CN106348746B - 一种激光烧结3d打印成型yag透明陶瓷粉体的制备 - Google Patents

一种激光烧结3d打印成型yag透明陶瓷粉体的制备 Download PDF

Info

Publication number
CN106348746B
CN106348746B CN201610807398.9A CN201610807398A CN106348746B CN 106348746 B CN106348746 B CN 106348746B CN 201610807398 A CN201610807398 A CN 201610807398A CN 106348746 B CN106348746 B CN 106348746B
Authority
CN
China
Prior art keywords
ceramic powder
transparent ceramic
yag transparent
laser sintered
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610807398.9A
Other languages
English (en)
Other versions
CN106348746A (zh
Inventor
李慧芝
杨秋苹
张培志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610807398.9A priority Critical patent/CN106348746B/zh
Publication of CN106348746A publication Critical patent/CN106348746A/zh
Application granted granted Critical
Publication of CN106348746B publication Critical patent/CN106348746B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开了一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,首先将YAG透明陶瓷制备成粒径在0.1~5μm范围内的造粒粉体;然后,在研磨机中加入,造粒YAG透明陶瓷粉体:82%~90%,硬脂酸锌:0.5%~1.5%,丙二胺:0.2%~1.0%,ABS树脂:4%~10%,开启研磨机转速在250转/分钟,研磨60min,加入N,N‑二甲基酰胺:4%~12%,在250转/分钟的转速下研磨100~120min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,该粉体材料采用激光烧结可可直接成型,球形度高,流动性好,成型精度高。

