CN106365142A - 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法 - Google Patents

一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法 Download PDF

Info

Publication number
CN106365142A
CN106365142A CN201610817376.0A CN201610817376A CN106365142A CN 106365142 A CN106365142 A CN 106365142A CN 201610817376 A CN201610817376 A CN 201610817376A CN 106365142 A CN106365142 A CN 106365142A
Authority
CN
China
Prior art keywords
graphene
graphene oxide
resorcinol
carbon aerogels
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610817376.0A
Other languages
English (en)
Other versions
CN106365142B (zh
Inventor
孙巍
杜艾
刘银丹
周斌
高国华
吴广明
倪星元
张志华
沈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201610817376.0A priority Critical patent/CN106365142B/zh
Publication of CN106365142A publication Critical patent/CN106365142A/zh
Application granted granted Critical
Publication of CN106365142B publication Critical patent/CN106365142B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种基于化学交联的高比面积高电导率石墨烯复合碳气凝胶的制备方法。在间苯二酚和甲醛的前驱体溶液中加入氧化石墨烯,调节pH值,经溶胶‑凝胶反应得到化学交联的氧化石墨烯/RF有机湿凝胶,通过酸洗、溶剂替换和二氧化碳超临界干燥得到氧化石墨烯/RF有机气凝胶;通过高温热解还原处理制备石墨烯复合碳气凝胶。通过在间苯二酚和甲醛的前驱体溶液中,加入氧化石墨烯的分散液,调节pH值,保证掺入的石墨烯的均匀性和交联性,显著增强了三维纳米网络的骨架强度和极大地改善了低密度碳气凝胶在碳化过程中发生的严重的收缩坍塌现象。本发明制备的石墨烯复合碳气凝胶具有极低的表观密度、超高的比表面积、优良的电导率和热导率,使其在应用过程中更容易加工成多种形式的成型品。

