CN106370651B - 一种银纳米探针与磁性纳米材料结合检测铜离子的方法 - Google Patents
一种银纳米探针与磁性纳米材料结合检测铜离子的方法 Download PDFInfo
- Publication number
- CN106370651B CN106370651B CN201610886520.6A CN201610886520A CN106370651B CN 106370651 B CN106370651 B CN 106370651B CN 201610886520 A CN201610886520 A CN 201610886520A CN 106370651 B CN106370651 B CN 106370651B
- Authority
- CN
- China
- Prior art keywords
- magnetic nano
- copper ion
- nano material
- silanization
- conjunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种银纳米探针与磁性纳米材料结合检测铜离子的方法,将处理过的含有铜离子的烟草样品液添加银纳米溶液,用磷酸盐缓冲溶液调节pH为5.0~8.0,搅拌,再加硅烷化四氧化三铁磁性纳米材料,涡旋混合,用外磁场收集产物,用洗脱剂洗脱磁性纳米材料,收集洗脱后的洗脱剂,采用分光光度计进行铜离子含量测定。本发明的方法检测灵敏度高,有机溶剂用量少,绿色环保,成本低廉,是一种新型的检测方法。
Description
技术领域
本发明属于分析化学领域,具体是涉及一种银纳米探针与磁性纳米材料结合检测铜离子的方法。
背景技术
铜是人类最早发现的金属之一,属于重金属。铜是人体所含必需微量元素之一。过高或过低浓度的铜都会引起动植物生理功能的紊乱。故而对铜含量的检测,具有重大的意义。
常用的痕量铜检测方法有原子吸收光谱仪、原子发射光谱仪器、离子色谱法、电感耦合等离子体质谱等。尽管这些方法准确、灵敏,但仪器价格都比较昂贵且耗时,需要复杂的样品前处理。比色传感器不需要复杂的、昂贵的仪器,能通过简单的目视比色或光度法测定金属离子。
本发明利用分散的银纳米为黄色,而聚集态的银纳米在一定介质中为另一种颜色,而聚集态的银纳米是由于铜离子的存在引起银钠米包裹2,2-硫代二乙醇酸聚集物的产生,而其他金属离子没有此现象,结果导致溶液从黄色变成棕红色,颜色深浅与铜离子的浓度成正比。用磁性纳米材料对其进行吸附收集,外加磁场,固液分离,洗脱剂洗脱产物,进行光度法测定铜含量。方法具有特异性强、灵敏度高,操作简单等特点。
发明内容
本发明的目的是提供一种银纳米探针与磁性纳米材料结合,采用分光光度计检测铜离子的方法。
银纳米探针与磁性纳米材料结合检测铜离子的方法是通过以下方案来实现的:
按每10mL处理过的含有铜离子的烟草样品液添加1~3mL银纳米溶液,用磷酸盐缓冲溶液调节pH为5.0~8.0,搅拌,形成棕红色银纳米与金属离子聚集物,再加入2~8mg硅烷化四氧化三铁磁性纳米材料,涡旋混合,用外磁场收集产物,用洗脱剂洗脱磁性纳米材料,收集洗脱后的洗脱剂,采用分光光度计进行铜离子含量测定。
银纳米的制备包括,0.01mol/L硝酸银1~2mL与0.1mol/L柠檬酸钠0.1~1mL混合,加入去离子水至10mL,室温搅拌20~40min后,加入0.05mol/L 2,2-硫代二乙醇酸1~2mL,继续搅拌5~30min,溶液颜色变成稳定的黄色而制得。所述硅烷化磁性纳米粒子按以下方法制备:
①Fe3O4磁性纳米粒子的合成:称取2.05g硫酸亚铁铵和1.41g三氯化铁溶解于50mL去离子水中,将混合液转移至250mL三口烧瓶中,氮气保护下机械搅拌并水浴加热,当反应液加热至80℃时,加入5mL氨水(28%,w/v),溶液颜色有棕黄色立即变为黑色,连续反应30min后自然冷却至室温,利用外加磁铁将其产物分离,分别依次用适量的乙醇和蒸馏水各洗涤3~5次,最终将其制备得到的Fe3O4在50℃下真空干燥12h,备用。
②硅烷化Fe3O4磁性纳米粒子的合成:100mg的Fe3O4分散在80mL乙醇和20mL水的混合液中,超声搅拌30min使其分散均匀,将混合液转移至250mL三口烧瓶中,用氨水调节pH至9后加入0.2mL正硅酸四乙酯(TEOS),通入氮气保护在室温下机械搅拌6h,产物利用外加磁铁收集后依次用适量的乙醇和蒸馏水各洗涤3~5次至中性,然后将制得硅烷化Fe3O4于50℃下真空干燥12h,备用。
