活性金属,制备得到催化剂Ni/TiO2-500。
(4)作为对比,称取一定量的硝酸镍溶于去离子水中,镍的负载量在10%,加入一定量的金红石TiO2载体(TiO2-800),置于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气中400oC焙烧,制得所需负载型催化剂前驱体NiO/TiO2-800。氢气浓度10%条件下,在800oC进行还原处理,还原制备得到参比催化剂Ni/TiO2-800。
(5)催化剂的分析表征:
催化剂的TEM图(图2)可以证明:当经过了高温同步相变-还原处理过程后,催化剂金属颗粒变小,分散度增大。
(6)催化剂活性评价:
通过甲烷二氧化碳重整活性数据(图5)可知,用本方法制得的催化剂其甲烷二氧化碳重整活性要优于传统负载型催化剂。
(7)催化剂稳定性测试:
通过甲烷二氧化碳重整稳定性数据(图8)可知,用本方法制得的催化剂其甲烷二氧化碳重整稳定性也要优于传统负载型催化剂。
实施例2:
(1)载体ZrO2(单斜相)的制备:ZrOCl2·8H2O置于马弗炉中,在流动的空气的中400 oC焙烧3h,制得ZrO2(单斜相)载体,标记为ZrO2-400;
(2)采用等体积浸渍法制备负载型催化剂,称取一定量的硝酸镍溶于去离子水中,加入一定量的ZrO2(单斜相)载体,镍的负载量控制10%,于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得所需负载型催化剂前驱体NiO/ZrO2-400。
(3)氢气浓度10%条件下,在800oC进行还原处理,该温度下载体ZrO2-400(单斜相)发生相变转化为四方相,同时NiO还原为活性金属,制备得到催化剂Ni/ZrO2-400。
(4)作为对比,称取一定量的硝酸镍溶于去离子水中,镍的负载量在10%,加入一定量的四方相ZrO2载体(ZrO2-800),置于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得催化剂前驱体NiO/ZrO2-800。氢气浓度10%条件下,在800oC进行还原处理,还原制备得到参比催化剂Ni/ZrO2-800。
(5)催化剂的分析表征:
催化剂的TEM图(图3)可以证明:当经过了高温同步相变-还原处理过程后,催化剂金属颗粒变小,分散度增大。
(6)催化剂活性评价:
通过甲烷二氧化碳重整活性数据(图6)可得,用本方法制得的催化剂其甲烷二氧化碳重整活性要优于传统负载型催化剂。
实施例3:
(1)载体CaSiO3(三斜相)的制备:使用微米级二氧化硅与分析纯的CaO来制备CaSiO3。CaO与SiO2的摩尔比为0.83,水固比为10:1,将二者混合,超声搅拌30min,将混合均匀的悬浮液在180oC的饱和蒸汽压下水热合成24h;将所得沉淀离心清洗多次;之后,将得到的产物置于100oC烘箱中干燥;将所得固体置于马弗炉中,在流动的空气的中650oC焙烧3h,制得CaSiO3(三斜相)载体,标记为CaSiO3-650;
(2)采用等体积浸渍法制备负载型催化剂,称取一定量的硝酸镍溶于去离子水中,加入一定量的CaSiO3-650载体(三斜相),镍的负载量控制10%,于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气的中400oC焙烧,制得所需负载型催化剂前驱体NiO/CaSiO3-650。
(3)氢气浓度10%条件下,在800oC进行还原处理,该温度下载体CaSiO3-650(三斜相)发生相变转化为单斜相,同时NiO还原为活性金属,制备得到催化剂Ni/CaSiO3-650。
(4)作为对比,称取一定量的硝酸镍溶于去离子水中,镍的负载量在10%,加入一定量的单斜相CaSiO3载体,置于100oC烘箱中干燥,把干燥后的样品置于马弗炉中,在流动的空气中400oC焙烧,制得催化剂前驱体NiO/CaSiO3-800。氢气浓度10%条件下,还原温度为800oC,还原制备得到参比催化剂Ni/CaSiO3-800。
(5)催化剂的分析表征:
催化剂的TEM图(图4)可以证明:当经过了高温同步相变-还原处理过程后,催化剂金属颗粒变小,分散度增大。
(6)催化剂活性评价:
通过甲烷二氧化碳重整活性(图7)数据可得,用本方法制得的催化剂其甲烷二氧化碳重整活性明显优于传统负载型催化剂。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (3)