Description

一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝 胶的制备方法
技术领域
本发明属于纳米多孔-碳气凝胶技术领域,具体涉及一种基于化学交联的高比表面积电导率石墨烯复合碳气凝胶的制备方法。
背景技术
碳气凝胶是一种新型轻质纳米多孔无定形碳素材料,因其具有高比表面积、高孔隙率、高电导率、微结构可调等优点,得到了广泛关注和应用。高孔隙率、高比表面积及多级的孔道结构使得碳气凝胶表现出强的吸附能力,在催化剂载体、吸附剂等方面具有广泛的应用前景;高电导率、微结构可调、高比表面积等优点可作为储能器件尤其是锂离子电池或超电容器的理想点击材料。这些应用有利于解决当今社会的能源及环境问题,使得碳气凝胶自发现以来就成为研究热点。
目前,碳气凝胶的制备方法通常通过碳化处理酚醛类有机气凝胶得到的,一般采用间苯二酚和甲醛为原料,以碳酸钠为催化剂,经过加成缩聚得到间苯二酚-甲醛(RF)气凝胶,结合干燥和碳化工艺后,得到碳气凝胶,并通过再次活化方法制备高比表面积(>2000m2·g-1)和高孔隙率碳气凝胶。但该制作过程工艺复杂,需要两次高温处理,操作风险大;此外,由于低密度有机RF气凝胶(<50 mg·cm-3)骨架结构纤细,力学性能差,在高温碳化过程中会发生严重的收缩坍塌情况,导致碳化后气凝胶密度大幅增加,因此很难获得同时具备低密度(<50 mg·cm-3)和高比表面积(>2000 m2·g-1)特性的碳气凝胶。本发明通过选用纳米填充材料来增强低密度RF气凝胶的纳米骨架强度,制备过程中通过特定配比来对气凝胶结构进行设计,并通过一次碳化的方法制备得到一种具有新型多级孔结构的低密度高比表面积碳气凝胶。
石墨烯是一种由碳原子以sp2杂化排列、紧密堆积而成的具有蜂窝晶格结构的二维纳米碳材料,因其具有力学性能突出、比表面积大、载流子迁移速率大及导电率高等物理特性,在过去几年中,已经成为了材料科学领域的一个研究热点。三维石墨烯或者石墨烯基气凝胶材料主要是将二维石墨烯材料通过自组装或与其他材料组装为三维网络结构来制备,是一种具有多种优异性能的多孔材料。目前,石墨烯主要是通过还原氧化石墨烯得到。氧化石墨烯的纳米层片上还有多种含氧官能团(例如羟基、羰基、羧基等)不仅能够增加片层的亲水性,实现其在水中稳定均匀地分散;还可以作为反应的活性位点,参与很多化学反应。故本发明利用氧化石墨烯纳米片上的含氧官能团,将氧化石墨烯作为交联剂,结合有机RF气凝胶微结构调控,通过溶胶-凝胶反应制备氧化石墨烯/RF有机气凝胶,最终通过一步碳化,得到低密度高比表面积石墨烯复合碳气凝胶。
发明内容
本发明目的在于提供一种制备基于化学交联的高比表面积高电导率石墨复合碳气凝胶胶的制备方法。
本发明提出的一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其中:采用氧化石墨烯交联间苯二酚-甲醛(RF)得到石墨烯复合碳气凝胶,所述石墨烯复合碳气凝胶具有共价键交联形成的分级孔结构,密度为70.5 mg·cm-3 ~ 23.5mg·cm-3,比表面积为2563m2·g-1 ~ 3214 m2·g-1,具有优良的电学、热学性能;具体步骤如下:
(1)采用超声振荡将氧化石墨烯分散于去离子水中,得到分散稳定的氧化石墨烯水溶液;控制氧化石墨烯水溶液的质量浓度为5~10 mg∙mL-1
(2)将间苯二酚、甲醛溶于步骤(1)得到的氧化石墨烯水溶液中,加入催化剂在室温条件下搅拌至完全溶解,得到混合溶液,缓慢滴加硝酸溶液,调节混合溶液的pH值为5.4~5.6,在室温条件下继续搅拌2小时,得到前驱体溶液;其中:间苯二酚与甲醛的摩尔比为1:2,氧化石墨烯与间苯二酚和甲醛总质量比为5:100~50:100,所述间苯二酚和催化剂的摩尔比为50:1;
(3)将步骤(2)得到的前驱体溶液置于85℃恒温箱中进行溶胶-凝胶反应5~7天,制备得到氧化石墨烯/RF有机湿凝胶;
(4)将步骤(3)得到的氧化石墨烯/RF有机湿凝胶在水浴条件下,加入到乙醇和乙酸组成的混合溶液中进行酸洗老化,再用无水乙醇进行溶剂替换,干燥制备得到氧化石墨烯/RF有机气凝胶,记作GO-RF-X;其中:乙醇:醋酸的体积比为7:3;
(5)将步骤(4)得到的氧化石墨烯/RF有机气凝胶进行高温碳化,得到石墨烯复合碳气凝胶,记作GNS/CAs-X。
本发明中,步骤(1)中,控制前驱体溶液中间苯二酚和甲醛的(间苯二酚+甲醛)总含量为2 wt%。
本发明中,步骤(2)中,所述催化剂为Na2CO3
本发明中,步骤(4)中,将该有机湿凝胶放入乙醇和乙酸组成的混合溶液中在40-45℃水浴中酸洗老化,干燥采用CO2超临界干燥。
本发明中,步骤(5)中,所述高温碳化是将氧化石墨烯/RF有机气凝胶置于管式炉中,在氮气或氩气氛围下,在900~1100℃的碳化温度下保温1~3小时。
利用本发明制备方法得到的石墨烯复合碳气凝胶作为高温隔热保温材料、吸附材料、超级电容器或锂离子电池的电极材料的应用。
本发明中,所述的氧化石墨烯是由Hummers方法制备得到。