Description

一种激光烧结3D打印成型YAG透明陶瓷粉体的制备
技术领域
本发明涉及一种激光烧结3D打印快速成型粉体材料的制备方法,属于快速成型的材料领域,特别涉及一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法及激光烧结3D打印成型。
背景技术
YAG,是钇铝石榴石的简称,化学式为Y3Al5O12,是由Y2O3和Al2O3反应生成的一种复合氧化物,属立方晶系,具有石榴石结构。石榴石的晶胞可看作是十二面体、八面体和四面体的链接网。自1995 年Ikesue 采用固相反应烧结法制备Nd:YAG 透明陶瓷, 并实现连续激光输出以来激光陶瓷以其制备周期短、易实现均匀和高浓度掺杂和设计灵活性等优点而获得快速发展, 将逐步取代单晶成为下一代激光增益材料。各种离子(如Nd3+、Yb3+、Er3+、Ho3+、Tm3+和Cr4+等)激活的YAG以其优异的物理化学性能而成为研究最广、激光输出效率最高的材料体系。高光学质量YAG 基透明陶瓷的制备已成为先进陶瓷领域的研究热点。
透明陶瓷中残余气孔、晶界杂质及掺杂偏析是影响其光学质量的主要因素。在固相反应烧结法制备YAG 透明陶瓷过程中,直接干燥球磨浆料将导致纳微米粉体的严重团聚和不规则形状,干燥粉体流动性差,颗粒间摩擦力大,不利于后续成型过程,这种现象在制备大尺寸、复杂形状和复合结构时显得更为严重,并成为陶瓷烧结体中第二相和剩余气孔的主要来源,还可能导致陶瓷坯体的不一致收缩,甚至开裂。采用3D打印成型可以克服上述缺点,并使产品的精度提高等优点。
3D打印(3D printing),是一种以数字模型文件为基础,运用流体状、粉末状、丝(棒)状等可固化、粘合、熔合材料,通过逐层固化、粘合、熔合的方式来构造物体的技术。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。3D打印技术出现在20世纪90年代中期,实际上是利用光固化和纸层叠等技术的最新快速成型装置。它与普通打印工作原理基本相同,打印机内装有液体或粉末等“打印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。这打印技术称为 3D立体打印技术。传统制造业一般需要对原材料进行切割或钻孔,即减材制造,可大规模生产;3D打印是将材料一层层堆叠粘合、熔合,即增材制造;可实现快速个性化制造,可制造出传统制造业无法完成的形状。
激光烧结3D打印属于增材制造的一种方法。这种工艺也是以激光器为能量源,通过激光束使塑料、蜡、陶瓷、金属或其复合物的粉末均匀地烧结在加工平面上。在工作台上均匀铺上一层很薄的粉末作为原料,激光束在计算机的控制下,通过扫描器以一定的速度和能量密度按分层面的二维数据扫描。经过激光束扫描后,相应位置的粉末就烧结成一定厚度的实体片层,未扫描的地方仍然保持松散的粉末状。这一层扫描完毕后,随后需要对下一层进行扫描。先根据物体截层厚度即分层层厚而降低工作台,铺粉滚筒再一次将粉末铺平,可以开始新一层的扫描。如此反复,直至扫描完所有层面。去掉多余粉末,并经过后处理,即可获得产品。
在现有的成型材料领域中,由于SLS快速成型技术具有原料来源多样和零件的构建时间较短等优点,故在快速成型领域有着较广泛的应用。但大部分是有机材料和复合材料,中国发明专利CN1379061A中公开了一种用于激光烧结成型制品的尼龙粉末材料,通过化学合成和工艺的改进,对尼龙粉末材料的表面进行处理,得到了烧结性能优良,成型制品强度高,韧性好的产品,简化了激光烧结尼龙材料的制备工艺,降低了成本;中国发明专利CN103881371 中公开了一种激光烧结3D制造技术用石塑复合粉末及其制备方法。
本发明通过对YAG透明陶瓷粉体材料进行造粒,将高分子的胶粘剂涂层到造粒YAG透明陶瓷粉体材料表面,得到的涂层后YAG透明陶瓷粉体材料可以直接采用激光烧结快速成型。该粉体粒径均匀、球形度高、流动性好,可以方便快捷地成形精密、异型、复杂的部件,不需要喷洒粘接剂,大大简化才做程序。所得到产品不仅强度高,也使薄壁微小零件的成型在3D快速成型机上的实现成为可能;此外,本专利提供的方法简单,成本低。
发明内容
本发明的目是提供一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,快速成型粉末不需要喷洒粘结剂可直接激光扫描成型;
本发明的目的通过以下技术方案实现。
一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,该方法具有以下工艺步骤:
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,按质量百分比加入,水:48%~52%,聚乙烯醇:0.2%~1.0%,可溶性淀粉: 0.2%~1.0%,加热溶解,柠檬酸铵:0.1%~1.0%,搅拌溶解,再加入预处理YAG透明陶瓷粉体:46%~50%,各组分之和为百分之百,强力搅拌、反应4~6h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120µm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,按质量百分比加入,造粒YAG透明陶瓷粉体:82%~90%,硬脂酸锌:0.5%~1.5%,丙二胺:0.2%~1.0%,ABS树脂:4%~10%,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:4%~12%,各组分之和为百分之百,在250转/分钟的转速下研磨100~120 min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径为50~150μm的范围内。
在步骤(2)中所述的喷雾干燥,进风口温度控制在100℃,出风口温度控制在95℃,进风流量220m3/h。
在步骤(2)中所述的聚乙烯醇与可溶性淀粉的质量比在1:1之间最优。
在步骤(3)中所述的造粒YAG透明陶瓷粉体与ABS树脂的质量比在1:0.05~0.10之间最优。
在步骤(3)中所述的ABS树脂与丙二胺的质量比在1:0.08~0.10之间最优。
本发明所述的颗粒度测试方法是采用激光粒度仪测得的粒度当量直径尺寸。
本发明的另一目的是提供激光烧结3D打印成型YAG透明陶瓷粉体材料在3D打印机上成型的应用,特点为:将激光烧结3D打印成型YAG透明陶瓷粉体材料加入到选择性激光烧结成型机的供粉缸中,铺粉滚轮将粉末材料均匀地铺在加工平面上并被加热至加工温度,激光器发出激光,计算机控制激光器的开关及扫描器的角度,使得激光束在加工平面上根据对应的二维片层形状进行扫描,激光束扫过之后,工作台下移一个层厚,再铺粉,激光束扫描,如此反复,得到激光烧结件;其中激光束在加工平面上扫描的方式为分区域扫描,激光功率为60~80W,扫描速度为1500mm/s,扫描间距为0.1~0.15mm,分层厚度为0.10~0.2mm,预热温度:80℃,加工温度为170~180℃。