所述的烟草样品按常规微波消解方法处理。
所述的洗脱剂为盐酸、硝酸、硫酸中的一种,浓度为2~4mol/L,用量为2~3mL。
所述的银纳米与铜离子形成的聚集物的检测波长为570nm。
所述搅拌时间为10~20min,涡旋时间为1~5min。
铜离子的存在引起银钠米包裹2,2-硫代二乙醇酸聚集物的产生,而其他金属离子没有此现象,结果导致溶液从黄色变成棕红色,颜色深浅与铜离子的浓度成正比。用磁性纳米材料对其进行吸附收集,外加磁场,固液分离,洗脱剂洗脱产物,进行光度法测定铜含量。所采用的2,2-硫代二乙醇酸既是银钠米形成的还原剂,又是铜离子的络合剂,磁性纳米材料对银钠米包裹2,2-硫代二乙醇酸聚集物有很强的吸附能力,经吸附分离的聚集物能达到很高的富集倍数,检测限较低,特异性强。本发明的方法检测灵敏度高,有机溶剂用量少,绿色环保,与其它传统的检测方法相比较,是一种新型的检测方法。
相对于现有技术,本发明具有以下显著优点:
1.本发明由于铜离子的存在引起银钠米包裹2,2-硫代二乙醇酸聚集物的产生,而其他金属离子没有此现象,结果导致溶液从黄色变成棕红色进行铜离子测定,检测限低,方法特异性强。
2.利用硅烷化磁性纳米粒子对银钠米聚集物进行分离、富集,提高了检测灵敏度,同时消除了干扰。
3.结合分光光度法进行测定,相对于现有技术中的原子吸收法等方法,操作简单,成本低廉。
4、本发明方法有机溶剂用量少,绿色环保,与其它传统的检测方法相比较,是一种新型的检测方法。
具体实施方式
下面结合实施例对本发明作进一步地说明,但本发明的保护范围并不限于此。
实施例1:烤烟烟叶中铜含量的测定
(1)银纳米的制备:0.01mol/L硝酸银1mL与0.1mol/L柠檬酸钠0.1mL混合,加入去离子水至10mL,室温搅拌30min后,加入0.05mol/L 2,2-硫代二乙醇酸1mL,继续搅拌5min,溶液颜色变成稳定的黄色而制得。
(2)硅烷化磁性纳米粒子按以下方法制备:
①Fe3O4磁性纳米粒子的合成:称取2.05g硫酸亚铁铵和1.41g三氯化铁溶解于50mL去离子水中,将混合液转移至250mL三口烧瓶中,氮气保护下机械搅拌并水浴加热,当反应液加热至80℃时,加入5mL氨水(28%,w/v),溶液颜色有棕黄色立即变为黑色,连续反应30min后自然冷却至室温,利用外加磁铁将其产物分离,分别依次用适量的乙醇和蒸馏水各洗涤3~5次,最终将其制备得到的Fe3O4在50℃下真空干燥12h,备用。
②硅烷化Fe3O4磁性纳米粒子的合成:100mg Fe3O4分散在80mL乙醇和20mL水的混合液中,超声搅拌30min使其分散均匀,将混合液转移至250mL三口烧瓶中,用氨水调节pH至9后加入0.2mL正硅酸四乙酯(TEOS),通入氮气保护在室温下机械搅拌6h,产物利用外加磁铁收集后依次用适量的乙醇和蒸馏水各洗涤3~5次至中性,然后将制得硅烷化Fe3O4于50℃下真空干燥12h,备用。
(3)样品制备:烟叶粉末过40目筛,40℃下烘干24h,准确称取0.2g(准确至0.0001g),置于消解罐中,加入2mL 50%HNO3及1mL 47%H2O2,放入消解仪,在100℃、130℃和160℃各保温5min,然后升温到190℃再保温10min。消解结束后,待温度低于60℃时取出消解罐,然后将样品转移到50mL容量瓶中,用超纯水洗涤消解罐几次,洗液转移至容量瓶中,定容至刻度,制得样品液。用同样方法制备样品空白。
(4)样品测定:取步骤(3)制备的10mL烟叶样品液添加1mL步骤(1)制备的银纳米溶液,用磷酸盐缓冲溶液调节pH为5.0,搅拌10min,形成棕红色银纳米与金属离子聚集物,再加入步骤(2)制备的硅烷化四氧化三铁磁性纳米材料2mg,涡旋混合1min,用外磁场收集产物,用2mol/L 3mL硝酸作洗脱剂洗脱磁性纳米材料,收集洗脱后的洗脱剂,在570nm波长处光度法测得铜离子含量为10.19μg/g。
实施例2:白肋烟烟叶中铜含量的测定
(1)银纳米的制备:0.01mol/L硝酸银1.5mL与0.1mol/L柠檬酸钠0.5mL混合,加入去离子水至10mL,室温搅拌20min后,加入0.05mol/L 2,2-硫代二乙醇酸1.5mL,继续搅拌15min,溶液颜色变成稳定的黄色而制得。
(2)硅烷化磁性纳米粒子按以下方法制备,同实施例1。