本发明的有益效果在于:本发明基于溶胶-凝胶方法,将氧化石墨烯作为增强凝胶骨架的力学改性材料和交联剂,结合有机RF气凝胶微结构调控,控制前驱体溶液中反应物的量和pH值,制备了三维网络骨架增强的低密度氧化石墨烯/RF有机气凝胶,显著抑制了碳化中气凝胶骨架坍塌和收缩,得到低密度高比表面积石墨烯复合碳气凝胶。打破了传统高比表面积碳气凝胶的活化工艺过程,降低了成本,简化了工艺。制备的石墨烯复合碳气凝胶密度为70.5 mg·cm-3 ~ 23.5 mg·cm-3,比表面积为2563m2·g-1 ~ 3214 m2·g-1,同时具有优良的电学(电导率高达2.25 S·cm-1)和热学性能,在高温隔热保温材料、吸附材料及超级电容器或锂离子电池的电极材料等领域具有广阔的应用前景。
附图说明
图1是本发明中氧化石墨烯、石墨烯、石墨烯复合碳气凝胶的拉曼光谱图。
图2是本发明中不同GO含量的石墨烯复合碳气凝胶的扫描电镜图。
图3是本发明中不同GO含量的石墨烯复合碳气凝胶碳化前后的N2吸脱附曲线和对应的孔径分布曲线。
图4是本发明中石墨烯复合碳气凝胶电导率与GO含量的关系。
具体实施方式
下面结合具体实施案例,进一步阐明本发明,应记住,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
取4.32mL的所超声分散好的5mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,并用去离子水定容至20mL,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-5.
获得样品的密度为70.5 mg·cm-3,BET比表面积为2563m2·g-1,其的形貌图如图2(a)所示,图3(a)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。
实施例2
取8.11mL的所超声分散好的8mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,并用去离子水定容至20mL,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-15.
获得样品的密度为49.2 mg·cm-3,BET比表面积为2988m2·g-1,室温电导率1.54Ω-1·cm-1为其的形貌图如图2(b)所示,图3(b)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。
实施例3
取10.82mL的所超声分散好的10mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,并用去离子水定容至20mL,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-25.
获得样品的密度为23.5 mg·cm-3,BET比表面积为3214m2·g-1,室温电导率2.25Ω-1·cm-1为其的形貌图如图2(c)所示,图3(c)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。
实施例4
取21.64mL的所超声分散好的10mg·mL-1的氧化石墨烯水溶液,将间苯二酚与甲醛按摩尔比为1:2与其混合,再加入1.02mL的0.05mol·mL-1碳酸钠水溶液(间苯二酚与碳酸钠的摩尔比为50:1)作为催化剂,在室温条件下搅拌至完全溶解。然后,缓慢滴加硝酸将混合溶液的pH值调节到5.4~5.6,继续搅拌2h得到前驱体溶液。将得到的前驱体溶液封装于玻璃瓶中,置于85℃恒温箱中溶胶-凝胶反应5~7天得到氧化石墨烯/RF有机湿凝胶,将该有机湿凝胶放入乙醇、醋酸(体积比7:3)溶液中在40-45℃水浴中酸洗老化3天,再用无水乙醇进行溶剂替换6次,最后将湿凝胶进行CO2超临界干燥得到氧化石墨烯/RF有机气凝胶。将氧化石墨烯/RF有机气凝胶置于管式炉中在氮气气氛下1000℃碳化3小时得到石墨烯复合碳气凝胶,记作GNS/CAs-50.
获得样品的密度为37.5 mg·cm-3,BET比表面积为3025m2·g-1,室温电导率1.65Ω-1·cm-1为其的形貌图如图2(d)所示,图3(d)是其对应的碳化前后氮气吸脱附曲线和孔径分布图。
由石墨烯复合碳气凝胶的拉曼和性能测试结果分析可知,在溶胶-凝胶反应中,氧化石墨烯与间苯二酚-甲醛纳米团簇发生了交联反应,增强了气凝胶三维网络骨架,在高温碳化过程中,抑制了碳气凝的孔洞坍塌和体积收缩,同时氧化石墨烯被还原为石墨烯与碳气凝胶骨架颗粒之间形成了以碳-碳化学键为连接的三维网络结构。制备的石墨烯复合碳气凝胶具有较低的密度,形貌优良,其孔径分布主要集中在0.7nm和大于100nm之间,是典型的微孔-大孔型材料。当氧化石墨与间苯二酚、甲醛总质量比分别为25:100和50:100时,其密度分别为23.5 mg·cm-3和37.5 mg·cm-3,其比表面积分别为3214m2·g-1和3025m2·g-1,得到低密度高比表面积碳气凝胶,同时具有优良的电学(电导率高达2.25 S·cm-1)和热学性能。