本发明与现有技术比较,具有如下优点及有益效果:
(1)本发明获得的激光烧结3D打印成型YAG透明陶瓷粉体材料,不需要喷洒粘结剂在激光烧结条件下可直接成型。
(2)本发明获得的激光烧结3D打印成型YAG透明陶瓷粉体材料,颗粒的粒径均匀,球形度高,流动性好的特点,性质稳定;由这种快速成型粉末材料可以制造薄壁模型或微小零部件,制造出产品具有表面光泽度高,强度好,精度高等特点。
(3)本发明获得的激光烧结3D打印成型YAG透明陶瓷粉体材料,具有制备工艺简单,条件易于控制,生产成本低,易于工业化生产,易于储存等优点。
具体实施方式
实施例1
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,分别加入,水:5000mL,聚乙烯醇:50g,可溶性淀粉: 50g,加热溶解,柠檬酸铵:20g,搅拌溶解,再加入预处理YAG透明陶瓷粉体:4900g,强力搅拌、反应5h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120µm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,分别加入,造粒YAG透明陶瓷粉体:86g,硬脂酸锌:1.0g,丙二胺:0.5g,ABS树脂:7g,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:6mL,在250转/分钟的转速下研磨110 min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径为50~150μm的范围内。
实施例2
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,分别加入,水:5200mL,聚乙烯醇:60g,可溶性淀粉: 40g,加热溶解,柠檬酸铵:30g,搅拌溶解,再加入预处理YAG透明陶瓷粉体:4800g,强力搅拌、反应4h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120µm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,分别加入,造粒YAG透明陶瓷粉体:90g,硬脂酸锌:0.5g,丙二胺:0.2g,ABS树脂:4g,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:5mL,在250转/分钟的转速下研磨100 min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径为50~150μm的范围内。
实施例3
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,分别加入,水:10000mL,聚乙烯醇:100g,可溶性淀粉: 100g,加热溶解,柠檬酸铵:50g,搅拌溶解,再加入预处理YAG透明陶瓷粉体:10000g,强力搅拌、反应6h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120µm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,分别加入,造粒YAG透明陶瓷粉体:170g,硬脂酸锌:3.0g,丙二胺:2.0g,ABS树脂:12g,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:20mL,在250转/分钟的转速下研磨120 min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径为50~150μm的范围内。
实施例4
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,分别加入,水:4800mL,聚乙烯醇:40g,可溶性淀粉:60g,加热溶解,柠檬酸铵:10g,搅拌溶解,再加入预处理YAG透明陶瓷粉体:5200g,强力搅拌、反应5.5h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120µm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,分别加入,造粒YAG透明陶瓷粉体:820g,硬脂酸锌:15g,丙二胺:10g,ABS树脂:60g,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:110mL,在250转/分钟的转速下研磨110 min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径为50~150μm的范围内。
实施例5
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,分别加入,水:24000mL,聚乙烯醇:200g,可溶性淀粉: 300g,加热溶解,柠檬酸铵:50g,搅拌溶解,再加入预处理YAG透明陶瓷粉体:26000g,强力搅拌、反应4.5h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120µm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,分别加入,造粒YAG透明陶瓷粉体:420g,硬脂酸锌:6g,丙二胺:3g,ABS树脂:50g,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:30mL,在250转/分钟的转速下研磨110 min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径为50~150μm的范围内。
使用方法:将激光烧结3D打印成型YAG透明陶瓷粉体材料加入到选择性激光烧结成型机的供粉缸中,铺粉滚轮将粉末材料均匀地铺在加工平面上并被加热至加工温度,激光器发出激光,计算机控制激光器的开关及扫描器的角度,使得激光束在加工平面上根据对应的二维片层形状进行扫描,激光束扫过之后,工作台下移一个层厚,再铺粉,激光束扫描,如此反复,得到激光烧结件;其中激光束在加工平面上扫描的方式为分区域扫描,激光功率为60~80W,扫描速度为1500mm/s,扫描间距为0.1~0.15mm,分层厚度为0.10~0.2mm,预热温度:80℃,加工温度为170~180℃。