1.一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法;其特征在于,通过控制活性组分还原温度在载体相变温度范围内,在还原活性金属的同时,利用载体的相变诱导和结构重排作用,促使载体与活性金属发生强烈作用,诱导制备高分散金属催化剂,并把该催化剂用于甲烷二氧化碳重整反应。
2.根据权利要求1,催化剂所用载体为TiO2、ZrO2、Al2O3、CaSiO3等无机氧化物和含氧酸盐,所用活性金属为Ni、Co、Ru等过渡金属。
3.根据权利要求1,催化剂的制备条件为:金属的负载量在1%—30%,载体相变温度100oC—1500oC,还原气为氢气,浓度为1%—100%,还原温度100oC—1500oC。
CN201610691014.1A 2016-08-19 2016-08-19 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用 Pending CN106391021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610691014.1A CN106391021A (zh) 2016-08-19 2016-08-19 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610691014.1A CN106391021A (zh) 2016-08-19 2016-08-19 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN106391021A true CN106391021A (zh) 2017-02-15

Family

ID=58004412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610691014.1A Pending CN106391021A (zh) 2016-08-19 2016-08-19 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106391021A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380197A (zh) * 2017-11-23 2018-08-10 天津工业大学 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法
CN108579749A (zh) * 2018-04-08 2018-09-28 浙江工业大学 一种高缺陷单斜相纳米氧化锆负载镍金属催化剂及其制备和使用方法
CN110773193A (zh) * 2019-09-25 2020-02-11 万华化学集团股份有限公司 一种负载型气敏催化剂和制备方法及其在薄荷酮合成中的应用
CN111995882A (zh) * 2020-08-04 2020-11-27 内蒙古工业大学 一种多孔硅酸钙负载稀土离子的填料粉体及制备方法
CN112403470A (zh) * 2020-11-25 2021-02-26 榆林学院 一种用于甲烷二氧化碳重整制合成气的催化剂及其应用
CN116159559A (zh) * 2022-12-16 2023-05-26 中国科学院福建物质结构研究所 钌掺杂的二氧化钛纳米管催化剂的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234366A (zh) * 1999-05-14 1999-11-10 清华大学 用于二氧化碳重整甲烷制合成气的镍基催化剂及制备方法
CN102335609A (zh) * 2011-07-15 2012-02-01 华东师范大学 一种镍基催化剂及其制备方法和用途
CN104646000A (zh) * 2015-02-12 2015-05-27 天津大学 四方晶型的二氧化锆负载的CuCo合金催化剂及制备和应用
CN105688916A (zh) * 2016-02-23 2016-06-22 中国科学院上海高等研究院 一种高分散高负载高活性低温甲烷重整镍基催化剂及其应用
CN105709754A (zh) * 2016-01-22 2016-06-29 张川川 一种用于co2和ch4重整合成气的催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234366A (zh) * 1999-05-14 1999-11-10 清华大学 用于二氧化碳重整甲烷制合成气的镍基催化剂及制备方法
CN102335609A (zh) * 2011-07-15 2012-02-01 华东师范大学 一种镍基催化剂及其制备方法和用途
CN104646000A (zh) * 2015-02-12 2015-05-27 天津大学 四方晶型的二氧化锆负载的CuCo合金催化剂及制备和应用
CN105709754A (zh) * 2016-01-22 2016-06-29 张川川 一种用于co2和ch4重整合成气的催化剂及其制备方法
CN105688916A (zh) * 2016-02-23 2016-06-22 中国科学院上海高等研究院 一种高分散高负载高活性低温甲烷重整镍基催化剂及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KAZUHIRO TAKANABE等: ""Influence of reduction temperature on the catalytic behavior of Co-TiO2 catalysts for CH4_CO2 reforming and its relation with titania bulk crystal structure"", 《JOURNAL OF CATALYSIS》 *
L.VASYLECHKO等: "《Jahresbericht Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY:2002》", 31 December 2002, HAMBRUG *
MICHAEL D. RHODES等: ""The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu-ZrO2 catalysts Part I. Steady-state studies"", 《JOURNAL OF CATALYSIS》 *
YOSHIHISA SAKATA等: ""Preparation of a New Type of CaSiO3 with High Surface Area and Property as a Catalyst Support"", 《SCIENTIFIC BASES FOR THE PREPARATION OF HETEROGENEOUS CATALYSTS》 *
刘宗昌等: "《材料组织结构转变原理》", 31 December 2006, 冶金工业出版社 *
沈浚等: "《合成氨》", 31 December 2001, 化学工业出版社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380197A (zh) * 2017-11-23 2018-08-10 天津工业大学 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法
CN108380197B (zh) * 2017-11-23 2021-03-19 天津工业大学 一种基于微波活化的甲烷co2重整制合成气核壳催化剂及其制备方法
CN108579749A (zh) * 2018-04-08 2018-09-28 浙江工业大学 一种高缺陷单斜相纳米氧化锆负载镍金属催化剂及其制备和使用方法
CN110773193A (zh) * 2019-09-25 2020-02-11 万华化学集团股份有限公司 一种负载型气敏催化剂和制备方法及其在薄荷酮合成中的应用
CN110773193B (zh) * 2019-09-25 2022-08-02 万华化学集团股份有限公司 一种负载型气敏催化剂和制备方法及其在薄荷酮合成中的应用
CN111995882A (zh) * 2020-08-04 2020-11-27 内蒙古工业大学 一种多孔硅酸钙负载稀土离子的填料粉体及制备方法
CN112403470A (zh) * 2020-11-25 2021-02-26 榆林学院 一种用于甲烷二氧化碳重整制合成气的催化剂及其应用
CN116159559A (zh) * 2022-12-16 2023-05-26 中国科学院福建物质结构研究所 钌掺杂的二氧化钛纳米管催化剂的制备方法和应用