Claims (6)

1.一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其特征在于:采用氧化石墨烯交联间苯二酚-甲醛(RF)得到石墨烯复合碳气凝胶,所述石墨烯复合碳气凝胶具有共价键交联形成的分级孔结构,密度为70.5 mg·cm-3 ~ 23.5 mg·cm-3,比表面积为2563m2·g-1 ~ 3214 m2·g-1,具有优良的电学、热学性能;具体步骤如下:
(1)采用超声振荡将氧化石墨烯分散于去离子水中,得到分散稳定的氧化石墨烯水溶液;控制氧化石墨烯水溶液的质量浓度为5~10 mg·mL-1
(2)将间苯二酚、甲醛溶于步骤(1)得到的氧化石墨烯水溶液中,加入催化剂在室温条件下搅拌至完全溶解,得到混合溶液,缓慢滴加硝酸溶液,调节混合溶液的pH值为5.4~5.6,在室温条件下继续搅拌2小时,得到前驱体溶液;其中:间苯二酚与甲醛的摩尔比为1:2,氧化石墨烯与间苯二酚和甲醛总质量比为5:100~50:100,所述间苯二酚和催化剂的摩尔比为50:1;
(3)将步骤(2)得到的前驱体溶液置于85℃恒温箱中进行溶胶-凝胶反应5~7天,制备得到氧化石墨烯/RF有机湿凝胶;
(4)将步骤(3)得到的氧化石墨烯/RF有机湿凝胶在水浴条件下,加入到乙醇和乙酸组成的混合溶液中进行酸洗老化,再用无水乙醇进行溶剂替换,干燥制备得到氧化石墨烯/RF有机气凝胶,记作GO-RF-X;其中:乙醇:醋酸的体积比为7:3;
(5)将步骤(4)得到的氧化石墨烯/RF有机气凝胶进行高温碳化,得到石墨烯复合碳气凝胶,记作GNS/CAs-X。
2.根据权利要求1所述的基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其特征在于:步骤(2)中,控制前驱体溶液中间苯二酚和甲醛的总含量为2 wt%。
3.根据权利要求1所述的基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其特征在于:步骤(2)中所述催化剂为Na2CO3
4.根据权利要求1所述的基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其特征在于:步骤(4)中,将该有机湿凝胶放入乙醇和乙酸组成的混合溶液中在40-45℃水浴中酸洗老化,干燥采用CO2超临界干燥。
5.根据权利要求1所述的基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法,其特征在于:步骤(5)中,所述高温碳化是将氧化石墨烯/RF有机气凝胶置于管式炉中,在氮气或氩气氛围下,在900~1100℃的碳化温度下保温1~3小时。
6.一种如权利要求1所述制备方法得到的石墨烯复合碳气凝胶作为高温隔热保温材料、吸附材料、超级电容器或锂离子电池的电极材料的应用。
CN201610817376.0A 2016-09-13 2016-09-13 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法 Expired - Fee Related CN106365142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610817376.0A CN106365142B (zh) 2016-09-13 2016-09-13 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610817376.0A CN106365142B (zh) 2016-09-13 2016-09-13 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN106365142A true CN106365142A (zh) 2017-02-01
CN106365142B CN106365142B (zh) 2019-01-25

