CN112250445A - 一种3d打印梯度陶瓷型芯及其制备方法 - Google Patents

一种3d打印梯度陶瓷型芯及其制备方法 Download PDF

Info

Publication number
CN112250445A
CN112250445A CN202011125419.1A CN202011125419A CN112250445A CN 112250445 A CN112250445 A CN 112250445A CN 202011125419 A CN202011125419 A CN 202011125419A CN 112250445 A CN112250445 A CN 112250445A
Authority
CN
China
Prior art keywords
ceramic
beads
printing
layer
ceramic beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011125419.1A
Other languages
English (en)
Inventor
屈银虎
张红
高浩斐
王钰凡
何炫
张学硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011125419.1A priority Critical patent/CN112250445A/zh
Publication of CN112250445A publication Critical patent/CN112250445A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances

Abstract

本发明公开了一种3D打印梯度陶瓷型芯,按照质量百分比由以下组分组成,打印陶瓷珠粒90%‑94%、粘结剂1%‑5%、润滑分散剂0.5%‑5%、两相偶联剂0.5%‑5%,合计100%。本发明还公开了一种3D打印梯度陶瓷型芯的制备方法,步骤包括:步骤1、制备打印陶瓷珠粒;步骤2、激光扫描制备陶瓷型芯胚体;步骤3、上述陶瓷型芯胚体中,打印陶瓷珠粒被激光粘结或烧结的部分作为主体结构,其余打印陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒,即成。本发明的制备方法,可以获得内部轻质多孔的陶瓷型芯,减少了脱芯工作量,提高了脱芯效率。