Claims (7)

1.一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,该方法具有以下工艺步骤:
(1)YAG透明陶瓷粉体预处理:将YAG透明陶瓷粉体干燥,研磨,过筛,粒径控制在0.1~5μm范围内,得到预处理YAG透明陶瓷粉体;
(2)造粒YAG透明陶瓷粉体制备:在反应器中,按质量百分比加入,水:48%~52%,聚乙烯醇:0.2%~1.0%,可溶性淀粉:0.2%~1.0%,加热溶解,柠檬酸铵:0.1%~1.0%,搅拌溶解,再加入预处理YAG透明陶瓷粉体:46%~50%,各组分之和为百分之百,强力搅拌、反应4~6h,然后喷雾干燥,得到造粒YAG透明陶瓷粉体,其粒径在50~120μm范围内;
(3)激光烧结3D打印成型YAG透明陶瓷粉体的制备:在研磨机中,按质量百分比加入,造粒YAG透明陶瓷粉体:82%~90%,硬脂酸锌:0.5%~1.5%,丙二胺:0.2%~1.0%,ABS树脂:4%~10%,开启研磨机转速在250转/分钟,研磨60min,加入N,N-二甲基酰胺:4%~12%,各组分之和为百分之百,在250转/分钟的转速下研磨100~120min,干燥,得到激光烧结3D打印成型YAG透明陶瓷粉体,所得到激光烧结3D打印成型YAG透明陶瓷粉体的粒径在50~150μm的范围内。
2.根据权利要求1所述的一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,步骤(2)中所述的喷雾干燥,进风口温度控制在100℃,出风口温度控制在95℃,进风流量220m3/h。
3.根据权利要求1所述的一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,步骤(2)中所述的聚乙烯醇与可溶性淀粉的质量比为1:1。
4.根据权利要求1所述的一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,步骤(3)中所述的造粒YAG透明陶瓷粉体与ABS树脂的质量比在1:0.05~0.10之间。
5.根据权利要求1所述的一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法,其特征在于,步骤(3)中所述的ABS树脂与丙二胺的质量比在1:0.08~0.10之间。
6.根据权利要求1所述的一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法所制备的3D打印成型YAG透明陶瓷粉体。
7.根据权利要求1所述的一种激光烧结3D打印成型YAG透明陶瓷粉体的制备方法所制备的3D打印成型YAG透明陶瓷粉体,其特征在于,所述3D打印成型YAG透明陶瓷粉体激光烧结温度为170~180℃。
CN201610807398.9A 2016-09-07 2016-09-07 一种激光烧结3d打印成型yag透明陶瓷粉体的制备 Expired - Fee Related CN106348746B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610807398.9A CN106348746B (zh) 2016-09-07 2016-09-07 一种激光烧结3d打印成型yag透明陶瓷粉体的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610807398.9A CN106348746B (zh) 2016-09-07 2016-09-07 一种激光烧结3d打印成型yag透明陶瓷粉体的制备

Publications (2)

Publication Number Publication Date
CN106348746A CN106348746A (zh) 2017-01-25
CN106348746B true CN106348746B (zh) 2019-06-04

Family

ID=57859782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610807398.9A Expired - Fee Related CN106348746B (zh) 2016-09-07 2016-09-07 一种激光烧结3d打印成型yag透明陶瓷粉体的制备

Country Status (1)