Family

ID=57896736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610817376.0A Expired - Fee Related CN106365142B (zh) 2016-09-13 2016-09-13 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN106365142B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020071A (zh) * 2017-04-21 2017-08-08 山东省科学院新材料研究所 一种超疏水复合碳气凝胶吸油材料及其制备方法
CN108440899A (zh) * 2018-03-26 2018-08-24 中国科学技术大学 具有纳米纤维网络结构的酚醛树脂气凝胶和碳气凝胶材料及其制备方法
CN109713319A (zh) * 2018-12-27 2019-05-03 哈尔滨工业大学 碳气凝胶作为阴极吸水层在微型直接甲醇燃料电池膜电极中的应用
CN109734072A (zh) * 2019-03-11 2019-05-10 中国科学院合肥物质科学研究院 一种酚醛基碳气凝胶材料及其制备方法
CN109786120A (zh) * 2019-01-25 2019-05-21 内蒙古科技大学 利用离子液体制备金属/碳气凝胶复合纳米材料的方法
CN110136985A (zh) * 2019-04-22 2019-08-16 杭州电子科技大学 锰掺杂炭凝胶@(PANI/GO)n//NGA@PEDOT非对称电容器的制备方法
CN110247046A (zh) * 2019-07-19 2019-09-17 深圳职业技术学院 一种锂离子电池CA/纳米Si/石墨烯复合负极材料的制备方法
CN110289182A (zh) * 2019-04-22 2019-09-27 杭州电子科技大学 锰掺杂炭凝胶@(PANI/GO)n//NGA@PEDOT电极材料的制备方法
CN110628170A (zh) * 2019-10-23 2019-12-31 航天特种材料及工艺技术研究所 一种基于硅烷改性的氧化石墨烯-酚醛气凝胶材料及其制备方法
CN111900350A (zh) * 2020-07-14 2020-11-06 广东工业大学 一种多孔碳-石墨烯复合材料及其制备方法
CN112687476A (zh) * 2019-10-18 2021-04-20 昆山科技大学 氧化石墨烯碳气凝胶制备与应用
CN113277864A (zh) * 2020-02-20 2021-08-20 中国科学院化学研究所 一种碳质气凝胶的制备方法及气凝胶
CN114380285A (zh) * 2022-02-17 2022-04-22 湘潭大学 一种一、二维生物碳协同增强的碳气凝胶材料及其制备方法和应用
CN114479659A (zh) * 2022-01-05 2022-05-13 上海卫星装备研究所 一种碳基超黑消杂光纳米复合涂层及其制备方法
CN115155470A (zh) * 2022-08-16 2022-10-11 南京信息工程大学 一种有序碳-聚硅氧烷复合气凝胶及其制备方法、应用
EP4086225A1 (en) * 2021-05-04 2022-11-09 Consejo Superior de Investigaciones Científicas (CSIC) 3d graphene aerogels
CN115490524A (zh) * 2022-05-27 2022-12-20 南京工业大学 一种增强的耐高温硅基陶瓷气凝胶的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774824A (zh) * 2012-06-11 2012-11-14 北京化工大学 一种常压干燥制备石墨烯交联型有机气凝胶及炭气凝胶的方法
CN103073891A (zh) * 2013-01-15 2013-05-01 华东理工大学 一种具有高导电率的柔性导电复合材料的制备方法
CN103274384A (zh) * 2013-04-24 2013-09-04 中科院广州化学有限公司 一种氧化石墨烯增强碳气凝胶材料及其制备方法和应用
CN104056582A (zh) * 2013-03-18 2014-09-24 北京化工大学 一种氧化石墨烯/有机气凝胶复合材料及其制备方法
CN105271193A (zh) * 2015-10-20 2016-01-27 中国工程物理研究院激光聚变研究中心 一种超低密度、超高比表面积弹性导电气凝胶的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774824A (zh) * 2012-06-11 2012-11-14 北京化工大学 一种常压干燥制备石墨烯交联型有机气凝胶及炭气凝胶的方法
CN103073891A (zh) * 2013-01-15 2013-05-01 华东理工大学 一种具有高导电率的柔性导电复合材料的制备方法
CN104056582A (zh) * 2013-03-18 2014-09-24 北京化工大学 一种氧化石墨烯/有机气凝胶复合材料及其制备方法
CN103274384A (zh) * 2013-04-24 2013-09-04 中科院广州化学有限公司 一种氧化石墨烯增强碳气凝胶材料及其制备方法和应用
CN105271193A (zh) * 2015-10-20 2016-01-27 中国工程物理研究院激光聚变研究中心 一种超低密度、超高比表面积弹性导电气凝胶的制备方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107020071B (zh) * 2017-04-21 2019-09-06 山东省科学院新材料研究所 一种超疏水复合碳气凝胶吸油材料及其制备方法
CN107020071A (zh) * 2017-04-21 2017-08-08 山东省科学院新材料研究所 一种超疏水复合碳气凝胶吸油材料及其制备方法
CN108440899A (zh) * 2018-03-26 2018-08-24 中国科学技术大学 具有纳米纤维网络结构的酚醛树脂气凝胶和碳气凝胶材料及其制备方法
CN109713319A (zh) * 2018-12-27 2019-05-03 哈尔滨工业大学 碳气凝胶作为阴极吸水层在微型直接甲醇燃料电池膜电极中的应用
CN109786120A (zh) * 2019-01-25 2019-05-21 内蒙古科技大学 利用离子液体制备金属/碳气凝胶复合纳米材料的方法
CN109734072A (zh) * 2019-03-11 2019-05-10 中国科学院合肥物质科学研究院 一种酚醛基碳气凝胶材料及其制备方法
CN109734072B (zh) * 2019-03-11 2022-05-03 中国科学院合肥物质科学研究院 一种酚醛基碳气凝胶材料及其制备方法
CN110136985A (zh) * 2019-04-22 2019-08-16 杭州电子科技大学 锰掺杂炭凝胶@(PANI/GO)n//NGA@PEDOT非对称电容器的制备方法
CN110289182A (zh) * 2019-04-22 2019-09-27 杭州电子科技大学 锰掺杂炭凝胶@(PANI/GO)n//NGA@PEDOT电极材料的制备方法
CN110247046A (zh) * 2019-07-19 2019-09-17 深圳职业技术学院 一种锂离子电池CA/纳米Si/石墨烯复合负极材料的制备方法
CN112687476A (zh) * 2019-10-18 2021-04-20 昆山科技大学 氧化石墨烯碳气凝胶制备与应用
CN110628170A (zh) * 2019-10-23 2019-12-31 航天特种材料及工艺技术研究所 一种基于硅烷改性的氧化石墨烯-酚醛气凝胶材料及其制备方法
CN110628170B (zh) * 2019-10-23 2022-05-03 航天特种材料及工艺技术研究所 一种基于硅烷改性的氧化石墨烯-酚醛气凝胶材料及其制备方法
CN113277864A (zh) * 2020-02-20 2021-08-20 中国科学院化学研究所 一种碳质气凝胶的制备方法及气凝胶
WO2022012075A1 (zh) * 2020-07-14 2022-01-20 广东工业大学 一种多孔碳-石墨烯复合材料及其制备方法
CN111900350A (zh) * 2020-07-14 2020-11-06 广东工业大学 一种多孔碳-石墨烯复合材料及其制备方法
EP4086225A1 (en) * 2021-05-04 2022-11-09 Consejo Superior de Investigaciones Científicas (CSIC) 3d graphene aerogels
WO2022233626A1 (en) * 2021-05-04 2022-11-10 Consejo Superior De Investigaciones Científicas (Csic) 3d graphene aerogels
CN114479659A (zh) * 2022-01-05 2022-05-13 上海卫星装备研究所 一种碳基超黑消杂光纳米复合涂层及其制备方法
CN114380285A (zh) * 2022-02-17 2022-04-22 湘潭大学 一种一、二维生物碳协同增强的碳气凝胶材料及其制备方法和应用
CN114380285B (zh) * 2022-02-17 2023-10-20 湘潭大学 一种一、二维生物碳协同增强的碳气凝胶材料及其制备方法和应用
CN115490524A (zh) * 2022-05-27 2022-12-20 南京工业大学 一种增强的耐高温硅基陶瓷气凝胶的制备方法
CN115155470A (zh) * 2022-08-16 2022-10-11 南京信息工程大学 一种有序碳-聚硅氧烷复合气凝胶及其制备方法、应用
CN115155470B (zh) * 2022-08-16 2023-05-16 南京信息工程大学 一种有序碳-聚硅氧烷复合气凝胶及其制备方法、应用

Also Published As

Publication number Publication date
CN106365142B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN106365142B (zh) 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法
Zheng et al. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors
Wang et al. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery
Li et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors
Hua et al. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor
Wang et al. Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes
Liu et al. Controllable synthesis of functional hollow carbon nanostructures with dopamine as precursor for supercapacitors
Li et al. Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors
Hao et al. Perovskite La0. 6Sr0. 4CoO3-δ as a new polysulfide immobilizer for high-energy lithium-sulfur batteries
Xu et al. In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors
Izadi-Najafabadi et al. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite
Zhang et al. Multistage self-assembly strategy: Designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance
Wang et al. Co-gelation synthesis of porous graphitic carbons with high surface area and their applications
Chen et al. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors
Xu et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea
Moreno-Castilla et al. Electrochemical performance of carbon gels with variable surface chemistry and physics
Gao et al. One stone, two birds: gastrodia elata-derived heteroatom-doped carbon materials for efficient oxygen reduction electrocatalyst and as fluorescent decorative materials
Gao et al. Bifunctional 3D n-doped porous carbon materials derived from paper towel for oxygen reduction reaction and supercapacitor
Liu et al. The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids
Huang et al. N-doped nanoporous carbons for the supercapacitor application by the template carbonization of glucose: the systematic comparison of different nitridation agents
Chen et al. Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction
Hu et al. Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors
Wang et al. Facile synthesis of N/B co-doped hierarchically porous carbon materials based on threonine protic ionic liquids for supercapacitor
Arkhipova et al. Mesoporous graphene nanoflakes for high performance supercapacitors with ionic liquid electrolyte
Liu et al. Nitrogen-doped ordered mesoporous carbon microspheres made from m-aminophenol-formaldehyde resin as promising electrode materials for supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190125

Termination date: 20210913

CF01 Termination of patent right due to non-payment of annual fee