Description

一种3D打印梯度陶瓷型芯及其制备方法
技术领域
本发明属于陶瓷型芯技术领域,涉及一种3D打印梯度陶瓷型芯,本发明还涉及该种3D打印梯度陶瓷型芯的制备方法。
背景技术
陶瓷材料具有优良高温性能、高强度、高硬度、低密度、好的化学稳定性,使用其在航天航空、汽车、生物等行业得到广泛应用。而陶瓷难以成型的特点又限制了它的使用,尤其是复杂陶瓷制件的成型均借助于复杂模具来实现。复杂模具需要较高的加工成本和较长的开发周期,而且,模具加工完毕后,就无法对其进行修改,这种状况越来越不适应产品的改进及更新换代,采用快速成型技术制备陶瓷制件可以克服上述缺点。
陶瓷型芯作为形成铸件空腔的转接体,其作用是:形成铸件的内腔结构,与外型模或型壳共同保证铸件对空腔的尺寸精度要求,简化工艺难度,降低成本,提高制品合格率的一种特殊的工艺手段。
3D打印技术起源于美国,是一种快速成型技术,又被称为增材制造,目前在制造业领域正迅速发展。与传统制造技术相比,3D打印具有以下优点:1)无需机械加工或者任何模具,可直接利用三维模型成型任意形状的零件;2)可以成型传统制造技术无法生产出的复杂零件。3D打印的这些特点可以有效缩短产品的研发周期,提高生产效率,降低生产成本,增加产品多样性,使其在单件小批量生产中占据明显优势。将陶瓷3D打印应用于传统的熔模铸造工艺中,使用陶瓷珠粒直接打印型芯来取代传统的开模具压制型芯,可以减少产品的研发周期,降低生产成本,使其在现代工业生产中具备更强的竞争力。
发明内容
本发明的目的是提供一种3D打印梯度陶瓷型芯,解决了现有技术难以制备出不同位置具有不同致密度和不同孔隙大小及孔隙率的陶瓷型芯,增大了脱除型芯的工作量,影响脱芯效率的问题。
本发明的另一目的是提供该种3D打印梯度陶瓷型芯的制备方法,解决了现有技术在陶瓷型芯制备工艺上控制不精准的问题。
本发明采用的技术方案是,一种3D打印梯度陶瓷型芯,按照质量百分比由以下组分组成,打印陶瓷珠粒90%-94%、粘结剂1%-5%、润滑分散剂0.5%-5%、两相偶联剂0.5%-5%,合计100%。
本发明采用的另一技术方案是,一种3D打印梯度陶瓷型芯的制备方法,按照以下步骤实施:
步骤1、制备打印陶瓷珠粒,
分别称取陶瓷珠粒、粘结剂、润滑分散剂、两相偶联剂,混合在一起并搅拌均匀,获得粘附有加热固化型超大分子树脂的打印陶瓷珠粒;
步骤2、激光扫描制备陶瓷型芯胚体,
在工作台面上平铺一层粘附有加热固化型超大分子树脂的打印陶瓷珠粒,利用激光束扫描特定区域的打印陶瓷珠粒,使打印陶瓷珠粒中的粘结剂熔融固化,形成层状结构;烧结后,工作台下降预定高度,再铺一层不同粒度粘附有加热固化型超大分子树脂的打印陶瓷珠粒进行烧结,总共铺设三层,得到陶瓷型芯胚体,
步骤3、上述陶瓷型芯胚体中,打印陶瓷珠粒被激光粘结或烧结的部分作为主体结构,其余打印陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒,即成。
本发明的有益效果是,包括以下几个方面:
1)本发明的制备方法,采用3D打印梯度陶瓷型芯结构,可以获得内部轻质多孔的陶瓷型芯,减少了脱芯工作量,提高了脱芯效率。
2)本发明的制备方法,使用加热固化型超大分子树脂粘结陶瓷珠粒(优选三氧化二铝陶瓷珠粒)层层扫描,不变形、不位移、不断裂、收缩率低,尺寸精度高,能制作出腔道复杂的薄壁铸件,且壁厚均匀。
具体实施方式
本发明的3D打印梯度陶瓷型芯,按照质量百分比由以下组分组成,打印陶瓷珠粒90%-94%、粘结剂1%-5%、润滑分散剂0.5%-5%、两相偶联剂0.5%-5%,合计100%。
打印陶瓷珠粒由陶瓷珠粒和漂珠按体积比1:1配制而成,漂珠多孔疏松,可以提高型芯里层的孔隙率,因而提高陶瓷型芯的脱除效率。以下陶瓷珠粒均采用三氧化二铝的原料。
粘结剂采用加热固化型超大分子树脂。
润滑分散剂选用硬脂酸钡或硬脂酸铣铵。
两相偶联剂选用铝酸化合物偶联剂或锆类偶联剂。
本发明上述3D打印梯度陶瓷型芯的制备方法,按照以下步骤实施:
步骤1、制备打印陶瓷珠粒,
分别称取陶瓷珠粒、粘结剂、润滑分散剂、两相偶联剂,混合在一起并搅拌均匀,获得粘附有加热固化型超大分子树脂的打印陶瓷珠粒;
步骤2、激光扫描制备陶瓷型芯胚体,
在工作台面上平铺一层粘附有加热固化型超大分子树脂的打印陶瓷珠粒,利用激光束扫描特定区域的打印陶瓷珠粒,烧结温度为1450℃-1520℃,使打印陶瓷珠粒中的粘结剂熔融固化,形成层状结构;烧结后,工作台下降预定高度,再铺一层不同粒度粘附有加热固化型超大分子树脂的打印陶瓷珠粒进行烧结,总共铺设三层,得到陶瓷型芯胚体,具体过程是:
制备第一层(即最下层):采用100-500目的不含漂珠的陶瓷珠粒,激光扫描30-40s,使打印陶瓷珠粒中的粘结剂熔融固化,形成0.2-0.8mm的三氧化二铝致密层;
制备第二层:第一层扫描固化完成后,工作台下降预定高度,采用25-100目的陶瓷珠粒和粒径为70-200目的漂珠,二者的体积比为1:1,激光扫描50-70s,使打印陶瓷珠粒中的粘结剂熔融固化,形成0.5-1.5mm的漂珠-三氧化二铝复合层;