(3)样品制备,同实施例1。
(4)样品测定:取步骤(3)制备的10mL烟叶样品液添加3mL步骤(1)制备的银纳米溶液,用磷酸盐缓冲溶液调节pH为8.0,搅拌30min,形成棕红色银纳米与金属离子聚集物,再加入步骤(2)制备的硅烷化四氧化三铁磁性纳米材料8mg,涡旋混合5min,用外磁场收集产物,用3mol/L 3mL硫酸作洗脱剂洗脱磁性纳米材料,收集洗脱后的洗脱剂,在570nm波长处光度法测得铜离子含量为24.26μg/g。
实施例3:鲜烤烟烟叶中铜含量的测定
(1)银纳米的制备:0.01mol/L硝酸银2mL与0.1mol/L柠檬酸钠0.5mL混合,加入去离子水至10mL,室温搅拌10min后,加入0.05mol/L 2,2-硫代二乙醇酸2mL,继续搅拌30min,溶液颜色变成稳定的黄色而制得。
(2)硅烷化磁性纳米粒子按以下方法制备,同实施例1。
(3)样品制备,鲜烤烟烟叶样品,先在80℃下干燥1h,再在60℃下烘干。其他操作同实施例1。
(4)样品测定:取步骤(3)制备的10mL烟叶样品液添加2.5mL步骤(1)制备的银纳米溶液,用磷酸盐缓冲溶液调节pH为6.0,搅拌15min,形成棕红色银纳米与金属离子聚集物,再加入步骤(2)制备的硅烷化四氧化三铁磁性纳米材料6mg,涡旋混合4min,用外磁场收集产物,用4mol/L 2mL盐酸作洗脱剂洗脱磁性纳米材料,收集洗脱后的洗脱剂,在570nm波长处光度法测得铜离子含量为8.03μg/g。
将实施例1、2、3按照火焰原子吸收法(AES)与电感耦合等离子体质谱(ICP-MS)进行比对,结果见表1。
表1烟样中铜含量测定结果
由表1可见,三种方法的相对标准偏差在1.9%~2.8%之间,无显著差异,证实了本发明方法的可行性,但本发明方法具有操作简单,不需要复杂的仪器设备,成本低廉等的优势。
Claims (4)
1.一种银纳米探针与磁性纳米材料结合检测铜离子的方法,其特征在于:按每10mL处理过的含有铜离子的烟草样品液添加1~3mL银纳米溶液,用磷酸盐缓冲溶液调节pH为5.0~8.0,搅拌,形成棕红色银纳米与金属离子聚集物,再加入硅烷化四氧化三铁磁性纳米材料2~8mg,涡旋混合,用外磁场收集产物,用洗脱剂洗脱磁性纳米材料,收集洗脱后的洗脱剂,采用分光光度计进行铜离子含量测定;
其中,银纳米溶液的制备包括,0.01mol/L硝酸银1~2mL与0.1mol/L柠檬酸钠0.1~1mL混合,加入去离子水至10mL,室温搅拌20~40min后,加入0.05mol/L 2,2-硫代二乙醇酸1~2mL,继续搅拌5~30min,溶液颜色变成稳定的黄色而制得;
所述硅烷化四氧化三铁磁性纳米粒子按以下方法制备:
①Fe3O4磁性纳米粒子的合成:称取2.05g硫酸亚铁铵和1.41g三氯化铁溶解于50mL去离子水中,将混合液转移至250mL三口烧瓶中,氮气保护下机械搅拌并水浴加热,当反应液加热至80℃时,加入5mL质量浓度为28%的氨水,溶液颜色有棕黄色立即变为黑色,连续反应30min后自然冷却至室温,利用外加磁铁将其产物分离,分别依次用适量的乙醇和蒸馏水各洗涤3~5次,最终将其制备得到的Fe3O4在50℃下真空干燥12h,备用;
②硅烷化Fe3O4磁性纳米粒子的合成:100mg的Fe3O4分散在80mL乙醇和20mL水的混合液中,超声搅拌30min使其分散均匀,将混合液转移至250mL三口烧瓶中,用氨水调节pH至9后加入0.2mL正硅酸四乙酯,通入氮气保护在室温下机械搅拌6h,产物利用外加磁铁收集后依次用适量的乙醇和蒸馏水各洗涤3~5次至中性,然后将制得硅烷化Fe3O4于50℃下真空干燥12h,备用;
银纳米与铜离子形成的聚集物的检测波长为570nm。
2.根据权利要求1所述一种银纳米探针与磁性纳米材料结合检测铜离子的方法,其特征在于,所述的烟草样品按常规微波消解方法处理。
3.根据权利要求1所述一种银纳米探针与磁性纳米材料结合检测铜离子的方法,其特征在于,所述的洗脱剂为盐酸、硝酸、硫酸中的一种,浓度为2~4mol/L用量为2~3mL。