Similar Documents

Publication Publication Date Title
CN106391021A (zh) 一种用于甲烷二氧化碳重整高分散负载型催化剂的制备方法及应用
Han et al. Optimizing the Ni/Cu ratio in Ni–Cu nanoparticle catalysts for methane dry reforming
Han et al. Effect of calcination temperature on the performance of the Ni@ SiO2 catalyst in methane dry reforming
Reddy et al. Structural characterization of CeO2− MO2 (M= Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques
Carrero et al. Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
Lin et al. In situ calorimetric study: structural effects on adsorption and catalytic performances for CO oxidation over Ir-in-CeO2 and Ir-on-CeO2 catalysts
Ma et al. Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation
Shen et al. Integrated photothermal nanoreactors for efficient hydrogenation of CO2
TW201328776A (zh) 奈米金承載於氧化銅-二氧化鈰觸媒之製法及其在氫氣流中氧化一氧化碳之應用
Zhang et al. Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion
Huang et al. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation
Zerva et al. Ceria catalysts for water gas shift reaction: Influence of preparation method on their activity
Gai et al. Preparation of Ni-Co/SiO2 catalyst by ammonia reflux impregnation and its CH4-CO2 reforming reaction performance
Gao et al. Inspection over carbon deposition features of various nickel catalysts during simulated biogas dry reforming
Kaya et al. Effect of support materials on supported platinum catalyst prepared using a supercritical fluid deposition technique and their catalytic performance for hydrogen-rich gas production from lignocellulosic biomass
CN107321351A (zh) 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
Meshksar et al. Promoted nickel–cobalt bimetallic catalysts for biogas reforming
Khan et al. Catalytically active interfaces in titania nanorod-supported copper catalysts for CO oxidation
Huang et al. Effects of promoters on the structure, performance, and carbon deposition of Ni-Al2O3 catalysts for CO2–CH4 reforming
Sun et al. Yolk-shell structured Pt-CeO2@ Ni-SiO2 as an efficient catalyst for enhanced hydrogen production from ethanol steam reforming
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
Zou et al. Hydrogen production from ethanol over Ir/CeO2 catalyst: Effect of the calcination temperature
Jin et al. Resource utilization of waste CeO2-based deNOx composite catalysts for hydrogen production via steam reforming
De Rogatis et al. Design of Rh@ Ce0. 2Zr0. 8O2–Al2O3 nanocomposite for ethanol steam reforming
GUO et al. Effects of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170215

RJ01 Rejection of invention patent application after publication