制备第三层:第二层扫描固化完成后,工作台再下降预定高度,采用30-70目的陶瓷珠粒和粒径为20-70目的漂珠,二者的体积比为1:1.5,激光扫描80-100s,使打印陶瓷珠粒中的粘结剂熔融固化,形成2-8mm的漂珠-三氧化二铝复合层,获得陶瓷型芯胚体;
步骤3、上述陶瓷型芯胚体中,打印陶瓷珠粒被激光粘结或烧结的部分作为主体结构,其余打印陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒,即成。
实施例1
步骤1、制备打印陶瓷珠粒,
分别称取三氧化二铝陶瓷珠粒92%、加热固化型超大分子树脂2%、润滑分散剂硬脂酸钡3%、两相偶联剂铝酸化合物偶联剂3%混合,搅拌均匀,获得带有加热固化型超大分子树脂的打印陶瓷珠粒。
步骤2、激光扫描制备陶瓷型芯胚体,
将粘附有加热固化型超大分子树脂的打印陶瓷珠粒平铺在工作台上,利用激光束扫描特定区域内的陶瓷珠粒,使打印陶瓷珠粒中的粘结剂熔融固化,形成层状结构;烧结后,工作台下降预定高度,再铺一层不同粒度的陶瓷珠粒进行烧结,总共铺设三层,得到陶瓷型芯胚体,具体过程是:
制备第一层:采用500目的陶瓷珠粒,激光扫描30s,使珠粒中的粘结剂熔融固化,形成0.2mm的三氧化二铝致密层。
制备第二层:第一层扫描固化完成后,工作台下降预定高度,采用100目的陶瓷珠粒和粒径为70目的漂珠,二者的体积比为1:1,激光扫描50s,使珠粒中的粘结剂熔融固化,形成0.5mm的漂珠-三氧化二铝复合层。
制备第三层:第二层扫描固化完成后,工作台下降预定高度,采用70目的陶瓷珠粒和粒径为30目的漂珠,二者的体积比为1:1.5,激光扫描80s,使珠粒中的粘结剂熔融固化,形成2mm的漂珠-三氧化二铝复合层,获得陶瓷型芯胚体。
所述陶瓷珠粒被粘结或烧结的部分作为主体结构,其余陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒。
对上述陶瓷珠粒被粘结或烧结的主体结构进行高温烧结,上述烧结温度为1500℃。
实施例2
步骤1、制备打印陶瓷珠粒,
分别称取三氧化二铝陶瓷珠粒92%、粘结剂4%、润滑分散剂硬脂酸钡3%、两相偶联剂锆类偶联剂1%混合,搅拌均匀,获得带有高分子粘结剂的陶瓷珠粒。
步骤2、激光扫描制备陶瓷型芯胚体,
将带有加热固化型超大分子树脂的陶瓷珠粒平铺在工作台上,利用激光束扫描特定区域内的陶瓷珠粒,使打印陶瓷珠粒中的粘结剂熔融固化,形成层状结构;烧结后,工作台下降预定高度,再铺一层不同粒度的陶瓷珠粒进行烧结,总共铺设三层,得到陶瓷型芯胚体,具体过程是:
制备第一层:采用300目的陶瓷珠粒,激光扫描40s,使珠粒中的粘结剂熔融固化,形成0.5mm的三氧化二铝致密层。
制备第二层:扫描固化后,工作台下降预定高度,采用80目的陶瓷珠粒和粒径为80目的漂珠,二者的体积比为1:1,激光扫描50s,使珠粒中的粘结剂熔融固化,形成1mm的漂珠-三氧化二铝复合层。
制备第三层:第二层扫描固化完成后,工作台下降预定高度,采用50目的陶瓷珠粒和粒径为40目的漂珠,二者的体积比为1:1.5,激光扫描90s,使漂珠中的粘结剂熔融固化,形成5mm的漂珠-三氧化二铝复合层,获得陶瓷型芯胚体。
所述陶瓷珠粒被粘结或烧结的部分作为主体结构,其余陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒。
所述烧结温度为三氧化二铝陶瓷珠粒时温度为1450℃。
实施例3
步骤1、制备打印陶瓷珠粒,
分别称取三氧化二铝陶瓷珠粒94%、粘结剂2%、润滑分散剂硬脂酸铣铵2%、两相偶联剂铝酸化合物偶联剂2%混合,搅拌均匀,获得带有高分子粘结剂的陶瓷珠粒。
步骤2、激光扫描制备陶瓷型芯胚体
将带有加热固化型超大分子树脂的陶瓷珠粒平铺在工作台上,利用激光束扫描特定区域内的陶瓷珠粒,使打印陶瓷珠粒中的粘结剂熔融固化,形成层状结构;烧结后,工作台下降预定高度,再铺一层不同粒度的陶瓷珠粒进行烧结,总共铺设三层,得到陶瓷型芯胚体,具体过程是:
制备第一层:采用100目的陶瓷珠粒,激光扫描50s,使珠粒中的粘结剂熔融固化,形成0.8mm三氧化二铝致密层。
制备第二层:扫描固化后,工作台下降预定高度,采用60目的陶瓷珠粒和粒径为100目的漂珠,二者的体积比为1:1,激光扫描60s,使珠粒中的粘结剂熔融固化,形成1.5mm漂珠-三氧化二铝复合层。
制备第三层:扫描固化,工作台下降预定高度,采用30目的陶瓷珠粒和粒径为50目的漂珠,二者的体积比为1:1.5,激光扫描100s,使珠粒中的粘结剂熔融固化,形成8mm漂珠-三氧化二铝复合层,获得陶瓷型芯胚体。
所述陶瓷珠粒被粘结或烧结的部分作为主体结构,其余陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒。
所述烧结温度为三氧化二铝陶瓷珠粒时温度为1480℃。