4.根据权利要求1所述一种银纳米探针与磁性纳米材料结合检测铜离子的方法,其特征在于,加入磷酸盐缓冲溶液调节pH后的搅拌时间为10~20min,加入硅烷化四氧化三铁磁性纳米材料后的涡旋时间为1~5min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610886520.6A CN106370651B (zh) | 2016-10-11 | 2016-10-11 | 一种银纳米探针与磁性纳米材料结合检测铜离子的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610886520.6A CN106370651B (zh) | 2016-10-11 | 2016-10-11 | 一种银纳米探针与磁性纳米材料结合检测铜离子的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106370651A CN106370651A (zh) | 2017-02-01 |
CN106370651B true CN106370651B (zh) | 2019-06-14 |
Family
ID=57896336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610886520.6A Active CN106370651B (zh) | 2016-10-11 | 2016-10-11 | 一种银纳米探针与磁性纳米材料结合检测铜离子的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106370651B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107525790B (zh) * | 2017-06-28 | 2020-07-31 | 昆明理工大学 | 基于磁固相微萃取-碳量子点荧光猝灭检测叶酸的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103223322B (zh) * | 2013-05-13 | 2015-02-04 | 洛阳师范学院 | 一种纳米银和巯基共修饰磁性微球的制备方法 |
CN104568787B (zh) * | 2014-12-18 | 2017-02-01 | 昆明理工大学 | 一种纳米银与磁性纳米材料结合检测金属离子的方法 |
CN105056890B (zh) * | 2015-07-14 | 2018-01-02 | 宋传承 | 一种磁性纳米盘以及利用其进行重金属污水处理的方法 |
CN105738341A (zh) * | 2016-02-22 | 2016-07-06 | 中国科学院生态环境研究中心 | 一种重金属汞离子检测方法 |
-
2016
- 2016-10-11 CN CN201610886520.6A patent/CN106370651B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN106370651A (zh) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples | |
Adlnasab et al. | A preconcentration procedure for determination of ultra-trace mercury (II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry | |
Jiang et al. | Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles | |
CN105601915B (zh) | 一种磁性石墨烯聚苯胺纳米复合材料及其制备方法 | |
Banaei et al. | Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag (I) from aqueous samples | |
CN104475030A (zh) | 一种磁性金属有机骨架材料的制备方法及其应用 | |
CN106706588B (zh) | 一种精准检测环境水样中痕量铀的多相光催化共振荧光法 | |
CN110385116A (zh) | 一种磁性纳米复合材料及其制备和应用 | |
CN104777110A (zh) | 一种痕量镉和铅的检测方法 | |