Country Link
CN (1) CN106348746B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830901A (zh) * 2017-02-20 2017-06-13 醴陵市陶瓷3D打印研究所 一种用于激光烧结陶瓷3d打印的陶瓷微粒及制备方法
CN106866150B (zh) * 2017-03-06 2019-09-27 济南大学 一种以糖为胶粘剂制备3d打印氮化钛粉体材料
CN106966718B (zh) * 2017-03-06 2019-09-27 济南大学 一种以糖为胶粘剂制备3d打印钛酸锶钡粉体材料
CN108276002A (zh) * 2018-03-06 2018-07-13 济南大学 一种用于3dp成型工艺碳化钛陶瓷粉体的制备方法
CN112250445A (zh) * 2020-10-20 2021-01-22 西安工程大学 一种3d打印梯度陶瓷型芯及其制备方法
CN114014349B (zh) * 2021-11-10 2024-02-20 武汉工程大学 一种yag纳米粉体的制备方法
CN116425531A (zh) * 2023-03-14 2023-07-14 中国科学院上海光学精密机械研究所 一种红外透明陶瓷墨水及其制备与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798228A (zh) * 2009-12-18 2010-08-11 贵州大学 激光烧结制备钇铝石榴石陶瓷粉体材料的合成方法及产品
CN105367998A (zh) * 2015-11-20 2016-03-02 苏州光韵达光电科技有限公司 一种3d打印材料的制备方法
CN105665697A (zh) * 2016-03-11 2016-06-15 中山大学惠州研究院 一种fdm 3d打印用金属或陶瓷耗材及其制备方法与打印成品方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050023710A1 (en) * 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798228A (zh) * 2009-12-18 2010-08-11 贵州大学 激光烧结制备钇铝石榴石陶瓷粉体材料的合成方法及产品
CN105367998A (zh) * 2015-11-20 2016-03-02 苏州光韵达光电科技有限公司 一种3d打印材料的制备方法
CN105665697A (zh) * 2016-03-11 2016-06-15 中山大学惠州研究院 一种fdm 3d打印用金属或陶瓷耗材及其制备方法与打印成品方法

Also Published As

Publication number Publication date
CN106348746A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106348746B (zh) 一种激光烧结3d打印成型yag透明陶瓷粉体的制备
CN103936428B (zh) 一种用于三维打印快速成型粉末材料的制备方法
CN105601274B (zh) 一种快速制备氧化锆牙科修复体的方法
CN104788102B (zh) 激光烧结3d打印技术用纳米氮化硅粉末的制备
CN104744049B (zh) 一种激光烧结3d打印快速成型氮化硅粉末材料的制备
CN103936392B (zh) 一种3d打印无机粉末成型材料的制备方法
CN106348745B (zh) 一种3dp工艺快速成型yag透明陶瓷粉体材料的制备
CN105130402A (zh) 一种用于3d打印的纳米陶瓷材料及其3d打印成型方法
CN105481329A (zh) 3d打印石膏油墨及其制备方法
CN104744050B (zh) 一种三维打印快速成型氮化硼粉体材料的制备
CN104788081B (zh) 一种氧化铝粉末3d打印材料的制备方法
US20140252672A1 (en) 3d printing powder compositions and methods of use
CN106007723A (zh) 一种SiC陶瓷素坯的制造方法
CN107043259A (zh) 一种反应烧结碳化硅陶瓷激光选区烧结成型方法
CN106316388B (zh) 一种用于激光烧结3d打印成型钛酸钡陶瓷粉体的制备
CN105195667A (zh) 一种3d打印快速成型覆膜砂制备方法
CN104725046B (zh) 一种3d打印快速成型锆铝碳陶瓷粉体材料的制备
CN106380173B (zh) 一种用于激光烧结3d打印快速成型黑陶粉体的制备
CN106083061B (zh) 一种激光烧结快速成型碳化硅陶瓷的制备方法
CN104310948B (zh) 一种三d打印快速成型无机粉末材料的制备方法
CN109499561B (zh) 一种增材制造三维二氧化钛光催化材料的方法
CN104908143B (zh) 一种激光烧结3d打印快速成型氧化铝粉末的制备
CN110483008A (zh) 一种用于光固化3d打印陶瓷的浆料及其陶瓷产品制备方法
CN105215260A (zh) 一种用于激光烧结3d打印低发气覆膜砂制备方法
CN104944962B (zh) 一种激光烧结快速成型氮化硅陶瓷粉末的制备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190604

Termination date: 20200907

CF01 Termination of patent right due to non-payment of annual fee