Claims (5)

1.一种3D打印梯度陶瓷型芯,其特征在于:按照质量百分比由以下组分组成,打印陶瓷珠粒90%-94%、粘结剂1%-5%、润滑分散剂0.5%-5%、两相偶联剂0.5%-5%,合计100%。
2.根据权利要求1所述的3D打印梯度陶瓷型芯,其特征在于:所述的打印陶瓷珠粒由陶瓷珠粒和漂珠按体积比1:1配制而成;
所述的粘结剂采用加热固化型超大分子树脂;
所述的润滑分散剂选用硬脂酸钡或硬脂酸铣铵;
所述的两相偶联剂选用铝酸化合物偶联剂或锆类偶联剂。
3.一种3D打印梯度陶瓷型芯的制备方法,其特征在于,按照以下步骤实施:
步骤1、制备打印陶瓷珠粒,
分别称取陶瓷珠粒、粘结剂、润滑分散剂、两相偶联剂,混合在一起并搅拌均匀,获得粘附有加热固化型超大分子树脂的打印陶瓷珠粒;
步骤2、激光扫描制备陶瓷型芯胚体,
在工作台面上平铺一层粘附有加热固化型超大分子树脂的打印陶瓷珠粒,利用激光束扫描特定区域的打印陶瓷珠粒,使打印陶瓷珠粒中的粘结剂熔融固化,形成层状结构;烧结后,工作台下降预定高度,再铺一层不同粒度粘附有加热固化型超大分子树脂的打印陶瓷珠粒进行烧结,总共铺设三层,得到陶瓷型芯胚体;
步骤3、上述陶瓷型芯胚体中,打印陶瓷珠粒被激光粘结或烧结的部分作为主体结构,其余打印陶瓷珠粒作为支撑结构,打印结束后,再去除没有被粘结固化的陶瓷珠粒,即成。
4.根据权利要求3所述的3D打印梯度陶瓷型芯的制备方法,其特征在于,所述的步骤2中,具体过程是:
制备第一层:采用100-500目的不含漂珠的陶瓷珠粒,激光扫描30-40s,使打印陶瓷珠粒中的粘结剂熔融固化,形成0.2-0.8mm的三氧化二铝致密层;
制备第二层:第一层扫描固化完成后,工作台下降预定高度,采用25-100目的陶瓷珠粒和粒径为70-200目的漂珠,二者的体积比为1:1,激光扫描50-70s,使打印陶瓷珠粒中的粘结剂熔融固化,形成0.5-1.5mm的漂珠-三氧化二铝复合层;
制备第三层:第二层扫描固化完成后,工作台再下降预定高度,采用30-70目的陶瓷珠粒和粒径为20-70目的漂珠,二者的体积比为1:1.5,激光扫描80-100s,使打印陶瓷珠粒中的粘结剂熔融固化,形成2-8mm的漂珠-三氧化二铝复合层,获得陶瓷型芯胚体。
5.根据权利要求3所述的3D打印梯度陶瓷型芯的制备方法,其特征在于:所述的步骤2中,烧结温度为1450℃-1520℃。
CN202011125419.1A 2020-10-20 2020-10-20 一种3d打印梯度陶瓷型芯及其制备方法 Pending CN112250445A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011125419.1A CN112250445A (zh) 2020-10-20 2020-10-20 一种3d打印梯度陶瓷型芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011125419.1A CN112250445A (zh) 2020-10-20 2020-10-20 一种3d打印梯度陶瓷型芯及其制备方法

Publications (1)

Publication Number Publication Date
CN112250445A true CN112250445A (zh) 2021-01-22

Family

ID=74243940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011125419.1A Pending CN112250445A (zh) 2020-10-20 2020-10-20 一种3d打印梯度陶瓷型芯及其制备方法

Country Status (1)

Country Link
CN (1) CN112250445A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211601A (zh) * 2021-05-10 2021-08-06 昆山奥维三维科技有限公司 一种陶瓷芯及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515820A (zh) * 2011-12-06 2012-06-27 天津大学 一种环保型轻质多孔莫来石陶瓷及其制备方法
TW201617203A (zh) * 2014-11-14 2016-05-16 Univ Lunghwa Sci & Technology 以三維列印技術製造高強度多孔性莫萊石陶瓷的方法
CN105669208A (zh) * 2016-03-07 2016-06-15 武汉理工大学 用于激光3d打印的酚醛树脂覆膜陶瓷粉末及其制备方法
CN106348746A (zh) * 2016-09-07 2017-01-25 济南大学 一种激光烧结3d打印成型yag透明陶瓷粉体的制备
KR101936916B1 (ko) * 2017-12-27 2019-01-09 한국세라믹기술원 3d 형상의 세라믹 매트릭스 복합재를 제조하는 3d 프린팅 장치 및 3d 프린팅 방법
CN109261890A (zh) * 2018-09-29 2019-01-25 共享智能铸造产业创新中心有限公司 陶瓷型芯用打印材料及其制备方法与陶瓷型芯的制备方法
CN109692967A (zh) * 2019-02-15 2019-04-30 中圣德投资(深圳)有限公司 一种3d打印用团状粉料及其制备方法和打印方法
CN111269010A (zh) * 2020-01-23 2020-06-12 上海交通大学 一种3d打印层状复合陶瓷的系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515820A (zh) * 2011-12-06 2012-06-27 天津大学 一种环保型轻质多孔莫来石陶瓷及其制备方法
TW201617203A (zh) * 2014-11-14 2016-05-16 Univ Lunghwa Sci & Technology 以三維列印技術製造高強度多孔性莫萊石陶瓷的方法
CN105669208A (zh) * 2016-03-07 2016-06-15 武汉理工大学 用于激光3d打印的酚醛树脂覆膜陶瓷粉末及其制备方法
CN106348746A (zh) * 2016-09-07 2017-01-25 济南大学 一种激光烧结3d打印成型yag透明陶瓷粉体的制备
KR101936916B1 (ko) * 2017-12-27 2019-01-09 한국세라믹기술원 3d 형상의 세라믹 매트릭스 복합재를 제조하는 3d 프린팅 장치 및 3d 프린팅 방법
CN109261890A (zh) * 2018-09-29 2019-01-25 共享智能铸造产业创新中心有限公司 陶瓷型芯用打印材料及其制备方法与陶瓷型芯的制备方法
CN109692967A (zh) * 2019-02-15 2019-04-30 中圣德投资(深圳)有限公司 一种3d打印用团状粉料及其制备方法和打印方法
CN111269010A (zh) * 2020-01-23 2020-06-12 上海交通大学 一种3d打印层状复合陶瓷的系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于守武等: "《高分子材料改性——原理及技术》", 31 May 2015 *
艾桃桃: "梯度多孔陶瓷的制备技术", 《中国陶瓷》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211601A (zh) * 2021-05-10 2021-08-06 昆山奥维三维科技有限公司 一种陶瓷芯及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109175307B (zh) 一种3d打印砂型反重力铸造成型方法
US20050252631A1 (en) Ceramic article and method of manufacture therefor
CN106927798B (zh) 一种水溶性陶瓷型芯及其制备方法
CN104526838A (zh) 陶瓷3d打印成型的方法
CN114289685B (zh) 一种多材质复合砂型成形方法及装置
CN101372421A (zh) 单晶浇铸用氧化钇陶瓷型芯材料及其成型制备方法
WO2011017864A1 (zh) 一种自适应铸型制造方法
US20200276634A1 (en) Method for producing a ceramic core for the production of a casting having hollow structures and a ceramic core
CN110732637A (zh) 一种涡轮叶片气膜孔精密成形方法
CN109692943B (zh) 一种真空压力浸渗正压法制备SiC3D/Al复合材料的方法
Rodríguez-González et al. Heat treatments for improved quality binder jetted molds for casting aluminum alloys
CN112250445A (zh) 一种3d打印梯度陶瓷型芯及其制备方法
CN109822077B (zh) 一种挤压浸渗法制备SiC3D/Al复合材料的方法
US6203734B1 (en) Low pressure injection molding of metal and ceramic powders using soft tooling
CN113211601B (zh) 一种陶瓷芯及其制备方法和应用
CN112250473B (zh) 一种梯度多孔陶瓷型芯及其制备方法
CN102581993B (zh) 一种调控硅橡胶模具尺寸的方法
CN112264575B (zh) 一种模具摇摆法空心陶瓷型芯及其制备方法
CN209077713U (zh) 一种基于激光选区烧结的陶瓷型铸造ps整体模具
CN112222363A (zh) 利用熔融液体一次压铸成型的陶瓷盐芯及其制备方法
CN111331708B (zh) 一种树脂基复合材料用水溶性模具材料
Fowler IV Study on the Viability of Preparing Plaster Molds for Rapid Prototyping of Complex Ceramic Parts using the Lost PLA Method
CN113561295B (zh) 一种消失模芯的制备方法、消失模具和应用
CN113319978B (zh) 一种具有沟槽结构的明克垫块的净尺寸制备方法
CN116673433A (zh) 一种精密铸造石膏型3dp成型方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210122