Luo et al. | Size characterization of silver nanoparticles after separation from silver ions in environmental water using magnetic reduced graphene oxide | |
Tian et al. | A fluorescent sensor base on magnetic silica nanoparticles for Cu2+ and pyrophosphate mimicking IMPLICATION logic gate | |
CN101963594A (zh) | 一种固体环境样品中微量锑的分析方法 | |
Wang et al. | Application of magnetic nanoparticles coated with sodium dodecyl sulfate and modified with 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol as a novel adsorbent for dispersive-magnetic solid-phase extraction and determination of palladium in soil samples | |
CN114836045B (zh) | 一种Mg/Zn-MOF-74@Fe3O4磁性复合材料及在富集黄曲霉毒素的应用 | |
CN106370651B (zh) | 一种银纳米探针与磁性纳米材料结合检测铜离子的方法 | |
Hua et al. | Novel magnetic ion-imprinted polymer extraction of trace Ce (III) in environmental and mineral samples and determination by ICP-MS | |
Rezabeyk et al. | Selective extraction and determination of beryllium in real samples using amino-5, 8-dihydroxy-1, 4-naphthoquinone functionalized magnetic MIL-53 as a novel nanoadsorbent | |
Karami et al. | A simple and fast method based on functionalized magnetic nanoparticles for the determination of Ag (i), Au (iii) and Pd (ii) in mine stone, road dust and water samples | |
CN104568787B (zh) | 一种纳米银与磁性纳米材料结合检测金属离子的方法 | |
CN106404769A (zh) | 重金属砷的快速检测装置 | |
CN101811032B (zh) | 一种Cd(Ⅱ)印迹磁性材料的制备及应用方法 | |
Safaei et al. | Synthesis and characterization of binuclear [ONXO]-type amine-bis (phenolate) copper (II) complexes | |
Cao et al. | Selenium speciation in radix puerariae using ultrasonic assisted extraction combined with reversed phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry after magnetic solid-phase extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles | |
CN107224753B (zh) | 一种利用磁性固相萃取吸附材料富集检测喜树碱的方法 | |
CN108872511A (zh) | 利用磁性纳米材料和纳米银检测废水中金属离子的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |